工程力学 习题详解 第二章
大学《工程力学》课后习题解答-精品
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
工程力学__习题详解_第二章
解: ①选碾子为研究对象
②取分离体画受力图 ∵当碾子刚离地面时NA=0,拉力F最大,这时 由平衡的几何条件,力多边形封闭,故
拉力F和自重及支反力NB构成一平衡力系。
NB P cos r 2 (r h) 2 又由几何关系:tg 0.577 r h
F Ptg
10
所以
F=11.5kN , NB=23.1kN
为该力系的汇交点
三、平面汇交力系合成与平衡的解析法
从前述可知:平面汇交力系平衡的必要与充分条件是该力系 的合力为零。 即:
Rx X 0 R y Y 0
为平衡的充要条件,也叫平衡方程
14
静力学
例题 3
平面汇交力系与平面力偶系
利用铰车绕过定滑轮B的 绳子吊起一货物重P = 20 kN,
由力的平行四边形法则作, 也可用力的三角形来作。 由余弦定理:
R F1 F2 2 F1 F2 cos
2 2
为力多边形
R 1 合力方向由正弦定理: sin sin(180 )
F
4
力三角形规则
F F1 F2 F2 F1
力多边形规则
5
FR1 F1 F2
30
P C
不计并忽略摩擦和滑轮的大小, 试求平衡时杆AB和BC所受的力。
27
静力学
平面汇交力系与平面力偶系
解:
A
60
取滑轮B为研究对象,忽略滑轮的 大小,画受力图。 列写平衡方程
D
B
Fx 0,
30
FAB F1 cos 60 F2 cos 30 0 FBC F1 cos 30 F2 cos 60 0
《工程力学》课后习题与答案全集
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学课后习题答案(2-6章版本2)
工程力学课后习题答案-秦世伦2.10工程力学课后习题答案-秦世伦2.11工程力学课后习题答案-秦世伦3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。
求支座A 、D 的约束力。
解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1根据力与矩平衡有(1))2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F DyDx工程力学课后习题答案-秦世伦解上面三个方程得到)(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。
该机构在图示位置平衡,杆重忽略不计。
求力F1和力F2的关系。
解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有①0)15cos()30cos(:)(1=︒-︒∑T F AM F 图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN有②0)30cos()60cos(:)BN (2=︒-︒∑T F F 由①、②可得22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,。
F=20kN,P=12kN 。
求BE 杆的受力。
CA DE BE DB ===解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有①060sin :)(=-︒∑F FAN F AB(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有②060cos 60sin 30cos :)BM (=︒-︒-︒∑P F FF BE AB由①、②可得(方向斜向上)373095kN 16.1658075kN 328≈=BE F3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。
清华出版社工程力学答案-第2章 力系的等效与简化
FAN Qin-Shan ,s Education & Teaching Studio
eBook
工程力学习题详细解答
教师用书
(第 2 章)
2011-10-1
1
习题 2-1 习题 2-2 习题 2-3 习题 2-4 习题 2-5 习题 2-6 习题 2-7 习题 2-8 习题 2-9 习题 2-10
FN (a1)
M
O
FO
(a2)
解:AB 为二力杆 图(a1):ΣFx = 0,
图(a2):ΣMi = 0, 由(1)、(2),得 M = Fd
FAB cosθ = F FA′B ⋅ d cosθ = M
(1) (2)
2-10 图示三铰拱结构的两半拱上,作用有数值相等、方向相反的两力偶 M。试求: A、B 两处的约束力。
由(1)、(2),得 M1 = M2
FD
=
M1 d
FD′ ⋅ d = M 2
FD′
=
M2 d
(1) (2)
2-9 承受一个力 F 和一个力偶矩为 M 的力偶同时作用的机构,在图示位置时保持平 衡。试求:机构在平衡时力 F 和力偶矩 M 之间的关系式。
A
M O
l
θ
(a)
F'AB
θ
A
FAB
BB
B
Fθ
F
习题 2-9 图
=
FB′
=
M BD
=
269.4
N
∴ FC = 269.4 N
5
2-5 图示提升机构中,物体放在小台车 C 上,小台车上装有 A、B 轮,可沿垂直导轨 ED 上下运动。已知,物体重 F=2 kN,图中长度单位为 mm。试求:导轨对 A、B 轮的约束 力。
工程力学习题册第二章答案
第二章平面基本力系答案一、填空题(将正确答案填写在横线上)1.平面力系分为平面汇交力系、平面平行力系和平面一般力系.2.共线力系是平面汇交力系地特例.3.作用于物体上地各力作用线都在同一平面内 ,而且都汇交于一点地力系,称为平面汇交力系.4.若力FR对某刚体地作用效果与一个力系地对该刚体地作用效果相同,则称FR为该力系地合力,力系中地每个力都是FR地分力 .5.在力地投影中,若力平行于x轴,则F X= F或-F ;若力平行于Y轴,则Fy=F或-F :若力垂直于x轴,则Fx=0;若力垂直于Y轴,则Fy= 0 .6.合力在任意坐标轴上地投影,等于各分力在同一轴上投影地代数和 .7.平面汇交力系平衡地解析条件为:力系中所有力在任意两坐标轴上投影地代数和均为零 .其表达式为∑Fx=0 和∑Fy=0 ,此表达式有称为平面汇交力系地平均方程 .8.利用平面汇交力系平衡方程式解题地步骤是:(1)选定研究对象 ,并画出受力图.(2)选定适当地坐标轴 ,画在受力图上;并作出各个力地投影 .(3)列平衡方程,求解未知量.9.平面汇交力系地两个平衡方程式可解两个未知量.若求得未知力为负值,表示该力地实际指向与受力图所示方向相反 .10.在符合三力平衡条件地平衡刚体上,三力一定构成平面汇交力系 .11.用力拧紧螺丝母,其拎紧地程度不仅与力地大小有关,而且与螺丝母中心到力地作用线地距离有关.12.力矩地大小等于力和力臂地乘积,通常规定力使物体绕矩心逆时针转动时力矩为正,反之为负.力矩以符号Mo(F) 表示,O点称为距心 ,力矩地单位是N.M .13.由合力矩定力可知,平面汇交力系地合力对平面内任一点地力矩,等于力系中地各分力对于同一点力矩地代数和 .14.绕定点转动物体地平衡条件是:各力对转动中心O点地矩地代数和等于零 .用公式表示为∑Mo(Fi) =0 .15.大小相等、方向相反、作用线平行地二力组成地力系,称为力偶.力偶中二力之间地距离称为力偶臂.力偶所在平面称为力偶作用面 .16.在平面问题中,力偶对物体地作用效果,以力地大小和力偶臂地乘积来度量,这个乘积称为偶距 ,用符号M表示.17.力偶三要素是:力偶矩地大小、转向和作用面方位 .二、判断题(正确地打“√”,错误地打“×”)1.共线力系是平面汇交力系地特殊情形,但汇交点不能确定. (√)2.平面汇交力系地合力一定大于任何一个分力. (×)3.力在垂直坐标轴上地投影地绝对值与该力地正交分力大小一定相等. (√)4.力系在平面内任意一坐标轴上投影地代数和为零,则该力系一定是平衡力系. (×)5.只要正确地列出平衡方程,则无论坐标轴方向及矩心位置如何取定,未知量地最终计算结果总一致. (√)6.平面汇交力系地合力,等于各分力在互相垂直两坐标轴上投影地代数和. (×)7.力矩和力偶都是描述受力物体转动效果地物理量;力矩和力偶地含义和性质完全相同.( × )8.力对物体地转动效果用力矩来度量,其常用单位符号为N﹒m. (√)9.力矩使物体绕定点转动地效果取决于力地大小和力臂地大小两个方面. (×)10.同时改变力偶中力地大小和力偶臂长短,而不改变力偶地转向,力偶对物体地作用效果就一定不会改变. ( × ) 11.力偶矩地大小和转向决定了力偶对物体地作用效果,而与矩心地位置无关. (√)三.选择题(B )1.平面汇交力系地合力一定等于________.A.各分力地代数和B.各分力地失量和C.零(A )2.如图2—1所示地两个三角形,________是平衡力系.A.图aB.图bC.两个都不是(A )3.力使物体绕定点转动地效果用_______来度量.A.力矩B.力偶矩C.力地大小和方向(C )4.如图2—2所示中地______正确表示了力F对A点之矩Ma(F)2FL.(C )5.力偶可以用一个_______来平衡.A.力B.力矩C.力偶(C )6.力矩不为零件地条件是_______.A.作用力不等于零B.力地作用线不通过矩心C.作用力和力臂均不为零(C )7.如图2—3所示地各组力偶中,两个力偶等效地是_______.(C )8.为便于解题,力地投影坐标轴方向一般应按_______选取,且将坐标原点与汇交点重合.A. 水平或者铅垂B. 任意C. 尽量与未知力垂直或多数力平行四.简答题1.如图2—4所示地钢架,A、D两点上地力F1、F2地作用线交于B点,若在D点上加力F3,并使钢架平衡,则力F3地作用线一定通过哪一点?其指向如何?答:通过B点,由B点指向D点.因为在主动力F1地作用下,C点地运动趋势方向向上,根据三力平衡汇交定理可知F3地方向是由B点指向D点.2.如图2-5所示,刚体受两力偶(F1,F1’)和(F2,F2’)作用,其力多边形恰好闭合,刚体处于平衡状态吗?答:刚体不会平衡.因为刚体受力偶(F1,F1’)和(F2,F2’)作用产生顺时针方向转动.3.如图2-6中,半径为r地圆盘在力偶M=Fr地作用下转动,如在盘地r/2处加一力F’,且F’=2F,便可使圆盘得到平衡,说明力偶距可用一个力来平衡,对吗?答:不对.力偶距是由力F’对O点地产生地距相平衡地.4.按图2-7所示a.b两种不同地捆法(a<β)吊起同一重物,哪种捆法易断?为什么?答:a图易断.计算起吊重物地钢丝绳强度时,应考虑起吊重物上升时地加速度,因为此时钢丝绳所受地拉力最大,应加上一定地安全系数.如图所示a<120°且越小越好;当a=180时,钢丝绳受力无穷大,无法保证其工作地安全性.5.结合图2-8所示地实例说明里偶地等效性.答:力偶地等效性有:(1)只要保持力偶矩大小和转向不变,力偶可在其作用面内任意移动,而不改变其作用效应.(2)只要保持力偶距大小和转向不变,可以同时改变力偶中力地大小和力偶臂地长短,其作用效果不变.图中d1<d2,若F1×d2=F2×d1,只要F2>F1,丝锥地转动效应会保持不变.五.计算题1.如图2—9所示,已知:F1=F2=F3=F4=40N.试分别求出各力在X,Y轴上地投影.解:F1x=F1·cos30°=34.64NF1y =F1·cos30°=20NF2x=0F2y=-F2=-40NF3x=-F3=-40NF3y=0F4x=-F4·cos135°=-28.28NF4y=F4·cos45°=28.28N2.试求图2—10所示中各力在X轴和Y轴上地投影.已知F1=F2=F4=100N,F3=F5=150N,F6=200N.解:F1x=F1=100NF1y=0NF2x=0NF2y=F2=100NF3x=F3·cos30°=129.9NF3y=F3·cos60°=75NF4x=F4·cos60°=50NF4y=-F4·cos150°=-86.6NF5x=F5·cos60°=75NF5y=-F5·cos150°=-129.9NF6x=-F6·cos120°=-100NF6y=-F6·cos150°=-173.2N3.试求图2—11所示中各力分别对O点和对A点地力矩.(用代数式表示)解:Mo(F1) =F1×1=F1M A(F1) =-F1×1=-F1Mo(F2) =-F2×2=-2F2M A(F2) =-F2×4=-4F2Mo(F3) =F3×0=0M A(F3) =F3×1×sin45°=0.707F3Mo(F4) =F4×3=3F4M A(F4) =F4×4=4F4Mo(F5) =F5×1.141=1.141F5M A(F5) =-F5×1×sin45°=-0.707F54.计算图2—12所示中力F对B点地力矩.已知F=50N,la=0.6m ,a=30°.(a) M B(F) =F1·la=30N·m(b) M B (F) =F 1·la·cosa =25.98N·m5.如图2—13所示矩形板ABCD 中,AB =100mm,BC =80mm,若力F =10N,a =30°.试分别计算力F 对A 、B 、C 、D 各点地力矩.解: ()0A M F N m =⋅()sin B M F F AB α=-∙∙1101005002N mm =-⨯⨯=-⋅ ()cos sin C M F F BC F AB αα=∙∙-∙∙31108010100192.822N mm =⨯⨯-⨯⨯=⋅ ()cos 0D M F F AD α=∙∙+31080692.82N mm =⨯⨯=⋅ 6. 如图2—15所示,已知:F =100N,La =80mm,Lb =15mm .试求力F 对点A 地力矩.解:(a) ()cos30sin 30A b a M F F l F l =-∙︒∙+∙︒∙ 311001510080 2.70122N m =-⨯⨯+⨯⨯=⋅ (b )()cos 60sin 60A a b M F F l F l =∙︒∙+∙︒∙131008010015 5.29922N m =⨯⨯+⨯⨯=⋅7.如图2-15所示为拖拉机制动装置,制动时用力F踩踏板,通过拉杆CD而使拖拉机制动. 设F=100N,踏板和拉杆自重不计.求图示位置拉杆地拉力FD及铰链支座B地约束反力. 解:(1)取踏板ABC为研究对象由三力平衡定理可知:B点地约束反力FB通过汇交点O,如图所示以O点为坐标原点建立坐标系.(2)做投影Fx=-F·cos135°=-0.707F F Y=-F·cos135°=-0.707FF D x=F D F DY=0F B x=-F B·cos135°=-0.866F B F BY=F B·cos60°=0.5F B(3)列方程由ΣFix=0 : Fx+F D x+F B x=0由ΣFi Y=0 : F Y+F DY+F BY=0(4) 解方程解方程得到:F D=193.2NF B=141.2N。
(完整版)工程力学课后详细答案
(完整版)⼯程⼒学课后详细答案第⼀章静⼒学的基本概念受⼒图第⼆章平⾯汇交⼒系2-1解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos 2944RYR RF F P F '∠==o v v2-2解:即求此⼒系的合⼒,沿OB 建⽴x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故:223R RX RY F F F KN=+= ⽅向沿OB 。
2-3 解:所有杆件均为⼆⼒杆件,受⼒沿直杆轴线。
(a )由平衡⽅程有:0X =∑sin 300AC AB F F -=o0Y =∑cos300AC F W -=o0.577AB F W=(拉⼒)1.155AC F W=(压⼒)(b )由平衡⽅程有:0X =∑ cos 700AC AB F F -=o0Y =∑sin 700AB F W -=o1.064AB F W=(拉⼒)0.364AC F W=(压⼒)(c )由平衡⽅程有:0X =∑cos 60cos300AC AB F F -=o o0Y =∑sin 30sin 600AB AC F F W +-=o o 0.5AB F W= (拉⼒)0.866AC F W=(压⼒)(d )由平衡⽅程有:0X =∑sin 30sin 300AB AC F F -=o o0Y =∑cos30cos300AB AC F F W +-=o o0.577AB F W= (拉⼒)0.577AC F W= (拉⼒)2-4 解:(a )受⼒分析如图所⽰:由x =∑ 22cos 45042RA F P -=+o15.8RA F KN∴=由0Y =∑22sin 45042RA RB F F P +-=+o7.1RB F KN∴=(b)解:受⼒分析如图所⽰:由x =∑cos 45cos 45010RA RB F F P ? --=o o0Y =∑sin 45sin 45010RA RB F F P ?+-=o o联⽴上⼆式,得:22.410RA RB F KN F KN==2-5解:⼏何法:系统受⼒如图所⽰三⼒汇交于点D ,其封闭的⼒三⾓形如图⽰所以:5RA F KN= (压⼒)5RB F KN=(与X 轴正向夹150度)2-6解:受⼒如图所⽰:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-?=--2-7解:受⼒分析如图所⽰,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CBRA F F '-=o o联⽴后,解得:0.707RA F P=0.707RB F P=由⼆⼒平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为⼆⼒杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ?--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联⽴上⼆式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反⼒全为拉⼒,以D ,B 点分别列平衡⽅程(1)取D 点,列平衡⽅程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡⽅程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联⽴上⼆式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα=+取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P P F ααααα??=+= ?2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联⽴后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=?oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND ADP F F F KN '∴===?=o o o o o2-12解:整体受⼒交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联⽴上⼆式得:2.92RA F KN=1.33DC F KN=(压⼒)列C 点平衡x =∑405DC AC F F -?=0Y =∑ 305BC AC F F +?=联⽴上⼆式得: 1.67AC F KN=(拉⼒)1.0BC F KN=-(压⼒)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联⽴⽅程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联⽴上⾯各式得: 22RA FQ =2RB F Q P=+(3)取BCE 部分。
工程力学 习题 第二部分 附答案
为零。
A:合力
B:合力偶
C:主矢 D:主矢和主矩
3-3 是非判断题:
二个力在坐标轴上投影相等,则二个力一定相等。( )
力沿作用线移动,力对点之矩不变。( )
-1-
工程力学习题
3-4 各力的作用线共面的力系成为平面力系。试讨论平面力系的简化结果。 3-5 大小均等于 FP 的四个力作用于边长为 a 的正方形的四条边上,如图所示。该力系是
2)FPa (i − j) ⋅ ( 3i + 4
3j +
2k) = 0
所以该力系必存在合力。
-3-
工程力学习题解答
3-8 三棱柱的高为 b ,底面为等腰直角三角形,直角边长也为 b 。力 F1 作用于 A 点, 力 F2 和 F3 作用于 O 点,方向如图示,且有 F1 = F2 = F3 = FP
-4-
因此,原力系合力为 4FPk ,作用线过正方形中点。 3-10 求下列平面图形的形心位置(图中长度单位为 mm )
第 3 章 汇交力系
解:对第一个图形,由对称性,形心 x 坐标为零。
将第一个平面图形分解成三部分。
图形 1
面积 Si mm2
29800
形心坐标 y mm
325
图形 2
18000
140
哪一个图中的哪一个力代表合力。有以下四种说法,正确的应是
。
F1
F2
F1
F2
F4
F3
图a
F4
F3
图b
A. 图(a)的F4为合力,图(b)为平衡力系 B. 图(a)、图(b)都是平衡力系 C. 图(a)、图(b)都不是平衡力系 D. 图(a)是平衡力系,图(b)的F4是合力
工程力学答案第2章
工程力学(第2版)第2章 平面力系题库:主观题(1-10)道 + 计算题(11-36)道 + 填空题(37-52)道 + 选择题(53-69)道 + 判断题(70-85)道 一、主观题2-1 如何利用几何法和解析法求平面汇交力系的合力?答案:利用几何法时,可根据力的平行四边形法则或作力多边形得到合力;利用解析法时,可先求Rx x Ry y F F F F ⎧=⎪⎨=⎪⎩∑∑,进而得到()()()()cos ,,cos ,RRx Ry x y R Rx R R Ry RF F F F F F i F F F j F F ⎧=+=+⎪⎨⎪==⎩∑∑ 知识点:2.1节 参考页:P19-P20 学习目标:1 难度:12-2 指出思考题2-2图的各图中,哪个是力系的合力?答案:图(a ),1F 是合力;图(b ),合力为零;图(c ),2F 是合力。
知识点:2.1节 参考页:P19-P20 学习目标:1 难度:22-3 用解析法求合力时,若选不同的直角坐标轴,所得的合力是否相同?答案:当选择不同的坐标轴时,所得力的投影不同,但合力的大小和方向是相同的。
知识点:2.1节 参考页:P20 学习目标:1 难度:22-4 已知某一平面一般力系向A 点简化得到的主矢50 N AF '=,主矩20 N m A M =⋅,试求原力系向B 点简化结果。
其中20 mm AB =。
答案:50 N BA F F ''==0350cos302010 N m A B M F -⎛⎫'=⨯⨯=⋅ ⎪⎝⎭()20 N m A B A B M M M F ⎛⎫'=+=+⋅ ⎪⎝⎭知识点:2.3节参考页:P24 学习目标:3 难度:22-5 思考题2-5图所示力F 和力偶,F F ⎛⎫''' ⎪⎝⎭对轮的作用有何不同?设轮轴静止,2F F F '''=-=。
工程力学课后部分习题讲解
第一章静力学根底P20-P23 习题:1-1、:F1=2000N,F2=150N, F3=200N, F4=100N,各力的方向如图1-1所示。
试求各力在x、y轴上的投影。
解题提示:计算方法:F x= + F cosαF= + F sinαy注意:力的投影为代数量;式中:F x、F y的“+〞的选取由力F的指向来确定;α为力F与x轴所夹的锐角。
图1-11-2、铆接薄钢板在孔A、B、C、D处受四个力作用,孔间尺寸如图1-2所示。
:F=50N,F2=100N, F3=150N, F4=220N,求此汇交力系的合力。
1解题提示:——计算方法。
一、解析法F=F1x+F2x+……+F n x=∑F xR xF=F1y+F2y+……+F ny=∑F yR yF= √ F R x2+ F R y2Rtanα=∣F R y/ F R x∣二、几何法按力多边形法那么作力多边形,从图1-2图中量得F R的大小和方向。
1-4、求图1-4所示各种情况下力F对点O的力矩。
图1-4解题提示:——计算方法。
①按力矩的定义计算M O〔F〕= + Fd②按合力矩定理计算M O〔F〕= M O〔F x〕+M O〔F y〕1-5、求图1-5所示两种情况下G与F对转心A之矩。
解题提示:此题按合力矩定理计算各力矩较方便、简捷。
以图1-5a为例:力F、G至A点的距离不易确定,如按力矩的定义计算力矩图1-5既繁琐,又容易出错。
假设将力F、G分别沿矩形两边长方向分解,那么各分力的力臂不需计算、一目了然,只需计算各分力的大小,即可按合力矩定理计算出各力的力矩。
M〔F〕= -F cosαb- F sinαaAM〔G〕= -G cosαa/2 - G sinαb/2A1-6、如图1-6所示,矩形钢板的边长为a=4m,b=2m,作用力偶M〔F,F′〕。
当F=F′=200N时,才能使钢板转动。
试考虑选择加力的位置与方向才能使所费力为最小而到达使钢板转一角度的目的,并求出此最小力的值。
工程力学课后题答案2
工程力学课后题答案2习题解答第二章汇交力系第二章汇交力系习题 2.1 在刚体的A点作用有四个平面汇交力。
其中F,2kN,F=3kN,F=lkN, F=2.5kN,1234方向如题2.1图所示。
用解析法求该力系的合成结果。
题2.1图0000FXFFFFKN,,,,,,cos30cos45cos60cos451.29解 ,Rx14230000FYFFFFKN,,,,,,sin30cos45sin60cos452.54 ,Ry142322 FFFKN,,,2.85RRxRyFRy0 (,)tan63.07,,,FXarcRFRx2.2 题2.2图所示固定环受三条绳的作用,已知F,1kN,F=2kN,F=l.5kN。
求该力系的123合成结果。
F1F2F3解:2.2图示可简化为如右图所示0FXFFKN,,,,cos602.75 ,Rx230FYFFKN,,,,,sin600.3 ,Ry1322 FFFKN,,,2.77RRxRyFRy0 (,)tan6.2,,,,FXarcRFRx7习题解答第二章汇交力系 2.3 力系如题2.3图所示。
已知:F,100N,F=50N,F=50N,求力系的合力。
123F1F2F3 解:2.3图示可简化为如右图所示800 ,,,,,BACarctan5360FXFFKN,,,,cos80, ,Rx32FYFFKN,,,,sin140, ,Ry1222 FFFKN,,,161.25RRxRyFRy0 (,)tan60.25,,,FXarcRFRx ,2.4 球重为W,100N,悬挂于绳上,并与光滑墙相接触,如题2.4 图所示。
已知,,,30试求绳所受的拉力及墙所受的压力。
F拉F推OW题2.4图解:2.4图示可简化为如右图所示XFF,,,sin0, ,拉推YF,,,cosW0, ,拉?,,FF115.47N57.74N,拉推墙所受的压力F=57.74N ?2.5 均质杆AB重为W、长为 l ,两端置于相互垂直的两光滑斜面上,如题2.5图所示。
天津大学版工程力学习题答案第二章1
D o n e (略)2−1分别用几何法和解析法求图示四个力的合力。
已知力F 3水平,F 1=60N ,F 2=80N ,F 3=50N ,F 4=100N 。
解: (一) 几何法用力比例尺,按F 3、F 4、F 1、F 2的顺序首尾相连地画出各力矢得到力多边形abcde ,连接封闭边ae 既得合力矢F R ,如图b 所示。
从图上用比例尺量得合力F R 的大小F R =68.8N ,用量角器量得合力F R 与x 轴的夹角θ=88°28′,其位置如图b 所示。
(二) 解析法以汇交点为坐标原点,建立直角坐标系xOy ,如图c 所示。
首先计算合力在坐标轴上的投影N79.68511002180103605121103N85.152100502180101605221101421R 4321R =⨯-⨯+⨯=-+==-=⨯-+⨯+⨯-=-++-==∑∑F F F F F F F F F F F y y x x然后求出合力的大小为N 81.6879.68)85.1(222R 2R R =+-=+=y x F F F设合力F R 与x 轴所夹锐角为θ,则82881838.3785.179.68tan R R '︒====θθxy F F再由F R x 和F R y 的正负号判断出合力F R 应指向左上方,如图c 所示。
习题2−1图 F 1 F 2 F 4 F 3 F R 88°28′ (b) 231 1 1 1 F 1 F 2F 3 F 4 F Rθ (c) 23 1 1 1 1 F 1 F 2 F 3 F 4(a) 0 25 50kN e a b c d O y xD o n e (略) 2−2一个固定的环受到三根绳子拉力F T1 、F T2 、F T3的作用,其中F T1,F T2的方向如图,且F T1=6kN ,F T2=8kN ,今欲使F T1 、F T2 、F T3的合力方向铅垂向下,大小等于15kN ,试确定拉力F T3的大小和方向。
工程力学课后习题答案(2_6章_版本2)
3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。
求支座A 、D 的约束力。
解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1根据力与矩平衡有0)2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F Dy D x (1)解上面三个方程得到)(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。
该机构在图示位置平衡,杆重忽略不计。
求力F1和力F2的关系。
解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有0)15cos()30cos(:)(1=︒-︒∑T F AM F ① 图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN 有 0)30cos()60cos(:)B N (2=︒-︒∑T F F ②由①、②可得22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,CA DE BE DB ===。
F=20kN,P=12kN 。
求BE 杆的受力。
解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有 060sin :)(=-︒∑F F AN F AB ①(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有060cos 60sin 30cos :)B M (=︒-︒-︒∑P F F F BE AB ②由①、②可得373095kN 16.1658075kN 328≈=BE F (方向斜向上)3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。
工程力学答案第2章
工程力学(第2版)第2章 平面力系题库:主观题(1-10)道 + 计算题(11-36)道 + 填空题(37-52)道 + 选择题(53-69)道 + 判断题(70-85)道 一、主观题2-1 如何利用几何法和解析法求平面汇交力系的合力?答案:利用几何法时,可根据力的平行四边形法则或作力多边形得到合力;利用解析法时,可先求Rx x Ry y F F F F ⎧=⎪⎨=⎪⎩∑∑,进而得到()()()()cos ,,cos ,RRx Ry x y R Rx R R Ry RF F F F F F i F F F j F F ⎧=+=+⎪⎨⎪==⎩∑∑ 知识点:2.1节 参考页:P19-P20 学习目标:1 难度:12-2 指出思考题2-2图的各图中,哪个是力系的合力?答案:图(a ),1F 是合力;图(b ),合力为零;图(c ),2F 是合力。
知识点:2.1节 参考页:P19-P20 学习目标:1 难度:22-3 用解析法求合力时,若选不同的直角坐标轴,所得的合力是否相同?答案:当选择不同的坐标轴时,所得力的投影不同,但合力的大小和方向是相同的。
知识点:2.1节 参考页:P20 学习目标:1 难度:22-4 已知某一平面一般力系向A 点简化得到的主矢50 N AF '=,主矩20 N m A M =⋅,试求原力系向B 点简化结果。
其中20 mm AB =。
答案:50 N BA F F ''==0350cos302010 N m A B M F -⎛⎫'=⨯⨯=⋅ ⎪⎝⎭()20 N m A B A B M M M F ⎛⎫'=+=+⋅ ⎪⎝⎭知识点:2.3节参考页:P24 学习目标:3 难度:22-5 思考题2-5图所示力F 和力偶,F F ⎛⎫''' ⎪⎝⎭对轮的作用有何不同?设轮轴静止,2F F F '''=-=。
gxt2第二章工程力学课后题答案
第二章 平面汇交力系与平面力偶系2−1分别用几何法和解析法求图示四个力的合力。
已知力F 3水平,F 1=60N ,F 2=80N ,F 3=50N ,F 4=100N 。
解: (一) 几何法用力比例尺,按F 3、F 4、F 1、F 2的顺序首尾相连地画出各力矢得到力多边形abcde ,连接封闭边ae 既得合力矢F R ,如图b 所示。
从图上用比例尺量得合力F R 的大小F R =68.8N ,用量角器量得合力F R 与x 轴的夹角θ=88°28′,其位置如图b 所示。
(二) 解析法以汇交点为坐标原点,建立直角坐标系xOy ,如图c 所示。
首先计算合力在坐标轴上的投影N79.68511002180103605121103N85.152100502180101605221101421R 4321R =⨯-⨯+⨯=-+==-=⨯-+⨯+⨯-=-++-==∑∑F F F F F F F F F F F y y x x然后求出合力的大小为N 81.6879.68)85.1(222R 2R R =+-=+=y x F F F设合力F R 与x 轴所夹锐角为θ,则82881838.3785.179.68tan R R '︒====θθxy F F再由F R x 和F R y 的正负号判断出合力F R 应指向左上方,如图c 所示。
习题2−1图(b)(c) 2 4(a) 0 25 50kN2−2一个固定的环受到三根绳子拉力F T1 、F T2 、F T3的作用,其中F T1,F T2的方向如图,且F T1=6kN ,F T2=8kN ,今欲使F T1 、F T2 、F T3的合力方向铅垂向下,大小等于15kN ,试确定拉力F T3的大小和方向。
解: 以汇交点为坐标原点,建立直角坐标系xOy ,如图b 所示。
计算合力在坐标轴上的投影)2(15sin 238sin 30cos )1(0cos 21860cos 30sin 332R 3321R -=⨯-⨯--=-︒-===-⨯+=-︒+==∑∑θθθθT RT T y yT T T T x x F F F F F F F F F F F F由式(1)、(2)联立,解得4538,85.123'︒==θkN F T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
N N
NB=0时为球 离开地面
F ( R h) P h(2 R h )
P N sin
F R R h h(2R h) R
P h(2R h) F R h
P h(2R h) F 当 时球方能离开地面 R h
求:在P的作用下AC、BC所受力的大小。 ①选铰链C为研究对象 ②取分离体画受力图 ③列平衡方程
B C
X 0 FAC cos 45 FBC cos 45 0 Y 0 P FAC sin 45 FBC sin 45 0
④解平衡方程 由上一式得:
16
[例4] 求当F力达到多大时,球离开地面?已知P、R、h
解:研究块,受力如图,
解力三角形: 又:
N F cos
R2 (R h)2 1 cos h(2R h) R R
F R N h ( 2 R h)
17
再研究球,受力如图:
作力三角形
解力三角形:
∵ PNsin
11
§2-2 平面汇交力系合成与平衡的解析法
一、力在坐标轴上的投影
X=Fx=F· : cos
Y=Fy=F· =F · sin cos
F Fx Fy
2
2
X Fx cos F F
Y Fy cos F F
12
二、合力投影定理
由图可看出,各分力在x轴和在y 轴投影的和分别为:
A 30° 30° C B
滑轮由两端铰接的水平刚杆AB
和斜刚杆BC支持于点B 。如两
杆与滑轮的自重不计并忽略摩
擦和滑轮的大小, 试求杆AB和 P
a
BC所受的力。
15
静力学
例题 3
y
平面汇交力系与平面力偶系
解:
1.取滑轮 B 轴销作为研究对象。
FBC
2.画出受力图。 3.列出平衡方程:
x
B
30°
30
P C
不计并忽略摩擦和滑轮的大小, 试求平衡时杆AB和BC所受的力。
27
静力学
平面汇交力系与平面力偶系
解:
A
60
取滑轮B为研究对象,忽略滑轮的 大小,画受力图。 列写平衡方程
D
B
Fx 0,
30
FAB F1 cos 60 F2 cos 30 0 FBC F1 cos 30 F2 cos 60 0
2、一般对于受多个力作用的物体,且角度不特殊或 特殊,都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中 只有一个未知数。
29
4、对力的方向判定不准的,一般用解析法。
5、解析法解题时,力的方向可以任意设,如果求出
负值,说明力方向与假设相反。对于二力构件,
一般先设为拉力,如果求出负值,说明物体受压
18
静力学
例题 5
平面汇交力系与平面力偶系
梯长AB =l ,重P =100 N,重心假设在中点C,梯子的上
端A靠在光滑的端上,下端B放置在与水平面成40°角的光滑
斜坡上,求梯子在自身重力作用下平衡时,两端的约束力以 及梯子和水平面的夹角θ。
A
C
θ
B
40°
P
19
静力学
平面汇交力系与平面力偶系
解:
梯子受三力平衡,由三力汇交定 1.求约束力。
力。
30
静力学
例题 0
平面汇交力系与平面力偶系
F2
y
求如图所示平面共点力系的合力。
其中:F1 = 200 N,F2 = 300 N,F3 =
100 N,F4 = 250 N。
60
F1
O
45
30
解: 根据合力投影定理,得合力在轴
x,y上的投影分别为:
45
x F4
F3
FRx F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45 129.3 N
即:
Rx X 1 X 2 X 4 X
R y Y1 Y2 Y3 Y4 Y
Rx X
R y Y
合力投影定理:合力在任一轴上的投影,等于各分力在同一 轴上投影的代数和。
13
合力的大小:
Ry 方向: tg Rx
作用点:
∴
tg 1
Ry Y 1 tg Rx X
2.画出受力图。
60º
3.作出相应的力三角形。
30º
4.由力多边形解出: FA = F cos30=17.3 kN
FB = F sin30=10 kN
9
60º
30º
[例2] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。
求:在中心作用的水平力F的大小和碾子对障碍物的压力。
2
第二、三章
平面特殊力系
§2–1 平面汇交力系合成和平衡的几何法
§2–2 平面汇交力系合成和平衡的解析法
§3–1 力矩 、力偶的概念及其性质
§3–2 平面力偶系的合成与平衡
§3–3 平面平行力系的合成与平衡
3
§2-1 平面汇交力系合成与平衡的几何法
一、合成的几何法 1.两个共点力的合成
2. 任意个共点力的合成
θ B
kN,
=25o , AD=a=2m,
AB=l=2.5m。如吊车梁的自重
P
可略去不计,求钢索BC和铰 Leabharlann 的约束力。22静力学
平面汇交力系与平面力偶系
解:
选择吊车梁为研究对象,在吊车梁 上总共有三个不平行的力作用,根据三 不平行力的平衡条件,可以肯定铰A的
C
约束力FA必通过力P与FB 的交点O。
1
引 言
力系分为:平面力系、空间力系
①平面汇交力系 平面力系 ②平面平行力系(平面力偶系是其中的特殊情况 ) ③平面一般力系(平面任意力系)
平面特殊力系:指的是平面汇交力系、平面力偶系和平面平 行力系。
平面汇交力系: 各力的作用线都在同一平面内且 汇交于一点的力系。
研究方法:几何法,解析法。
例:起重机的挂钩。
由力的平行四边形法则作, 也可用力的三角形来作。 由余弦定理:
R F1 F2 2 F1 F2 cos
2 2
为力多边形
R 1 合力方向由正弦定理: s in s in(180 )
F
4
力三角形规则
F F1 F2 F2 F1
力多边形规则
5
FR1 F1 F2
R F
即:平面汇交力系的合力等于各分力的矢量和,合力的作用 线通过各力的汇交点。 二、平面汇交力系平衡的几何条件 平面汇交力系平衡的充要条件是:
R F 0
在上面几何法求力系的合力中,合力为 零意味着力多边形自行封闭。所以平面汇交 力系平衡的必要与充分的几何条件是: 或 力系中各力的矢量和等于零
Fy 0,
P
y
C
显然,F1=F2=P 解方程得杆AB和BC所受的力:
FBC
FAB
F2
B
60
30
FBA 0.366 P 7.321 kN
x
F1
FBC 1.366 P 27.32 kN
28
解题技巧及说明: 1、一般地,对于只受三个力作用的物体,且角度
特殊时用 几 何法(解力三角形)比较简便。
20
静力学
平面汇交力系与平面力偶系
2.求角θ。
y
角θ可由三力汇交的几何关系求出。
D
40°
FA
A
x
由直角三角形BEC和BED,有
EC EB t an
B
C E
ED EB t an
FB
P
40°
已知C是AB中点,DE是平行四边形ADBE的对角线,所以 C也是DE的中点。
l
A D
B FA A
a
φ
O F B
θ
D P
B
P
23
静力学
平面汇交力系与平面力偶系
把三个力移到点O,作直角坐
标系,如图 a 所示。列平衡方程:
y
F F
x
0, 0,
FA cos FB cos 0 P FA sin FB sin 0
FB
y
O
P
FA
φ
x
解:研究球受力如图, 选投影轴列方程为
X 0
T2cos T 0 ① 1
②
Y 0T2 sin Q N D 0
由①得
cos T P 1 1 T2 2P 2
600
0
由②得
ND Q-T2sin Q-2Psin 60 Q 3P
25
[例8] 已知:P=10kN, BC=AC=2m,AC与BC相互垂直。
解: ①选碾子为研究对象
②取分离体画受力图 ∵当碾子刚离地面时NA=0,拉力F最大,这时 由平衡的几何条件,力多边形封闭,故
拉力F和自重及支反力NB构成一平衡力系。
NB P cos r 2 (r h) 2 又由几何关系:tg 0.577 r h
F Ptg
10
所以
F=11.5kN , NB=23.1kN
式中角φ可由图 b 中的几何关系求得 OD BD tan θ (l a ) tan φ tan θ AD AD a
(a)
l a
tan = 0.117
解联立方程求得
A
FA
O F B