FMEA失效模式与影响分析
FMEA(失效模式与影响分析)简介
没有影响;事件发生的频率要记录特定的失效原因和机理多长时间发生一次以及发生的几率。
如果为10,则表示几乎肯定要发生,工艺能力为0.33或者ppm大于10000。
5.2检测等级是评估所提出的工艺控制检测失效模式的几率,列为10表示不能检测,1表示已经通过目前工艺控制的缺陷检测。
5.3计算风险优先数RPN(riskprioritynumber)。
RPN是事件发生的频率、严重程度和检测等级三者乘积,用来衡量可能的工艺缺陷,以便采取可能的预防措施减少关键的工艺变化,使工艺更加可靠。
对于工艺的矫正首先应集中在那些最受关注和风险程度最高的环节。
RPN最坏的情况是1000,最好的情况是1,确定从何处着手的最好方式是利用RPN的pareto图,筛选那些累积等级远低于80%的项目。
推荐出负责的方案以及完成日期,这些推荐方案的最终目的是降低一个或多个等级。
对一些严重问题要时常考虑拯救方案,如:一个产品的失效模式影响具有风险等级9或10;一个产品失效模式/原因事件发生以及严重程度很高;一个产品具有很高的RPN值等等。
在所有的拯救措施确和实施后,允许有一个稳定时期,然后还应该对修订的事件发生的频率、严重程度和检测等级进行重新考虑和排序。
在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。
FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。
FMEA是一种可靠性设计的重要方法。
它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。
它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。
及时性是成功实施FMEA的最重要因素之一,它是一个"事前的行为',而不是"事后的行为'。
为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。
FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。
失效模式与影响分析 FMEA
过滤
《产品过滤 技术标准》
4.各过程不良模式如下表:
过程 备料 投料
不良模式 材料有铁锈 / 材料水分偏高 / 材料标识错误 投错数量 / 投错料
分散
分散时间过短 / 分散速率过低 / 分散设备不启动
QC检测
温度偏高 / 温度偏低 / 量仪准确性 / 测量手法 / 取样准确性
过滤
滤网目数不对 / 滤网破损 / 忘记过滤
过程FMEA(PFMEA-Process FMEA)
针对工序间可能或已知的主要不良品, 可运用PFMEA作量化分析, 在影响不良品 产生的诸因素中, 哪一个系统原因影响最大?是否主要原因, 可通过采用PFMEA直 观地找出主要原因, 进行改善以达到应用的效果.
设备维护的FMEA(EFMEA-Equipment FMEA)
失效模式与影响分析 (FMEA)
目录 | CONTENTS
0.概述 1.FMEA的开发与发展 2.FMEA的特点及作用 3.FMEA实施步骤 4.FMEA实施时机 5.影响程度评估及风险优先数计算 6.FMEA的计分标准 7.过程FMEA应用实例
0 概述
潜在缺陷模式和影响分析是设计或制造过程中 一项事前分析工作. 通过FMEA可识别和评估在设计 或制程中可能存在的缺陷模式及其影响, 并确定能消 除或减少潜在失效发生的改善措施从而防患于未然, 尽可能降低各项缺陷成本, 保证产品/服务问世即具 有优异性能.
修订 日期
心 团 队
负责工程师
XXX
作
确
成
认
承 认
主印
关 键日 期
页 码
第
页
共
页
备注:1.S代表严重度;2.O代表发生概率;3.D代表可侦知性;4.RPN代表风险评分
失效模式和影响效果分析
失效模式和影响效果分析(Failure Mode and Effects Analysis,FMEA)是一种系统性的方法,用于识别潜在的系统、产品或过程中的失效模式,评估其可能的影响效果,并采取预防措施来降低风险。
以下是关于FMEA的一些重点内容:
1. 失效模式(Failure Mode):指系统、产品或过程可能发生的失效形式或状态,即失效的具体表现或方式。
通过识别失效模式,可以帮助确定潜在的问题和风险。
2. 影响效果(Effects Analysis):指失效模式发生时可能带来的影响和后果,包括对安全性、性能、生产率、环境等方面的影响。
通过评估影响效果,可以了解失效对系统的潜在影响程度。
3. 风险优先级数(Risk Priority Number,RPN):是FMEA中常用的指标,用于综合评估失效模式的风险程度。
通常由失效的严重性、频率和检测能力三个指标相乘得出,帮助确定哪些失效模式需要优先考虑和处理。
4. 预防措施(Preventive Actions):根据FMEA的结果,制定并实施预防措施以降低风险,包括改进设计、加强检测、提高培训水平等方面的措施。
预防措施的目的是减少或消除潜在的失效,提高系统的可靠性和安全性。
5. 持续改进(Continuous Improvement):FMEA是一个持续改进的过程,通过不断进行FMEA分析、实施预防措施和监控效果,可以逐步改进系统的质量和可靠性,降低风险水平。
总的来说,FMEA是一种有助于识别和管理系统风险的有效方法,通过系统性地分析失效模式和影响效果,可以帮助组织预防潜在问题的发生,提高系统的稳定性和可靠性。
FMEA失效模式及其影响分析
03
FMEA失效影响分析
直接和间接影响
直接影响
指失效模式对产品或系统的性能、安 全性、可靠性和可用性等直接造成的 影响。例如,电池的充电功能失效会 导致设备无法正常工作。
间接影响
指失效模式引发的连锁反应或次生问 题,可能涉及到供应链、生产、销售 和服务等环节。例如,关键零部件的 失效可能导致整条生产线停产。
制中的问题,提高产品的可靠性和安全性。
识别和评估
总结词
在FMEA失效模式分析中,识别和评估是关键步骤,需要全面考虑各种可能的失效模式,并对其影响进行量化评 估。
详细描述
在识别阶段,团队需要充分了解产品或过程的设计、制造和使用环境,找出可能出现的各种失效模式。这些失效 模式可能包括机械、电气、化学、热学等多个方面。在评估阶段,团队需要分析每种失效模式的发生概率、严重 程度以及可检测性,为后续的优先级排序提供依据。
静态性
FMEA通常在产品设计阶段进行,对后续生产和使用的动 态变化考虑不足,可能无法全面反映产品在实际使用中的 失效模式。
高成本
FMEA需要投入大量时间和资源进行数据收集、分析和改 进措施制定,对于小型企业或项目可能存在成本压力。
06
案例研究
案例一:汽车制造业的FMEA应用
总结词
汽车制造业是FMEA应用的重要领域,通过分析失效 模式及其影响,可以优化产品设计、生产和质量控制 。
FMEA失效模式及其影响 分析
• 介绍 • FMEA失效模式分析 • FMEA失效影响分析 • FMEA实施步骤 • FMEA的优点和局限性 • 案例研究
01
介绍
FMEA的定义
• FMEA(Failure Modes and Effects Analysis)即失效模式与影响分析, 是一种预防性的质量工具,用于评估 产品设计或流程中潜在的失效模式及 其对系统性能的影响。它通过识别、 评估和优先处理那些可能对产品或流 程性能产生最大影响的失效模式,帮 助组织减少或消除潜在的问题,提高 产品和流程的可靠性和安全性。
FMEA失效模式和影响分析的类型
FMEA失效模式和影响分析的类型FMEA(Failure Modes and Effects Analysis)是一种用于识别、评估和减少潜在失效模式及其影响的系统工具。
FMEA分析可以应用于各个领域,包括制造业、医疗保健、航空航天、汽车工业等。
它的主要目的是预防问题的发生,从而提高产品、服务或过程的质量。
在FMEA分析中,失效模式指的是系统、产品或过程中可能出现的故障模式。
而影响则表示失效模式产生的潜在后果或结果。
因此,FMEA的类型主要涉及失效模式和影响分析的分类。
一般来说,FMEA可以分为以下几种类型:1. 制造过程FMEA(Process FMEA):这种类型的FMEA主要用于分析和改进制造过程中的潜在故障。
它可以帮助确定并解决可能导致产品质量问题的工艺、设备、材料或人为因素。
2. 设计FMEA(Design FMEA):这种类型的FMEA主要用于评估产品或系统设计阶段中可能存在的失效模式及其潜在后果。
通过分析设计变量、可靠性要求和相关特性,可以预测并改进设计,并减少潜在故障的发生。
3. 系统FMEA(System FMEA):这种类型的FMEA用于系统级别的分析,以识别可能导致整个系统失败的主要失效模式。
它有助于识别风险并采取适当的措施来提高系统的可靠性和性能。
4. 排序FMEA(Process FMEA):这种类型的FMEA用于对失效模式和影响进行排序和优先化。
通过对失效模式的潜在严重性、出现频率和检测性的评估,可以确定哪些失效模式最需要优先处理。
5. 操作FMEA(Process FMEA):这种类型的FMEA主要用于分析和改进操作和维护过程中可能发生的失效模式。
它有助于确定操作和维护流程中的关键控制点,并制定相应的纠正和预防措施。
无论是哪种类型的FMEA,其分析方法都包括以下步骤:1.定义分析目标:明确要分析的系统、产品或过程的范围和目标。
2.列出潜在失效模式:识别可能导致系统、产品或过程故障的失效模式。
失效模式与影响分析FMEA
失效模式与影响分析FMEA失效模式与影响分析(Failure Mode and Effects Analysis, FMEA)是一种常用的质量管理工具,主要用于识别潜在的失效模式及其对系统、产品或流程性能的影响,以便采取相应的预防和纠正措施,提高质量和可靠性。
FMEA的过程通常包括以下几个步骤:1.确定分析范围:确定需要进行FMEA分析的系统、产品或流程,并明确分析的目标。
2.定义失效模式:识别可能的失效模式,即系统、产品或流程可能出现的各种问题、故障或失效,包括设计失效、制造失效、装配失效等。
3.评估失效影响:对每个失效模式进行评估,分析其对系统、产品或流程性能的影响。
评估可以从多个维度进行,如安全性、可靠性、功能性、经济性等。
4.确定失效原因:确定每个失效模式的潜在原因。
可以使用多种工具和方法,如因果图、5W1H、鱼骨图等,来帮助确定失效的根本原因。
5.评估现有控制措施:评估当前已经实施的控制措施对失效模式的效果。
确定哪些失效模式已经通过其他控制措施得到有效控制,哪些失效模式仍然存在较高的风险。
6.制定改进措施:针对高风险的失效模式,制定相应的改进措施。
改进措施可以包括设计改进、工艺改进、培训和教育、检测和监控等。
7.实施并验证改进措施:将改进措施实施到实际生产或运营中,并验证其效果。
跟踪和监控改进措施的实施情况,并对其效果进行评估。
通过进行FMEA分析,可以帮助组织识别和管理潜在的风险,提前采取预防措施,减少系统、产品或流程的失效概率,以实现质量和可靠性的提升。
FMEA分析可以应用于各个领域,如制造业、医疗设备、航空航天、汽车等。
FMEA的应用具有以下几个特点和优势:1.预防导向:FMEA分析主要关注于预防失效模式的发生,通过分析潜在的失效原因和影响,预测可能的失效模式,制定相应的预防措施,从而避免质量问题的发生。
2.多维度评估:FMEA分析不仅关注失效模式的影响对系统、产品或流程的影响,还可以从多个维度进行评估,如安全性、可靠性、功能性、经济性等,以全面了解失效模式的风险。
质量管理中的失效模式与影响分析
质量管理中的失效模式与影响分析一、前言在现代工业生产中,产品质量是企业永恒的追求,而质量管理是实现高品质产品的有效手段。
失效模式与影响分析(Failure Mode and Effects Analysis,FMEA)是质量管理体系中非常重要的一环,是通过深入分析可能造成产品失效的原因和影响,预防和控制失效事件的发生,从而提升产品质量的一种方法。
二、失效模式与影响分析的概念1、失效模式所谓失效模式,是指产品或者系统中可能出现的故障模式,其表现为产品或者系统不能够按照设计要求正常工作。
2、影响分析影响分析是指对失效模式及其原因的分析,以及对失效事件可能带来的影响和后果的评估。
影响分析旨在识别存在的潜在问题,并制定一系列预防、纠正和预测措施,以使产品或者系统更加可靠、有效地运行。
3、失效模式与影响分析失效模式与影响分析(FMEA)是预防控制的一种手段,它的核心思想是:在设计、制造、维修、使用产品的各个环节中,识别潜在失效模式、评估其可能影响和后果,并随后采取预防措施,从而提高产品的质量和可靠性。
三、失效模式与影响分析的步骤FMEA是一个基于团队合作的、有序的分析过程,主要分为以下步骤:1、确定需要分析的产品或者系统首先需要确定需要进行FMEA分析的产品或者系统,以及所涉及的物理和功能性方面。
2、制定失效模式制定失效模式是指对所选产品或者系统进行分析,并确定可能存在的失效模式。
在此过程中,需要考虑影响失效模式的所有因素,包括物理变形、设备磨损、操作不当、环境因素等。
3、评估失效模式的严重性在确定了失效模式后,需要评估失效模式的严重性,包括对生产和用户产生的影响等方面进行评估。
4、确定可能的原因在确定失效模式和严重性后,需要确定可能的原因,以及导致失败模式和严重性的根本原因。
5、确定纠正措施在确定了原因后,需要制定出一些纠正措施,以减少或消除可能造成失效事件的原因。
6、制定预防性措施最后,需要制定一系列预防性措施,以防止不良失效模式或原因继续存在。
FMEA作业规范(失效模式及影响分析)
失效模式及影響分析(FMEA)1.定義:1) 英文 Failure Mode and Effects Analysis, 縮寫FMEA。
是一種由下而上的歸納式系統分析或流程分析方法,用來評估潛在性的錯誤。
包含找出什麼會造成錯誤,以及會發生錯誤的方法﹝失效模式﹞,決定每個失效模式對系統的影響。
根據經驗分析産品設計與生産工藝中存在的弱點和可能産生的缺陷公及這些缺陷産生的後果與風險,在決策過程中採取措施加以清除。
3) 分爲設計失效模式分析過程失效分析.過程FMEA是以工藝過程的每道工序爲分析物件; 設計FMEA是以系統或零部件爲分析物件;因此FMEA分析要從系統組成零件列表中或加工工藝流程事確定産品設計專案或過程專案.基本思路:劃分分析物件,確定每一物件的分析內容,研究分析結果及處理措施,製作FMEA分析表;4) FMEA流程分析流程缺陷的名稱潛在失效的後果建議糾正措施想象中可能産生的缺陷失效嚴重度評估缺陷被發現的概率缺陷産生的頻度缺陷産生的原因二.FMEA的分類1) 設計FMEA是由設計主管工程師/4組在設計早期彩的一種分析技術,用來在最大範圍內保證已充分地考慮到和指明各種潛在的失效模式及其相關的起因和理,評估最後的産品以及每個與之相關的系統,系統和零部件,以最嚴密的形式總結了設計思想.2) 在設計階段使用FMEA時常用:a. 有助於對設計要求的評估及對設計方案的相互權衡;b. 建立一套改進設計和開發試驗的優先控制系統;c. 爲推薦和跟蹤低風險的措施提供一個公開的的討論形式;d. 爲將來分析研究現場情況,評價設計時的更改及開發更先進的設計,提供參考;e. 有助於對製造和裝配要求的最初設計;f. 提高在設計開發過程中已考慮潛在失效及其對系統和産品使用影響的可能性;g. 對制定全面,有效的設計試驗計劃和開發專案提供更多資訊;3) 過程FMEA由製造主管工程師/小組,採用的分析技術,用在最大範圍內,保證充分地考慮到並指明失效模式及其相關的後果起因/機理,以最嚴密的形式總工程師結了工藝過程設計的設計思想,與一個工程師在任何製造過程中經常經歷的思維過程是一致的.過程FMEA假設設計的産品會滿足設計要求,它們的影響及避免措施由設計FMEA來解決.主要考慮與製造計劃的製造廠裝配過程有關的産品設計參數,以便最大限度地保證産品能滿足顧客要求和期望.3.FMEA的意義爲設計:生産、質保部門提供共用的資訊資源也爲同類産品的設計提供資料。
失效模式与影响分析
失效模式与影响分析失效模式与影响分析(英文:Failure mode and effects analysis,FMEA),又称为失效模式与后果分析、失效模式与效应分析、故障模式与后果分析或故障模式与效应分析等,是一种操作规程,旨在对系统范围内潜在的失效模式加以分析,以便按照严重程度加以分类,或者确定失效对于该系统的影响。
FMEA广泛应用于制造行业产品生命周期的各个阶段;而且,FMEA在服务行业的应用也在日益增多。
失效原因是指加工处理、设计过程中或项目/物品(英文:item)本身存在的任何错误或缺陷,尤其是那些将会对消费者造成影响的错误或缺陷;失效原因可分为潜在的和实际的。
影响分析指的是对于这些失效之处的调查研究。
基本术语失效模式(又称为故障模式)观察失效时所采取的方式;一般指的是失效的发生方式。
失效影响(又称为失效后果、故障后果)失效对于某物品/项目(英文:item)之操作、功能或功能性,或者状态所造成的直接后果。
约定级别(又称为约定级)代表物品/项目复杂性的一种标识符。
复杂性随级数接近于1而增加。
局部影响仅仅累及所分析物品/项目的失效影响。
上阶影响累及上一约定级别的失效影响。
终末影响累及最高约定级别或整个系统的失效影响。
失效原因(又称为故障原因)作为失效之根本原因的,或者启动导致失效的某一过程的,设计、加工处理、质量或零部件应用方面所存在的缺陷严重程度(又称为严重度)失效的后果。
严重程度考虑的是最终可能出现的损伤程度、财产损失或系统损坏所决定的,失效最为糟糕的潜在后果[1]。
历史从每次的失效/故障之中习得经验和教训,是一件代价高昂而又耗费时间的事情,而FMEA 则是一种用来研究失效/故障的,更为系统的方法。
同样,最好首先进行一些思维实验。
二十世纪40年代后期,美国空军正式采用了FMEA[2]。
后来,航天技术/火箭制造领域将FMEA用于在小样本情况下避免代价高昂的火箭技术发生差错。
其中的一个例子就是阿波罗空间计划。
失效模式与影响分析(FMEA)
可能给错药 药物名称或外表 厂商制造原 造成病人伤 相似 因 害
1
1
10
10
三、举例
4.分析失效模型和影响因素 表4.3 护士到病人单位给药 失效模式 原因 结果 S 1.护士太 可能给错 护士没有核对 匆忙。2. 药造成病 10 病人身份 病人没有 人伤害 识别手圈 1.无法识 给药途径 药物给药途径 别医嘱。 错误造成 10 错误 2.缺乏相 影响结果 关知识。
护士对药 卡 到备药间 备药 到病人病 房给药
三、举例
4.分析失效模型和影响因素
4.1 护士给药 表4.1护士核对给药纪录单
失效模式 结果 S 没有依照处 1.医嘱遗失。 给药记录单没有 方给药可能 10 2.书写医嘱 更新 影响病人结 时分心 果 1.书写医嘱 时不注意。 没有依照处 2.写后的医 方给药可能 给药时间不正确 嘱没有双重 10 影响病人结 核对。3.没 果 有计算机处 方系统 原因 O 5 D 5 RPN 改善措施 250
O
D RPN 改善措施
1.加强培 训。2.病 10 人佩戴手 圈
1
1
5
5
250
三、举例
5. 评判结果 失效模式 给药记录单没有更新 RPN 250
给药时间不正确 药物不正确 药物名称或外表相似
护士没有核对病人身份
250 250 10
10
药物给药途径错误
250
三、举例
6.根本原因分析 6.1列出最需要改善的失效模式: 给药记录单没有更新、给药时间不正确、药物不 正确、药物给错途径 6.2 对相应失效模式分析原因。
三、举例
3. 分析流程 主题1:病人辨识和输血流程:
制作及佩 戴手圈 采血和 备血 检验科 流程 送血到 病房 核对 病人
FMEA失效分析与失效模式分析
FMEA失效分析通常包括失效模式分析作为其一部分,两者都是质量 保证和可靠性工程的重要工具。
02
FMEA失效模式分析
失效模式的定义与分类
失效模式定义
在产品或过程中,可能导致产品或系 统不能达到预期功能的现象或问题。
失效模式分类
按失效的性质可分为功能失效、潜在 失效、外观失效等;按失效的原因可 分为设计缺陷、制造缺陷、使用不当 等。
06
案例研究
案例一:汽车刹车系统的FMEA失效分析
总结词
全面分析,预防为主
详细描述
通过对汽车刹车系统进行FMEA失效分析, 识别出潜在的失效模式和原因,并采取相应 的预防措施,确保刹车系统的可靠性和安全
性。
案例二
要点一
总结词
细致入微,失效定位
要点二
详细描述
对电子产品电路板进行FMEA失效模式分析,准确定位失 效模式和原因,提出改进措施,提高电路板的可靠性和稳 定性。
失效风险
指产品或系统在实现其功能过程中可能出现的故障、异常或性能下降的风险。
分类
按照失效模式和影响分析(FMEA)的方法,失效风险可分为功能失效风险和潜在失效 风险。
失效风险的分析方法
01
故障树分析(FTA)
通过建立故障树,分析系统各部件的故障对系统整体性能的影响。
02
事件树分析(ETA)
通过建立事件树,分析系统各事件的发生对系统性能的影响。
失效模式的分析方法
故障树分析法
01
通过建立故障树,分析导致故障的各种因素,确定故障发生的
概率和影响程度。
故障模式与影响分析法
02
分析产品或系统的各种故障模式,评估其对系统功能的影响程
失效模式与影响分析FMEA
失效模式与影响分析FMEAFMEA由三个主要的组成部分构成:失效模式、影响和严重程度分析。
失效模式是指系统、设备或流程可能发生的失败形式。
影响是指错误发生时对整个系统、设备或流程的可能影响。
严重程度分析是根据影响的严重程度对失效模式进行分类。
FMEA最早在汽车工业中被广泛应用,用于识别汽车零部件可能存在的故障模式及其对整车质量和安全的潜在影响。
但是,现在FMEA已被扩展应用于许多其他领域,如航空航天、医疗器械、医疗保健、电子和食品行业等。
FMEA主要涉及以下几个步骤:1.选择系统、设备或流程:首先,确定要进行FMEA分析的系统、设备或流程。
2.建立团队:组建一个多学科团队,包括工程师、技术人员和相关利益相关者,以确保全面的分析。
3.定义失效模式:识别系统、设备或流程可能出现的失效模式。
通过考虑过去的故障记录、供应商数据和先前的经验来帮助识别潜在模式。
4.评估影响:对每种失效模式进行评估,包括可能的影响,如安全、质量、操作和环境影响。
可以使用定量评估工具,如风险矩阵或风险曲线图等。
5.确定严重程度:将各个失效模式的影响与严重程度进行关联,并对其进行分类。
通常使用1到10的评估等级来表示严重程度。
6.识别根本原因:对每个潜在失效模式进行根本原因分析,以确定导致该失效模式发生的主要因素。
7.制定改进计划:为每个识别的失效模式制定改进计划,以降低潜在的影响。
这包括预防、检测和纠正措施,以减少潜在的失效模式和影响。
8.实施改进措施:根据制定的改进计划,实施相应的措施,并监控其有效性。
FMEA的主要优点是它能够提前发现潜在的问题和风险,并采取相应措施来减少故障和损失。
通过使用FMEA,可以降低系统、设备或流程的故障率,提高可靠性和可用性,并提高整体质量。
然而,FMEA也存在一些局限性。
首先,它依赖于可靠的数据和信息来进行分析,如果数据不全或不准确,可能会导致分析的不准确。
其次,FMEA是一个复杂的过程,需要专业知识和经验,如果团队成员缺乏相关知识和经验,可能无法准确分析和评估。
失效模式与影响分析
将改进和预防措施付诸实施,并对实施效果进行跟 踪和评估。
06
失效模式与影响分析的案例 研究
案例一
总结词
电子产品中的热设计失效是常见的失效 模式之一,可能导致设备性能下降、损 坏或安全问题。
VS
详细描述
热设计失效通常表现为过热、散热不良等 现象,可能由于设计缺陷、材料选择不当 、生产工艺问题等原因引起。这种失效模 式可能导致电子设备性能下降、加速设备 老化、引发火灾等安全问题,对用户和企 业造成重大损失。
设备或部件的物理损坏,如机械零件磨损、 电子元件烧毁等。
通信故障
信息传输中断或延迟,影响系统间的通信和 数据传输。
软件故障
计算机程序中的错误或不稳定性,可能导致 系统崩溃或数据丢失。
人为错误
操作失误、配置错误或使用不当,导致系统 功能异常或数据损坏。
潜在失效模式
潜在硬件故障
设备或部件可能存在的潜在问题,如早期磨损、 潜在的电子元件缺陷等。
总结词
桥梁结构中的疲劳失效是一种常见的失效模式,可能导致结构断裂、坍塌等严重后果。
详细描述
桥梁结构在长期承受车辆、风、地震等载荷的作用下,可能会出现疲劳损伤。这种损伤 通常不易被察觉,但随着时间的推移,损伤累积到一定程度后,可能导致结构断裂、坍 塌等严重后果。疲劳失效不仅会造成重大经济损失,还可能对人们的生命安全构成威胁。
使用条件
设备的工作负载、使用频率、持 续时间等条件影响设备的寿命和 可靠性,可能导致失效。
维护状况
定期维护和保养的执行情况直接 影响设备的性能和寿命,维护不 足可能导致设备提前失效。
03
影响分析
功能影响分析
功能影响分析是失效模式与影响分析中重要的一环,主要目的是评估产品或系统的功能失效对整个系 统的影响程度。
FMEA失效模式与影响分析
FMEA失效模式与影响分析FMEA (Failure Mode and Effects Analysis)是一种常用的风险评估工具,可用于识别和分析系统、设计或过程故障的潜在模式和可能产生的影响,以确定并采取适当的预防和纠正措施。
本文将详细介绍FMEA的基本概念、方法和应用,并讨论它在实践中的重要性和效益。
FMEA通过系统化地考虑故障的可能原因、模式和后果,帮助组织在设计和制造过程中提前识别和解决问题。
它通常由跨职能和跨部门的团队完成,包括设计工程师、质量工程师、制造工程师和操作人员等,以确保不同专业领域的知识和经验得到综合考虑。
FMEA通常被分为三个关键步骤:识别失效模式、评估影响和确定纠正措施。
首先,团队成员需要通过分析设计、工艺和操作步骤等方面的潜在失效模式,识别可能的故障原因和模式。
然后,团队评估每个失效模式可能产生的影响,包括安全风险、质量问题、生产效率和客户满意度等。
最后,根据分析的结果,制定并实施纠正和预防措施,以减少潜在故障和最小化其影响。
FMEA的主要优势之一是它可以帮助组织在产品设计和制造的早期阶段发现和解决问题,从而降低成本和提高质量。
它可以鼓励团队在产品和过程设计过程中采用预测性思维,预见所有可能的故障情况,并采取相应的措施来减轻风险。
此外,FMEA还可以提高团队成员对系统和过程的理解,并促进团队合作和协作。
FMEA在许多不同的领域有广泛的应用,包括制造业、航空航天、汽车工业、医疗器械和服务行业等。
例如,在制造业中,FMEA可以帮助工程师和制造商识别可能导致零部件或组件失效的潜在原因,并采取措施降低失败的可能性。
在医疗器械领域,FMEA可以用于评估手术过程中存在的潜在风险,以减少手术失误的机会。
然而,FMEA也存在一些限制和挑战。
首先,进行FMEA需要大量的时间和资源,特别是当涉及到复杂的系统和过程时。
此外,FMEA的准确性也取决于团队成员的经验和知识,因此需要保证团队成员具备适当的培训和专业背景。
失效模式与影响分析FMEA
Cpk ≥1.67 ≥1.50 ≥1.33 ≥1.17 ≥1.00 ≥0.83 ≥0.67 ≥0.51 ≥0.33 <0.33
6(Moderate) 7(High) 经常发生 8(High) 9(Very High) 几乎不可避免 10(Very High)
难检度(Detection) 十.难检度 难检度
在现行的控制措施下 侦测失效发生的能 在现行的控制措施下,侦测失效发生的能 力 划分标准 主观判定 统计资料 1----有有效手段完全可以检测出来 有有效手段完全可以检测出来 10----无任何手段可以检测出来 无任何手段可以检测出来
难检度(D)划分标准
等级/评分
1~2 3~5 6~8 9 10
决定优先改善之失效模式 建议改善措施 改善实施
六.结果应用 结果应用
误解 满足客户要求 工作负担 误解----满足客户要求
六.结果应用 结果应用
实际----实际 避免采用不良率高的设计和制程 集中资源 循序改善产品设计和制程 集中资源,循序改善产品设计和制程 循环改善 不断提升设计和制程可靠度 循环改善,不断提升设计和制程可靠度 改进设计之参考 制程检验 测试标准 检验程序 检验规范等之参 制程检验,测试标准 检验程序,检验规范等之参 测试标准,检验程序 考 下次 下次FMEA分析之参考 分析之参考 产品可靠性 制程安全性 环保之评估参考 产品可靠性,制程安全性 制程安全性,环保之评估参考 工程师训练之参考
十二.设计FMEA与制程FMEA 之区别
对象 实施阶段 FMEA 团队成员 分析失效原因出发点 建议控制措施出发点
十三.设计FMEA
定义 定义: 预测产品设计中某些设计目标值可能产 生的失效及分析这些失效会对个产品外 结构,功能 及必能稳定性,可靠性及对 观,结构 功能 及必能稳定性 可靠性及对 结构 功能,及必能稳定性 制程造成的影响,并针对之从产品设计和 制程造成的影响 并针对之从产品设计和 制程设计等方面提出改善措施
FMEA(失效模式与影响分析)
失效模式与影响分析即“潜在失效模式及后果分析”。
FMEA是在产品设计阶段和过程设计阶段,对构成产品的子系统、零件,对构成过程的各个工序逐一进行分析,找出所有潜在的失效模式,并分析其可能的后果,从而预先采取必要的措施,以提高产品的质量和可靠性的一种系统化的活动。
FMEA又根据产品故障可能产生的环节:设计、制造过程、使用、承包商(供应商)以及服务可细分为:1. DFMEA:设计FMEA2. PFMEA:过程FMEA3. EFMEA:设备FMEA4. SFMEA:体系FMEA一、概念潜在的失效模式及后果分析(Failure Mode and Effects Analysis,简记为FMEA),是“事前的预防措施”,并“由下至上。
关键词:潜在的—失效还没有发生,它可能会发生,但不一定会发生。
“核心”集中于:预防—处理预计的失效,其原因及后果/影响。
主要工作:风险评估—潜在失效模式的后果影响。
FMEA 开始于产品设计和制造过程开发活动之前,并指导贯穿实施于整个产品周期。
进行分析系统中每一产品所有可能产生的故障模式及其对系统造成的所有可能影响,并按每一个故障模式的严重程度,检测难易程度以及发生频度予以分类的一种归纳分析方法。
二、目的·能够容易、低成本地对产品或过程进行修改,从而减轻事后危机的修改。
·找到能够避免或减少这些潜在失效发生的措施;三、RPN的评价准则1.1 设计FMEA严重性(Severity :S)1)评分原则a)衡量是小的影响程度b)失效影响:产品或制程的某一失效对产品外观,结构,功能,性能稳定性,可靠性影响c)或对下一制程,使用者或设备的影响d)或对最终客户、政府法规、安全、环保的违及e)划分标准——主观判定2)设计:FMEA风险评估标准说明严重性(Severity :S):严重性是对下一个制程、系统或客户所发生的潜在失效模式效果的严重性进行评估,严重性仅适用于效果,严重性等级指数的减低只能透过设计变更才能够生效,严重性应该在1~10的等级上评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
失效模式与影响分析失效模式与影响分析 (英文:Failure mode and effects analysis,FMEA),又称为失效模式与后果分析、失效模式与效应分析、故障模式与后果分析或故障模式与效应分析等,是一种操作规程,旨在对系统范围内潜在的失效模式加以分析,以便按照严重程度加以分类,或者确定失效对于该系统的影响。
FMEA广泛应用于制造行业产品生命周期的各个阶段;而且,FMEA在服务行业的应用也在日益增多。
失效原因是指加工处理、设计过程中或项目/物品(英文:item)本身存在的任何错误或缺陷,尤其是那些将会对消费者造成影响的错误或缺陷;失效原因可分为潜在的和实际的。
影响分析指的是对于这些失效之处的调查研究。
目录• 1 基本术语• 2 历史• 3 实施• 4 FMEA在设计工作中的应用o 4.1 准备工作o 4.2 步骤1: 严重程度o 4.3 步骤2: 出现频度o 4.4 步骤3: 检查o 4.5 风险优先级数• 5 FMEA的时机安排• 6 FMEA的用途•7 优点•8 局限性•9 软件•10 FMEA的类型•11 参见•12 参考文献基本术语失效模式(又称为故障模式)观察失效时所采取的方式;一般指的是失效的发生方式。
失效影响(又称为失效后果、故障后果)失效对于某物品/项目(英文:item)之操作、功能或功能性,或者状态所造成的直接后果。
约定级别(又称为约定级)代表物品/项目复杂性的一种标识符。
复杂性随级数接近于1而增加。
局部影响仅仅累及所分析物品/项目的失效影响。
上阶影响累及上一约定级别的失效影响。
终末影响累及最高约定级别或整个系统的失效影响。
失效原因(又称为故障原因)作为失效之根本原因的,或者启动导致失效的某一过程的,设计、加工处理、质量或零部件应用方面所存在的缺陷严重程度(又称为严重度)失效的后果。
严重程度考虑的是最终可能出现的损伤程度、财产损失或系统损坏所决定的,失效最为糟糕的潜在后果。
历史从每次的失效/故障之中习得经验和教训,是一件代价高昂而又耗费时间的事情,而FMEA 则是一种用来研究失效/故障的,更为系统的方法。
同样,最好首先进行一些思维实验。
二十世纪40年代后期,美国空军正式采用了FMEA。
后来,航天技术/火箭制造领域将FMEA 用于在小样本情况下避免代价高昂的火箭技术发生差错。
其中的一个例子就是阿波罗太空计划。
二十世纪60年代,在开发出将宇航员送上月球并安全返回地球的手段的同时,FMEA 得到了初步的推动和发展。
二十世纪70年代后期,福特汽车公司在平托事件(参阅英文条目:Pinto)之后,出于安全和法规方面的考虑,在汽车行业采用了FMEA。
同时,他们还利用FMEA来改进生产和设计工作。
尽管最初是由军事领域所建立的方法,但FMEA方法学现在已广泛应用于各种各样的行业,包括半导体加工、饮食服务、塑料制造、软件以及医疗保健行业。
在设计和加工处理格式方面,FMEA已经结合到了产品质量先期策划(英文:Advanced Product Quality Planning,APQP),以便提供基本的风险化减手段以及实现对于预防策略的时机选择。
汽车行业行动工作组(英文Automotive Industry Action Group,AIAG) 要求在汽车的APQP过程中运用FMEA方法,并且还发布了详细的一份关于如何应用这一方法的手册。
对于每种潜在的原因,都必须针对其对于产品或加工处理过程的影响而加以考虑,并根据相应的风险,确定所要采取的行动措施,并在行动措施完成之后对风险重新加以评估。
[Toyota]已经进一步将这种方法与自己的基于失效模式的设计审核(英文:Design Review Based on Failure Mode,DRBFM)方法结合在一起。
现在,这一方法还同时得到了美国质量协会(英文:American Society for Quality)的支持。
美国质量协会针对应用这种方法而提供有若干的详细指南。
实施在FMEA之中,失效之优先级别的确定依据的是它们的后果到底有多么严重,它们究竟出现得有多么频繁以及可被发现究竟有多么容易。
FMEA同时还记载当前对于失效风险的了解和行动措施,以便用于持续改进。
在设计阶段,FMEA的应用旨在避免将来发生失效。
之后,在过程控制当中以及在相应过程的不断运行之前和过程当中,都会用到FMEA。
在理想情况下,在最早的概念设计阶段就开始使用FMEA,并且继续加以使用,直至贯穿产品或服务的整个生命周期。
FMEA的目的在于从优先级别最高的失效着手,采取行动措施,从而消除或减少失效。
FMEA 还可以用于评价风险管理优先级别,以便缓和已知形成威胁的薄弱部位。
FMEA有助于选择补救措施,从而减少因为系统失效(故障)所造成的若干生命周期后果(风险)的累积效应。
目前,许多正规的质量体系也在采用FMEA,比如QS-9000或ISO/TS 16949。
FMEA在设计工作中的应用在处理失效模式及与其相关的原因的时候,FMEA可以为我们提供一种分析手段。
在考虑设计之中可能存在的失效之时,比如安全、成本、性能、质量和可靠性,为了避免这些失效的发生,工程师可以利用FMEA,获得大量关于如何变更开发/制造过程的信息。
FMEA为我们提供的是一种简便易用的,用来确定究竟哪种风险最令人担心的工具,从而需要我们在问题真正发生之前,采取相应的行动措施,避免它的发生。
这些规格说明的编制,将会保证相应的产品能够满足预定的需求。
准备工作FMEA的过程简单明了。
FMEA分为三个主要阶段。
在这些阶段之中,需要确定合适的行动措施。
但是,在FMEA开始之前,重要的一点就是,要完成一些前期准备工作,以便确认此次分析具有稳健性,且其中包括了既往的历史。
稳健性分析可以利用接口矩阵、边界图以及参数图来完成。
许多失效问题往往是由于噪声因素以及与其他零部件和/或系统之间共享的接口所造成的,因为工程师倾向于集中关注他们所直接控制的东西。
首先,有必要对当前系统及其功能加以描述。
透彻的理解将会简化进一步的分析工作。
这样,工程师就能够明白,到底系统的哪些用法是人们所需要的,而哪些并非如此。
重要的是要同时考虑到预期和意外用法。
意外用法属于是不利环境的一种形式。
接下来,需要为系统创建一幅框图。
该图用于概括描述主要组件或过程步骤以及它们之间是如何彼此关联起来的。
这些就是所谓的逻辑关系,而FMEA正是围绕这些关系而进行下去的。
建立一个编码系统将有助于标识不同的系统要素。
FMEA之中应当始终包括有上述框图。
在开始进行实际的FMEA之前,还需要创建一份工作表,其中包含的是有关当前系统的重要信息,如修订日期或组件名称。
在这张工作表中,应当依据上述框图,按合乎逻辑的方式,列出分析对象的所有项目或功能。
步骤1: 严重程度依据功能需求及其影响来确定所有的失效模式。
失效模式的例子有:电路短路、锈蚀或变形。
重要的是要注意到,一个组件之中的失效模式可以导致另一组件之中的失效模式。
因此,对于每种失效模式,均应当采用技术术语,并按功能列出。
此后,需要加以考虑的是每种失效模式的最终影响。
失效影响被定义为,按照用户的认知方式,失效模式对于系统功能产生影响的结果。
这样,便于按照用户所可能看到或经历的情况,来描写这些影响。
失效影响的例子有:性能下降、噪声,甚至是对于用户的伤害。
对于每种影响,分别都赋予一个取值为1(无危险)到10(危重)之间的严重程度值。
此类数值有助于工程师排定失效模式及其影响的轻重缓急次序。
如果某影响的严重程度值为9或10,则应当考虑采取行动措施,尽可能通过消除该失效模式,或者保护用户免受其影响,来变更相应的设计。
严重程度分级9或10一般保留用于那些会对用户造成伤害或者以其他方式引起诉讼的影响。
步骤2: 出现频度在这一步当中,需要考虑失效的原因以及它所出现的频数。
这项工作可以通过检查类似的产品或过程以及已经记录在案的那些相关的失效情况来完成。
失效原因被视为设计缺陷。
对于失效模式所有潜在的原因,均应当加以确定和记载。
同样,这里也应当采用技术术语来描述。
原因的例子有:错误的算法、过高的电压或者不当的操作/工作条件。
同样,也可以为每种失效模式赋予一个范围为1~10的概率值(O)。
如果出现频度高(指的是概率值>4的非安全失效模式以及第1步的严重程度值为9或10且概率值>1时),就需要确定出行动措施。
这一步称为FMEA过程的细化部分。
另外,还可以将出现频度定义为百分数(%)。
如果发生某种非安全问题的比例不足1%,那么就可以赋予它数值1。
这取决于您的产品与客户规格说明。
步骤3: 检查当一旦确定了适当的行动措施,需要做的一件工作就是测试它们的效能。
同时,还需要进行设计验证。
而且,还需要选择合适的检查方法。
首先,工程师应当关注当前对系统所采取的控制措施,也就是那些防止失效模式发生或者在失效问题殃及客户之前予以发现。
之后,应当确定可以或者已经用于类似系统的,旨在发现失效问题的测试、分析、监控以及其他技术方法。
根据这些控制措施,工程师可以了解某种失效问题能够得以识别或发现的可能性到底有多大。
前两步的每种组合形式都将获得一个发现指数(D)。
该指数表示的是,预定的测试或检查工作在消除缺陷或发现失效模式方面的能力。
在完成上述3个基本步骤之后,要计算的就是风险优先级数(英文:Risk Priority Numbers,RPN)。
风险优先级数RPN在选择防范失效模式的行动措施方面并不发挥什么重要作用。
它们更大程度上是属于评价这些行动措施方面的阈值。
在对严重程度、出现频度和易发现性进行分级之后,只需把这三个数值乘起来,就可以得到RPN:RPN = S x O x D对于整个过程和/或设计而言,这是一项必须完成的工作。
一旦完成,最大关注范围的确定工作就会变得轻松。
就纠正措施而言,RPN最高的失效模式应当获得最高的优先级别。
这就是说,严重程度值最高的失效模式并不一定就应当首先加以处理。
首先应当处理的可能是那些严重程度相对较低,但更常发生且不太易于发现的失效问题,在分配了这些数值之后,要记录下配有目标、责任以及实施日期的行动建议。
这些行动措施可以包括具体的检查、测试或质量程序、重新设计(如选择新的组件)、增加更多的冗余以及限制环境压力或工作范围。
一旦在设计/过程之中实施了这些行动措施之后,就应当检查新的RPN,以便确认改善情况。
为了便于可视化,往往会把这些测试呈现为图形。
无论何时,只要设计或过程发生了变化,就应当对FMEA加以更新。
合乎逻辑而又重要的几点就是:•努力消除失效模式(有些失效预防起来要比其他的更容易)•最大程度地降低失效的严重程度•降低失效模式的出现频度•改进检查发现工作FMEA的时机安排只要是下列情况,均应当对FMEA加以更新:•每个周期的开始(新产品/过程)•对操作条件作出变更•对设计作出变更•建立了新的法律或规章制度•消费者反馈表明存在某种问题FMEA的用途•建立可以实现失效可能性最小化的系统需求。