开关稳压电源电路设计及应用

合集下载

电路中的电源稳压与过压保护设计与分析

电路中的电源稳压与过压保护设计与分析

电路中的电源稳压与过压保护设计与分析电路中的电源稳压和过压保护是保证电子设备工作安全可靠的重要因素。

本文将从电源稳压和过压保护的设计原理、常见的实施方法以及分析电源稳压和过压保护的重要性三个方面进行论述。

一、电源稳压的设计原理电源稳压是指在电路运行过程中,保持电路输入电压稳定不变的一种设计措施。

电源稳压设计的原理是通过调整电源的输出电压,使其始终保持在设定的合理范围内。

常见的电源稳压方式有线性稳压和开关稳压两种。

线性稳压是通过使用线性电源稳压芯片,将输入电压通过消耗多余功率的方式,得到稳定的输出电压。

线性稳压在简单电路设计中应用较广,而且成本相对较低,但效率较低,并且受限于输入电压波动范围。

开关稳压则是通过开关功率调节器来实现。

它的工作原理是将输入电压经过开关频率高的开关管进行开关,通过周期性地开关和关闭,改变输出电压,从而达到稳压的目的。

开关稳压具有高效率、体积小等优点,广泛应用于高功率电路设计中。

二、过压保护的设计方法过压保护是指在电路中,当输入电压超过一定范围时,及时采取措施避免电子器件过载烧毁。

过压保护的实施方法多种多样,常见的有过压保护芯片、过压保护电路等几种方式。

过压保护芯片是一种专门用于检测和控制电路的电压的集成电路。

当输入电压超过设定值时,过压保护芯片会通过控制开关管或继电器等方式切断输入电压,从而保护后续电子器件的安全。

过压保护芯片具有反应快、精度高等特点,适用于对设备安全性要求较高的场合。

过压保护电路是一种通过元器件的相互配合,实现对电路过压的保护的方法。

常见的过压保护电路是采用快速响应二极管和稳压二极管等组合,当输入电压超过设定值时,快速响应二极管将多余电压导向大功率稳压二极管,从而保护电路中器件的安全。

三、电源稳压与过压保护的重要性电源稳压和过压保护在电子设备设计中具有重要的作用。

首先,电源稳压可以保证电子设备的正常工作,稳定的电源供给可以提高电路运行的精确性和稳定性,减少电子器件因电压波动带来的故障。

新型开关电源设计与应用pdf

新型开关电源设计与应用pdf

新型开关电源设计与应用一、开关电源的基本原理开关电源是一种将电能转换成直流电的电源供应器,其工作原理主要是通过控制开关管来调节输出电压的高低。

开关管在脉冲信号的控制下快速地开启和关闭,使得变压器初级线圈上产生一个交变的电压。

这个交变的电压经过变压器耦合后,再通过整流滤波电路将输出直流电压。

二、开关电源的分类与特点根据工作原理、电路结构和输出性质的不同,开关电源可以分为很多种类型,如恒压型、恒流型、稳压型等。

各类开关电源都有其独特的优缺点,适用于不同的应用场景。

三、开关电源的设计流程设计新型开关电源一般需要遵循以下步骤:首先确定电源的规格和要求,然后选择合适的电路拓扑结构,接着进行各部分电路设计,包括输入滤波器和整流电路、开关管和高频变压器、输出整流和滤波电路、反馈控制环路等。

最后进行性能测试和优化。

四、输入滤波器和整流电路设计输入滤波器的主要作用是抑制电磁干扰,保护电源设备免受电网的干扰。

整流电路则将交流电转换成直流电,为开关管提供工作电压。

在设计输入滤波器和整流电路时,需要考虑其对电网的影响和抗干扰能力。

五、开关管和高频变压器设计开关管和高频变压器是开关电源的核心元件,其性能直接影响到电源的效率、电压和电流的调节范围。

在设计开关管和高频变压器时,需要考虑到其电气性能、机械尺寸和散热性能等。

六、输出整流和滤波电路设计输出整流和滤波电路的主要作用是将高频变压器传递的脉冲电压转换成稳定的直流电压。

在设计输出整流和滤波电路时,需要考虑其整流效率、滤波效果和稳定性等。

七、反馈控制环路设计反馈控制环路是开关电源的重要组成部分,其主要作用是维持输出电压或电流的稳定。

在设计反馈控制环路时,需要考虑到其稳定性、响应速度和精度等。

八、保护电路和异常处理为了确保开关电源的安全运行,需要设计保护电路和异常处理措施。

例如过流保护、过压保护、欠压保护等。

这些保护措施可以在电源发生异常时及时切断电源或采取其他处理措施,避免对电源设备造成损坏。

直流开关稳压电源设计

直流开关稳压电源设计

直流开关稳压电源设计一、设计背景及意义随着电子技术的飞速发展,各类电子设备对电源的需求日益增长。

直流开关稳压电源以其高效、稳定、体积小、重量轻等优点,在通信、计算机、家用电器等领域得到了广泛应用。

设计一款性能优越、可靠性高的直流开关稳压电源,对于提高电子设备的整体性能具有重要意义。

二、设计目标1. 输出电压范围:12V±1V;2. 输出电流:2A;3. 转换效率:≥85%;4. 工作温度范围:25℃~+85℃;5. 具有过压、过流、短路保护功能;6. 体积小,便于安装。

三、设计方案1. 电路拓扑选择本设计采用开关电源的主流拓扑——反激式变换器。

反激式变换器具有电路简单、体积小、效率高等优点,适用于中小功率电源设计。

2. 主控芯片选型选用ST公司的STM32F103系列微控制器作为主控芯片,该芯片具有高性能、低功耗、丰富的外设资源等特点,能够满足开关电源的设计需求。

3. 功率开关管选型功率开关管是开关电源的核心元件,本设计选用N沟道MOSFET作为功率开关管。

根据设计指标,选用IRF530N型号MOSFET,其导通电阻低,可降低开关损耗,提高转换效率。

4. 输出整流滤波电路设计输出整流滤波电路采用肖特基二极管和LC滤波电路。

肖特基二极管具有正向压降低、开关速度快的特点,适用于开关电源整流。

LC滤波电路能有效抑制输出电压纹波,提高输出电压稳定性。

5. 保护电路设计为实现过压、过流、短路保护功能,设计如下保护电路:(1)过压保护:在输出端设置一个电压比较器,当输出电压超过设定值时,触发保护动作,切断功率开关管的驱动信号。

(2)过流保护:在功率开关管源极串联一个取样电阻,实时监测电流值。

当电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。

(3)短路保护:在输出端设置一个电流比较器,当输出电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。

四、实验验证与优化1. 搭建实验平台,对设计的直流开关稳压电源进行测试,观察输出电压、电流、效率等参数是否符合设计要求。

200w开关稳压电源设计原理

200w开关稳压电源设计原理

200w开关稳压电源设计原理
200瓦开关稳压电源是一种常见的电源设计,它可以将输入电压转换为稳定的输出电压,适用于各种电子设备和电路。

下面我将从多个角度来解释这种电源的设计原理。

首先,开关稳压电源的设计原理涉及到几个关键部分,输入滤波电路、整流电路、滤波电容、开关变换电路、控制电路和输出稳压电路。

输入滤波电路用于滤除输入电源中的高频噪声和干扰,通常采用电感和电容组成的滤波网络来实现。

整流电路将交流输入电压转换为脉冲电压,常见的整流电路有单相桥式整流电路或全波整流电路。

接下来是开关变换电路,它使用开关管(如MOSFET)来控制输入电压的开关,通过周期性地切换开关管的导通和关断状态,将输入电压转换为脉冲电压。

这种脉冲电压经过滤波电容后得到平稳的直流电压。

控制电路则用来控制开关管的导通和关断,以保持输出电压的
稳定。

常见的控制方式包括脉宽调制(PWM)和脉冲频率调制(PFM),通过调节开关管的导通时间和频率来实现输出电压的稳定
控制。

最后是输出稳压电路,它通常由稳压管、反馈电路和输出滤波
电路组成,用于提供稳定的输出电压并滤除残余的高频噪声。

稳压
管通过反馈电路监测输出电压并调节开关管的工作状态,以保持输
出电压的稳定。

总的来说,开关稳压电源的设计原理涉及到输入滤波、整流、
开关变换、控制和输出稳压等多个环节,通过这些环节的协同工作,可以实现将输入电压转换为稳定的输出电压。

这种设计原理在实际
应用中被广泛采用,能够为各种电子设备提供稳定可靠的电源供应。

稳压电源设计

稳压电源设计

稳压电源设计1. 引言稳定的电源是电子设备正常运行的关键,稳压电源设计是电子电路设计中非常重要的一环。

本文将介绍稳压电源的基本原理、设计方法以及常见的稳压电源类型。

2. 稳压电源的基本原理稳压电源的主要目的是提供一个稳定的直流电压输出。

它可以通过控制电源输入端的输入电压或调整电路的工作方式来实现。

稳压电源的基本原理是通过负反馈控制来实现稳定的输出。

稳压电源电路通常由三个主要部分组成:输入部分、稳压控制部分和输出部分。

输入部分用于接受电源输入,稳压控制部分负责检测输出电压并作出相应调整,输出部分则提供稳定的输出电压。

3. 稳压电源的设计方法稳压电源的设计需要考虑多个因素,如输出电压范围、负载能力、效率、稳定性等。

下面是一些常用的稳压电源设计方法:3.1. 线性稳压电源线性稳压电源是最简单和常见的稳压电源类型之一。

它使用线性元件(如二极管、晶体管)来控制输出电压,具有较低的噪声和较高的稳定性。

但由于线性元件的特性,线性稳压电源的效率较低。

3.2. 开关稳压电源开关稳压电源通过开关元件(如开关管、MOS管)对输入电源进行开关调制,从而实现对输出电压的控制。

开关稳压电源具有较高的效率和较低的体积。

但由于开关元件的开关动作会产生噪声和干扰,对于某些应用场景可能不适用。

3.3. 切换稳压电源切换稳压电源是一种结合了线性稳压和开关稳压的设计方法。

它通过在低负载时使用线性稳压模式,在高负载时自动切换到开关稳压模式。

这样既可以提供较高效率,又能保持输出电压的稳定性。

4. 常见的稳压电源类型根据用途和应用场景的不同,稳压电源有多种类型。

以下是其中一些常见的稳压电源类型:4.1. 低压差稳压电源低压差稳压电源是一种能够在输入电压和输出电压之间产生较小压降的稳压电源。

它适用于对输入电压要求较高或供电线路较长的应用。

4.2. 可调稳压电源可调稳压电源是一种可以根据需要调整输出电压的稳压电源。

它通常由一个可调节电阻和稳压控制电路组成,可以用于满足不同的应用需求。

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计
TL431是一种常用的精密可调节稳压器件,通常用于开关电源中的稳压反馈电路。

它可以作为一个误差放大器,用于控制开关电源的输出电压。

以下是一个简单的TL431稳压反馈电路的应用电路设计示例:
在这个电路中,TL431被用作误差放大器,它通过比较参考电压和反馈电压来控制输出电压。

具体的设计步骤如下:
设置参考电压:TL431的参考电压通过外部电阻网络进行调节,根据需要选择合适的参考电压值。

连接反馈回路:将TL431的输出与开关电源的反馈回路相连,通过比较输出电压和参考电压,控制开关电源的输出电压稳定在设定值。

选择外部元件:根据具体的需求,选择合适的外部电阻、电容等元件,以确保稳压反馈电路的性能和稳定性。

稳压调节:通过调节外部电阻来调节输出电压的设定值,使得开关电源的输出电压符合要求。

需要注意的是,具体的电路设计需要考虑到开关电源的整体设计和控制要求,以及TL431的工作特性和参数。

此外,为了确保电路的性能和稳定性,建议在设计过程中进行仿真和实际测试验证。

开关直流稳压电源设计

开关直流稳压电源设计

开关直流稳压电源设计设计原理:关键参数:开关直流稳压电源的关键参数包括输出电压精度、输出电流、纹波电压和负载调节率等。

输出电压精度表示开关直流稳压电源输出的电压与设定值之间的偏差。

输出电流表示电源能够提供的最大负载电流。

纹波电压表示输出电压的波动情况,是由开关器件的开关操作引起的。

负载调节率表示在负载变化时,输出电压的变化程度。

主要组成部分:一个典型的开关直流稳压电源由以下几个主要组成部分构成:1.输入端:输入端通常有一个交流电源或者一个整流电路,将交流电转换为直流电。

在输入端还可能包含一些滤波电容和短路保护电路。

2.开关电路:开关电路由各种开关器件组成,包括晶体管、场效应管和硅控整流元件等。

开关周期性地打开和关闭,调节输入电压的占空比,从而调节输出电压。

在开关电路中,还可能包含一些保护电路,如过流保护和过压保护等。

3.控制电路:控制电路是开关直流稳压电源中的重要组成部分。

它根据输出电压与设定值之间的偏差,生成控制信号,控制开关器件的开关操作。

控制电路通常由一个误差放大器、一个比较器和一个参考电压源组成。

4.输出端:输出端是开关直流稳压电源输出电压的终点。

它通常由一个输出电感、一个输出滤波电容和一个负载组成。

输出电感和输出电容起到滤波作用,减小输出电压的纹波。

负载则是电源供电的目标设备。

5.反馈回路:反馈回路起到监测输出电压并调整开关操作的作用。

它通常由一个反馈电阻和一个反馈电压比较器组成。

反馈电阻将输出电压分压为反馈电压,反馈电压比较器将反馈电压与设定值进行比较,生成控制信号。

总结:开关直流稳压电源是一种常用的电源设计,用于提供稳定的直流电压输出。

它通过开关器件的开关操作调节输入电压,并通过反馈机制保持输出电压稳定。

设计开关直流稳压电源需要考虑关键参数,包括输出电压精度、输出电流、纹波电压和负载调节率等。

主要的组成部分包括输入端、开关电路、控制电路、输出端和反馈回路。

开关直流稳压电源的设计涉及到多个领域的知识,包括电源电路、电子器件和控制理论等。

LM2576开关稳压电源电路设计及应用

LM2576开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。

关键词:LM2576 电源设计 MCU嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。

而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变MCU所需的工作电压。

这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。

加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。

而开关电源调节器件则以完全导通或关断的方式工作。

因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。

因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。

在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。

因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况下不需要加装散热片,从而减少了对MCU工作环境的有害影响。

采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。

此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。

LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。

一、LM2576简介LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。

全国大学生电子竞赛开关稳压电源设计

全国大学生电子竞赛开关稳压电源设计

全国大学生电子竞赛开关稳压电源设计随着电子竞技的迅速发展和壮大,全国范围内的大学生电子竞赛也越来越受到关注和重视。

为了满足参赛选手对电源供应的需求,开关稳压电源的设计成为了重点。

一、电源设计的重要性电源是电子产品的重要组成部分,对于电子竞技场合来说,它的重要性更是突出。

游戏设备需要充足的电能支持,稳定的电压才能保证竞赛中不出问题,同时还要注意电源的安全和便携性。

二、开关稳压电源的特点开关稳压电源是目前使用最广泛的电源,它具有以下特点:1.高效率:开关电源的转换效率可达到90%以上,能够更好地利用能源,同时也可以降低因电能转换而产生的热量。

2.可调性强:开关电源的输出电流、电压等参数都可通过调节电路参数从而实现调节。

3.体积小、重量轻:开关电源整体采用集成电路和数字电路,体积和重量相比传统电源更小更轻,便于携带和存储。

4.更安全:开关电源采用设备保护措施,能够保护电源和被供电设备,保证电源的长期稳定运行。

三、开关稳压电源的设计思路开关稳压电源的设计需要考虑多个方面的问题,例如电源的输入输出参数、保护电路的设计等。

在设计过程中应注意以下几点:1.输入电压的稳定性:为了保证输出电压的稳定,需要对输入电压进行滤波和稳定性的处理。

常用的方法有电容滤波、稳压二极管等。

2.保护电路的设计:开关稳压电源的保护电路包括过压保护、过流保护、短路保护等,能够保证电源和被供电设备的安全。

3.输出电压的调节:在设计输出电压时,需要确定所需的输出电压,并确定调节范围和调节精度。

在输出电压的稳定性方面,需要注意输出电流和负载变化时的调整能力。

4.体积和重量的控制:对于电子竞技中使用的电源来说,体积和重量的控制非常重要。

为了更好地让参赛者使用,在设计电源时应注意体积和重量的控制。

四、总结全国大学生电子竞赛的举办可以促进大学生电子技术的发展和创新。

其中电源的设计是一个非常重要的环节,它对参赛选手的表现和安全都有重要影响。

因此,开发一种小巧、高效、安全的开关稳压电源是设计者们目前的重要任务。

开关电源技术与典型应用

开关电源技术与典型应用

开关电源技术与典型应用引言:在现代电子设备中,电源是一个关键的部分,为各种电子器件和系统提供稳定、可靠的电能。

随着科技的发展,传统的线性电源逐渐被开关电源(Switching Power Supply,简称SPS)取代。

开关电源技术通过开关管的开关动作,将输入电源的直流电压转换为高频脉冲或方波信号,然后再通过滤波和稳压电路进行处理,最终得到所需的稳定输出电压。

一、开关电源的基本工作原理开关电源通常由四个主要部分组成:输入滤波电路、整流电路、能量存储元件和输出稳压电路。

其基本工作原理如下:1.输入滤波电路:用于对输入电源进行滤波和去噪声处理,以确保输出端产生稳定的直流电。

2.整流电路:将滤波后的输入电流转换为脉冲信号,常用的有单相桥式整流电路和三相桥式整流电路。

3.能量存储元件:由电感和电容构成,电感负责储存能量,电容用于平滑输出电压。

4.输出稳压电路:用于对脉冲信号进行滤波和调整,使输出电压稳定在所需的数值范围内。

二、开关电源的优势与特点相比传统的线性电源,开关电源具有以下优势和特点:1.高效率:通过高频开关动作,减小了开关管导通时的功率损耗,从而提高了电能的利用率,一般可达到80%以上。

2.小体积:由于高效率的设计,开关电源的散热量少,可以采用小体积的组件,适用于高密度集成电路或便携式设备。

3.宽输入电压范围:开关电源具备较宽的输入电压范围,可以适应不同地区的电源标准或不同负载条件。

4.输出稳定性好:通过闭环控制和反馈电路,开关电源可以实现较小的输出电压波动和较高的稳定性,适应各种工作环境。

5.工作频率高:开关电源的工作频率通常在10kHz至1MHz之间,相比线性电源的50Hz或60Hz频率,能有效减小开关电源的尺寸和重量。

三、开关电源的典型应用开关电源技术在现代电子设备中得到了广泛的应用,以下是一些典型的应用领域:1.电子计算机与通信设备:在计算机主机、服务器、网络交换机等设备中,开关电源能够提供高效、稳定的电能供应,满足大功率、高密度的需求。

开关电源稳压电路原理

开关电源稳压电路原理

开关电源稳压电路原理开关电源稳压电路原理是指利用开关器件(如MOSFET、BJT等)和电感、电容等元件来实现对电源输出电压的稳定控制的一种电路设计方案。

开关电源的基本结构包括输入端、开关器件、控制电路、变压器、滤波电路和输出端。

其中,输入端是电源的输入端,通过电源线连接到电源插座,将电源的交流电转换成直流电。

开关器件是实现开关电源稳压的关键元件,通过开关控制器对开关器件进行控制,可以实现开关器件的开关和关断。

控制电路是开关电源的控制核心,其任务是控制开关器件的导通和关断的时机,以实现对输出电压的稳定调节。

变压器是负责将输入端的电源电压按照需求转换成相应的输出电压,变压器的特性参数选择会对开关电源的效率和稳定性产生重要影响。

滤波电路的作用是对从变压器输出的脉冲波形进行平滑处理,提供稳定的直流电源输出。

输出端则是将输出电压提供给负载使用,可以是电子设备、电路板等。

开关电源稳压电路的工作原理是通过控制器对开关器件进行控制来实现对输出电压的稳定调节。

在一个工作周期内,开关器件被控制器按照一定的时序进行频繁的开关和关断操作。

当开关器件导通时,电源电压就被输出给负载,此时输出电压上升。

当开关器件关断时,输出电容开始放电,输出电压下降。

通过调整开关器件的导通和关断时间比例,可以控制输出电压的平均值,从而达到稳定调节的目的。

开关电源稳压电路的设计考虑到了多个因素,如输出电压范围、输出电流容量、效率、线性度、纹波等。

其中,控制器是整个稳压电路的核心部分,其主要功能是监测输出电压,当输出电压超出设定值时,通过改变开关器件的导通和关断时间比例,以调整输出电压的大小,并保持在设定范围内。

控制器通常采用反馈控制的方式,即通过反馈电路将输出电压的实际值与设定值进行比较,从而控制开关器件的导通和关断。

为了提高稳定性,通常还会加入电流保护、过压保护、过载保护等保护电路,以保护电源和负载的安全。

总之,开关电源稳压电路原理是通过对开关器件进行控制,调整开关器件的导通和关断时间比例,实现对输出电压的稳定调节。

常用电源电路设计及应用

常用电源电路设计及应用

常用电源电路设计及应用
常用电源电路设计及应用是一个广泛的主题,涵盖了多种电源电路的设计原理、方法和实际应用。

电源电路是电子设备中不可或缺的部分,它们负责将交流电或直流电转换为适合设备使用的电源。

在常用电源电路设计中,常见的类型包括固定式电源电路、可调式电源电路、稳压电源电路、开关电源电路等。

这些电路的设计需要根据具体的应用需求来选择适当的电路拓扑、元器件和参数。

例如,固定式电源电路通常用于提供固定电压和电流的电源,适用于一些对电源稳定性要求不高的场合。

而可调式电源电路则可以根据需要调整输出电压和电流,适用于一些需要灵活调整电源的场合。

稳压电源电路则是一种能够自动调整输出电压,使其保持稳定的电路。

它通常由电源变压器、整流电路、滤波电路和稳压电路等部分组成。

当输入电压或负载变化时,稳压电路能够自动调整输出电压,保持其稳定不变。

开关电源电路则是一种高效率的电源电路,它通过开关管的开关来控制电源的输出。

开关电源电路具有体积小、重量轻、效率高等优点,因此在现代电子设备中得到了广泛的应用。

在实际应用中,电源电路的设计需要考虑到多种因素,如输入电压范围、输出电压和电流的稳定性、效率、成本等。

同时,还需要注意电源电路的安全性和可靠性,以确保设备的正常运行和使用安全。

总之,常用电源电路设计及应用是一个复杂而又重要的主题,需要深入了解电子电路和电源技术的知识,同时结合实际应用需求进行具体的设计和实现。

TL431 和PC817在开关电源中的应用电路设计

TL431 和PC817在开关电源中的应用电路设计

TL431 和PC817在开关电源中的应用电路设计开关电源的稳压反馈通常都使用TL431 和PC817,如输出电压要求不高,也可以使用稳压二极管和PC817,下面我来通过以下典型应用电路来说明TL431,PC817 的配合问题。

电路图如下:R13 的取值,R13 的值不是任意取的,要考虑两个因素:1)TL431 参考输入端的电流,一般此电流为2uA 左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13 的电流为参考段电流的100 倍以上,所以此电阻要小于2.5V/200uA=12.5K.2)待机功耗的要求,如有此要求,在满足《12.5K的情况下尽量取大值。

TL431 的死区电流为1mA,也就是R6 的电流接近于零时,也要保证431 有1mA,所以R3<=1.2V/1mA=1.2K 即可。

除此以外也是功耗方面的考虑,R17 是为了保证死区电流的大小,R17可要也可不要,当输出电压小于7.5v 时应该考虑必须使用,原因是这里的R17 既然是提供TL431死区电流的,那么在发光二极管导通电压不足时才有用,如果发光二极管能够导通,就可以提供TL431 足够的死区电流,如果V o 很低的时候,计算方法就改为R17=(V o-Vk)/1mA(这里Vk=Vr-0.7=1.8v);当V o=3.3V 时R17 从死区电流的角度看临界最大值R17=(3.3-1.8)/1mA=1.5k,从TL431 限流保护的角度看临界最小值为R17=(3.3-1.8)/100mA=15Ω。

当V o 较高的时候,也就是V o 大于Vk+Vd 的时候,也就是差不多7.5v 以上时,TL431 所需的死区电流可以通过发光二极管的导通提供,所以这是可以不用R17。

R6 的取值要保证高压控制端取得所需要的电流,假设用PC817(U1-B),其CTR=0.8-1.6,取低限0.8,要求流过光二极管的最大电流=6/0.8=7.5mA,所以R6 的值<=(15-2.5-1.2)/7.5=1.5K,光二极管能承受的最大电流在50mA 左右,TL431 为100mA,所以我们取流过R6 的最大电流为50mA,R6>(15-2.5-1.3)/50=226 欧姆。

3种典型的tl431应用电路及注意事项!

3种典型的tl431应用电路及注意事项!

一、TL431简介TL431是一种集成电路,属于可编程精密参考电压源(VREF),它在电子电路设计中被广泛应用。

TL431具有稳定的参考电压输出,可以通过外部电阻调节输出电压,因此在各种电路中具有重要的作用。

本文将重点介绍TL431的3种典型应用电路及注意事项。

二、TL431在电源稳压电路中的应用1. 电源稳压电路是电子设备中非常常见的一类电路,用于稳定输出电压并抵御外界干扰。

TL431可以作为电源稳压电路中的基准电压源使用。

其典型电路如下所示:(具体电路图示可根据需要插入)在该电路中,TL431的引脚1连接至电源输入端,引脚2连接至地,引脚3连接至输出负载端,电路通过外接分压电阻R1和R2来调节输出电压。

在使用TL431进行电源稳压时需要注意以下几点:(1)选择合适的分压电阻R1和R2。

分压比需要根据所需输出电压来确定,同时要考虑TL431的工作电流及最小负载要求。

(2)引脚2需要接地并具有合适的接地电流能力。

确保接地点良好,减小接地电阻。

(3)其他外部元器件的选择和连接方式需要按照TL431的规格书进行设计。

三、TL431在LED恒流驱动电路中的应用2. LED恒流驱动电路是LED照明领域使用广泛的一种电路。

TL431也可以应用在LED恒流驱动电路中,实现LED的稳定驱动。

典型电路如下所示:(具体电路图示可根据需要插入)在该电路中,TL431的引脚1连接至电源输入端,引脚2连接至地,引脚3连接至LED负载端,通过外接电阻R1来调节LED的工作电流。

在使用TL431进行LED恒流驱动时需要注意以下几点:(1)选择合适的电流限制电阻R1。

电流限制电阻R1的大小直接影响LED的工作电流,需要根据LED的规格和要求来选择。

(2)引脚2需要接地并具有合适的接地电流能力。

确保接地点良好,减小接地电阻。

(3)保证TL431的稳定工作。

LED恒流驱动电路对TL431的稳定性要求较高,需要注意电路的灵敏度、响应速度及调节范围。

开关升压稳压电源的设计

开关升压稳压电源的设计
VI1= 16V(16 V),VO1=29.8V; VI2=20V(20V),V02=30.2V。则:
电压调整因数:
电压调整率: 0.03(%/V)
电压稳压系数:
(3)稳压电源负载调整率测试(测试条件:V1=18V,VO=30V)
IO1=0A,VO1=30V; IO2=0.5A(0.5A),VO2=30.2V。则:
设计报告
开关升压稳压电源的设计
专业:
班级:
姓名:
开关升压稳压电源的设计
一、设计目的
1、理解开关升压稳压电源的工作原理;2、知道焊接开关升压稳压电源电路的注意事项;3、掌握开关升压稳压电源特性测试的方法。
二、实验器材
电烙铁;开关升压稳压电源套件;焊Байду номын сангаас丝;导线等。
三、基于开关升压稳压电源的工作原理
当控制电路输出低电平,功率晶体管关闭,二极管正向导通,存储在电感L中的能量,开始释放,经过二极管D流到输出端为负载供电,同时给输出得电容器C充电,二极管D位于电感L和输出端之间,因此电感L两端的压降近似为VIN-VOUT(肖特基的压降很小,0,2V左右,可忽略)。
2、升压稳压电源主要技术指标测试(特性与质量)
(1) 输出电压调整范围测试(输入电压:18V,输出电流0.5A,保证系统正常工作)
测试项目
预设
实测
预设
实测
VL/V
27
27
33
33
最大输出电流IOMAX=0.76A
(2) 稳压电源电压调整率测试(测试条件:VI= 18V,VO=30V ,IO=0.5A)
四、设计要求:
输入12V~16V 典型值:13V;输出电压:30V,可调范围27V~33V,电流500mA=0.5A。开关频率 。环形电感(47μH,3.5A,频率:400kHz)。二极管IN5825。电容器(1000μF,50V)。

《开关稳压电源》课件

《开关稳压电源》课件

不断试验
持续学习
常见问题与解决方案
问题1
01
电源发热严重
原因
02
可能由于电路设计不合理或元件性能不佳。
解决方案
03
优化电路设计,更换性能更好的元件。
常见问题与解决方案
问题2
电源效率低下
原因
可能由于损耗过大或电路结构不合理。
解决方案
降低损耗,对电路结构进行优化。
常见问题与解决方案
问题3
输出电压不稳定
应用
广泛应用于各种电子设备中,如音频功率放大器、逆变器等。
升降压型开关稳压电源
• 总结词:同时具有升压和降压功能的开关稳压电源。
• 详细描述:升降压型开关稳压电源是一种较为特殊的开关稳压电源类型,其工作原理是通过控制开关管的导通和截止时 间,既可以降低输入电压来降低输出电压,也可以增加输入电压来提高输出电压,具有双重调节功能。
空调
在空调中,开关稳压电源 用于控制压缩机和风扇的 运行,保持室内温度的恒 定。
冰箱
冰箱的开关稳压电源确保 冷藏和冷冻系统的正常运 行,保持食品的新鲜。源自通信领域的应用手机
手机的开关稳压电源为通 话、数据传输和各种功能 提供稳定的电力。
路由器
在路由器中,开关稳压电 源为处理数据和信号传输 提供稳定的电力。
初步检查
检查电路中各元件是否正常,无损坏。
调试步骤与注意事项
通电测试
逐步通电,观察各部分工作是否正常 。
调整参数
根据需要调整相关参数,如电压、电 流等。
调试步骤与注意事项
安全第一
确保调试过程中人员和设备安全。
逐步进行
不要一次性将所有参数调整到位,应逐步调整。

开关电源方案

开关电源方案

开关稳压电源设计方案一 设计要求1、分析题目要求,设计并制作如图一所示的开关稳压电源:R LU 1=开关稳压电源图一基本要求:① 输出电压0U 可调范围:30V ~36V ;② 最大输出电流max 0I :2A ;③ 2U 从15V 变到21V 时,电压调整率()A I S O u 2%2=≤;④ O I 从0到2A 时,负载调整率)18%(52V U S I =≤;⑤ 输出噪声纹波电压峰-峰值()A I V U V U V U O Opp 2,36,18102===≤; ⑥ DC/DC 变换器的效率)2,36,18%(70002A I V U V U ===≥η;⑦ 具有过流保护功能,动作电流()A I th O 2.05.2±=。

二 方案论证及选择首先我们需要确定出系统设计方案。

在基本要求中,第 ④⑤⑦对总体方案的影响不大,这些指标都只与器件选择、制作工艺等因素有关,所以,我们主要对第 ⑥两条指标分析。

1、整流电路方案方案一:半波整流优点:单相板波整流电路是最简单的一种整流电路,结构简单,使用元件少。

缺点:输出波形脉动大,直流成分比较低,变压器的利用率低,容易饱和。

方案二:全波整流与半波整流电路相比,在相同的变压器副边电压下,对二级管的参数要求是一样的,并且还具有输出电压高、变压器利用率高、脉动系数小等优点。

因此本次设计采用方案二。

2、滤波电路方案方案一:电感滤波电感滤波电路适用于大电流负载,为特性比较硬,由于采用了电感,所以电路比较笨重。

方案二:电容滤波电容滤波电路结构简单,适用于小电流负载。

因电感没有现成的,需要自己缠制,所以制作麻烦且体积较大。

在这里我们选择电容滤波电路进行滤波,即选择方案二。

3、控制方案的选择对第⑥条指标分析,要求变换器整体效率大于或等于70%,对小功率电源来说有点高,计算有,在72W的额定功率、70%效率下,变换器的损耗不能超过21.6W,所以,不论是功率变换器构成的主电路,还是控制电路,都应该尽量简单。

TL431和PC817在开关电源中的应用电路设计

TL431和PC817在开关电源中的应用电路设计

TL431和PC817在开关电源中的应用电路设计一、TL431的应用电路设计:1.电压调节稳压电路:将TL431连接在开关电源的反馈回路中,可以实现电压调节功能。

具体连接方式如下图所示:```C1C2输入电源,—,—-,—-+,—-++,+,—+—-电压输出R1+,—TL431```其中,C1和C2为输入电源的输入和输出电容,R1为电阻,用于调节输出电压的分压比例。

通过调节R1的阻值,可以实现对输出电压的调节。

2.参考电压源:在开关电源中,TL431还可以作为一个精密的参考电压源,用于控制其他电路的工作状态。

具体电路如下:```输入电源,—,TL431(参考电压),—+,其他电路```在这个电路中,TL431的参考电压可以被其他电路进行检测和控制,从而实现精密的电压调节和保持功能。

二、PC817的应用电路设计:1.光耦隔离器:PC817可以用作开关电源中的光耦隔离器,用于隔离输入和输出电路,从而实现安全和稳定的电气隔离。

具体电路如下:```输入电路,—,—PC817(输入侧),—PC817(输出侧),—,—输出电路```输入侧的PC817将输入电路与输出电路隔离开来,输出侧的PC817将接收到的输入信号进行调整并传输给输出电路。

这种隔离电路可以保护输出电路免受输入电路的干扰,提高系统的安全性和稳定性。

2.隔离控制电路:PC817还可以用作开关电源中的隔离控制电路,用于控制其他电路的开关状态。

具体电路如下:```输入电路,—,,PC817(控制信号),—+,其他电路```在这个电路中,输入电路的信号通过PC817进行隔离,并在输出端控制其他电路的开关状态。

这种隔离控制电路常用于开关电源中的保护电路,可以有效地隔离控制信号和其他电路,提高系统的稳定性和安全性。

总结:。

4~16V开关稳压电源详细设计

4~16V开关稳压电源详细设计

4~16V开关稳压电源详细设计摘要:介绍一种采用半桥电路的开关电源,其输入电压为交流220V±20%,输出电压为直流4~16V,最大电流40A,工作频率50kHz。

重点介绍了该电源的设计思想,工作原理及特点。

关键词:脉宽调制;半桥变换器。

1、引言:在科研、生产、实验等应用场合,经常用到电压在5~15V,电流在5~40A的电源。

而一般实验用电源最大电流只有5A、10A。

为此专门开发了电压4V~16V连续可调,输出电流最大40A的开关电源。

它采用了半桥电路,所选用开关器件为功率MOS管,开关工作频率为50kHz,具有重量轻、体积小、成本低等特点。

2、主要技术指标1)交流输入电压AC220V±20%;2)直流输出电压4~16V可调;3)输出电流0~40A;4)输出电压调整率≤1%;5)纹波电压Up p≤50mV;6)显示与报警具有电流/电压显示功能及故障告警指示。

3、基本工作原理及原理框图该电源的原理框图如图1所示。

220V交流电压经过EMI滤波及整流滤波后,得到约300V的直流电压加到半桥变换器上,用脉宽调制电路产生的双列脉冲信号去驱动功率MOS管,通过功率变压器的耦合和隔离作用在次级得到准方波电压,经整流滤波反馈控制后可得到稳定的直流输出电压。

图1整体电源的工作框图4、各主要功能描述4.1、交流EMI滤波及整流滤波电路交流EMI滤波及整流滤波电路如图2所示。

图2交流EMI滤波及输入整流滤波电路电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。

IEC插头电网滤波器主要是阻止来自电网的干扰进入电源机箱。

PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。

交流输入220V 时,整流采用桥式整流电路。

如果将JTI跳线短连时,则适用于110V交流输入电压。

什么是稳压电路它在电子电路中的作用是什么

什么是稳压电路它在电子电路中的作用是什么

什么是稳压电路它在电子电路中的作用是什么稳压电路是一种设计用于电子电路中的电路,其作用是在输入电压发生波动或干扰时,能够输出一个恒定稳定的电压。

稳压电路在电子电路中扮演着非常重要的角色,它能够保持电路的稳定性和可靠性,防止电路因为电压波动或干扰而出现问题。

接下来,我们将详细探讨稳压电路的工作原理和应用。

I. 稳压电路的工作原理稳压电路通过将输入电压进行调节,使得输出电压始终保持在一个预设值。

根据不同的设计和应用需求,稳压电路可以采用不同的工作原理和电路拓扑结构。

1. 线性稳压电路线性稳压电路是最常见的一种稳压电路,它通过使用线性元件(如二极管、晶体管、稳压二极管等)来产生一个恒定的输出电压。

线性稳压电路的原理简单,成本低廉,但效率相对较低。

2. 开关稳压电路开关稳压电路是一种高效的稳压电路,它利用开关器件(如晶体管、开关电容器等)的开关动作来实现电压的调节。

开关稳压电路能够提供更高的效率和更大的输出电流,但由于其复杂性,成本和技术难度相应较高。

II. 稳压电路的应用稳压电路被广泛应用于各种电子设备和系统中,以确保它们的正常工作。

以下是几个典型的应用场景:1. 电源稳压稳压电路在电源中是必不可少的,它确保电子设备能够获得稳定的电压供应。

无论是家庭中的电源适配器,还是工业领域的电源电路,都需要稳压电路来提供稳定的电压输出。

2. 嵌入式系统嵌入式系统通常要求在多种工作场景下提供稳定的供电。

稳压电路的设计可以确保嵌入式系统中的各个模块和组件能够在不同的电压波动条件下正常工作。

3. 通信设备无线通信设备对电压的稳定性要求较高,以保证信号的传输质量和可靠性。

稳压电路在通信设备中被广泛应用,例如手机、无线路由器等,以提供稳定的电源。

4. 模拟电路模拟电路对电压的精度和稳定性要求较高,稳压电路常被用于模拟电路中,以确保信号的准确性和稳定性。

5. 电子器件测试在电子器件测试过程中,为了获得可靠和准确的测试结果,需要使用稳压电路来提供标准化的电压供应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。

关键词:LM2576 电源设计 MCU
嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。

而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。

这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。

加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。

而开关电源调节器件则以完全导通或关断的方式工作。

因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。

因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。

在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。

因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况
下不需要加装散热片,从而减少了对MCU工作环境的有害影响。

采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。

此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。

LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。

一、LM2576简介
LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。

LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。

各系列产品均提供有3.3
V(-3.3)、5V(-5.0)、12V(-12)、15V(-15)及可调(-A DJ)等多个电压档次产品。

此外,该芯片还提供了工作状态的外部控制引脚。

LM2576系列开关稳压集成电路的主要特性如下[2]:
●最大输出电流:3A;
●最高输入电压:LM2576为40V,LM2576HV为60V;
●输出电压:3.3V、5V、12V、15V和ADJ(可调)等可选;
●振东频率:52kHz;
●转换效率:75%~88%(不同电压输出时的效率不同);
●控制方式:PWM;
●工作温度范围:-40℃~+125℃
●工作模式:低功耗/正常两种模式可外部控制;
●工作模式控制:TTL电平兼容;
●所需外部元件:仅四个(不可调)或六个(可调);
●器件保护:热关断及电流限制;
●封装形式:TO-220或TO-263。

LM2576的内部框图如图1所示,该框图的引脚定义对应于五脚TO-220封装形式。

LM2576内部包含52kHz振荡器、1.23V基准稳压电路、热关断电路、电流限制电路、放大器、比较器及内部稳压电路等。

为了产生不同的输出电压,通常将比较器的负端接基准电压(1.23V),正端接分压电阻网络,这样可根据输出电压的不同选定不同的阻值,其中R1=1kΩ(可调-ADJ时开路),R2分别为1.7 kΩ(3.
3V)、3.1 kΩ(5V)、8.84 kΩ(12V)、11.3 kΩ(15V)和0(-ADJ),上述电阻依据型号不同已在芯片内部做了精确调整,因而无需使用者考虑。

将输出电压分压电阻网络的输出同内部基准稳压值1.23V进行比较,若电压有偏差,则可用放大器控制内部振荡器的输出占空比,从而使输出电压保持稳定。

由图1及LM2576系列开关稳压集成电路的特性可以看出,以L M2576为核心的开关稳压电源完全可以取代三端稳压器件构成的MCU稳压电源。

2 LM2576应用举例
2.1 基本应用设计
由LM2576构成的基本稳压电路仅需四个外围器件,其电路下图所示。

电感L1的选择要根据LM2576的输出电压、最大输入电压、最大负载电流等参数选择,首先,依据如下公式计算出电压·微秒常数(E·T):
E·T=(Vin - Vout)×Vout/ Vin×1000/f (1)
上式中,Vin是LM2576的最大输入电压、Vout是LM2576的输出电压、f是LM2576的工作振荡频率值(52kHz)。

E·T确定之后,就可参照参考文献所提供的相应的电压·微秒常数和负载电流曲线来查找所需的电感值了。

(下图为:图三)
C≥13300 Vin/ Vout×L (2)
上式中,Vin是LM2576的最大输入电压、Vout是LM2576的输出电压、L是经计算并查表选出的电感L1的值,其单位是μH。

电容C铁耐压值应大于额定输出电压的1.5~2倍。

对于5V电压输出而言,推荐使用耐压值为16V的电容器。

二极管D1的额定电流值应大于最大负载电流的1.2倍,考虑到负载短路的情况,二极管的额定电流值应大于LM2576的最大电流限制。

二极管的反向电压应大于最大输入电压的1.25倍。

参考文献中推荐使用1N582x系列的肖特基二极管。

Vin的选择应考虑交流电压最低跌落值(Vac-min)所对应的LM 2576输入电压值及LM2576的最小输入允许电压值Vmin(以5V 电压输出为例,该值为8V),因此,Vin可依据下式计算:
Vin≥(220Vmin/Vac-min)
如果交流电压最低允许跌落30%(Vac-min=154V)、LM2576的电压输出为5V(Vmin=8V),则当Vac=220V时,LM2576的输入直流电压应大于11.5V,通常可选为12V。

2.2 工作模式可控应用设计
LM2576的5脚输入电平可用于控制LM2576的工作状态。

5脚输入电平与TTL电平兼容。

当输入为低电平时,LM2576正常工作;当输入为高电平时,LM2576停止输出并进入低功耗状态。

图3是LM2576的工作模式可控电路原理图。

图3中,下拉电阻可保证MCU-CON控制端为低时LM2576的正常工作。

Shutdown Input的控制端信号来自MCU,该端为低电平时,LM2576停止输出,系统进入低功耗状态。

当为该端为高电平时,三极管导通会使LM2576重新工作。

设计时保证当MC U-CON控制端为高电平且三极管导通时,电阻R不至于因过流而损坏MCU的输出控制端。

结束语
经实际使用证明,采用LM2576系列开关稳压集成电路作为MC U稳压电源的核心器件不仅可以提高稳压电源的工作效率,减少能源损耗,减少对MCU的热损害,而且可减少外部交流电压大
幅波动对MCU的干扰,同时可降低经电源窜入的高频干扰,这对保障MCU的安全和可靠运行能起到事半功倍的作用。

相关文档
最新文档