2012年GCT数学真题及答案(B卷)

合集下载

2012年全国各地高考数学试题及解答分类汇编大全(17 计数原理、二项式定理)

2012年全国各地高考数学试题及解答分类汇编大全(17 计数原理、二项式定理)

2012年全国各地高考数学试题及解答分类汇编大全(17计数原理、二项式定理)一、选择题:1. (2012安徽理)2521(2)(1)x x+-的展开式的常数项是( ) ()A 3- ()B 2- ()C 2 (D )3 【解析】选D第一个因式取2x ,第二个因式取21x 得:1451(1)5C ⨯-=第一个因式取2,第二个因式取5(1)-得:52(1)2⨯-=- 展开式的常数项是5(2)3+-=2.(2012安徽理)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品 的同学人数为( )()A 1或3 ()B 1或4 ()C 2或3 (D )2或4 【解析】选D261315132C -=-=①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人3. (2012北京理)从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6【解析】由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。

如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。

【答案】B 4.(2012广东理)从个位数与十位数之和为奇数的两位数中任选一个,其中个位数为0的概率是( ) A .94 B .31 C .92D .91解析:(D ).两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,而其中个位数为0的有5个,是10,30,50,70,90。

所以,所求事件的概率为91455=5.(2012湖北理)设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a =A .0B .1C .11D .12 考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.(2012辽宁理) 一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )(A)3×3! (B) 3×(3!)3 (C)(3!)4(D) 9! 【答案】C【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有3!种排法,三个家庭共有33!3!3!(3!)⨯⨯=种排法;再把三个家庭进行全排列有3!种排法。

2012年高考理科数学北京卷(含详细答案)

2012年高考理科数学北京卷(含详细答案)

A B=1,0}1,0,1}xy e=关于y轴对称,则()f x=()B.1x e-D.1xe--( )B.y=D.y=l与C所围成的图形的面积等于( )C.83D.表示的平面区域内存在点00(,)P x y,满足( )B.1(,)3-∞D.5(,)3-∞-第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.在极坐标系中,点π(2,)6到直线sin2ρθ=的距离等于___________.10.若等比数列{}na满足2420a a+=,3540a a+=,则公比q=____;前n项和nS=____.11.如图,AB为圆O的直径,P A为圆O的切线,PB与圆O相交于D.若3PA=,:PD9:16DB=,则PD=___________;AB=___________.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是___________.13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ=________.14.如图,在棱长为2的正方体1111ABCD A B C D-中,E为BC的中点,点P在线段1D E上.点P到直线1CC的距离的最小值为___________.4的正方形,平面ABC ⊥平面,并求1BDBC 的值.. 19.(本小题满分14分)已知A ,B ,C 是椭圆22:14x W y +=上的三个点,O 是坐标原点.(Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.20.(本小题满分13分)已知{}n a 是由非负整数组成的无穷数列,该数列前n 项的最大值记为n A ,第n 项之后各项1n a +,2n a +,…的最小值记为n B ,n n n d A B =-.(Ⅰ)若{}n a 为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意*n N ∈,4n n a a +=),写出1d ,2d ,3d ,4d 的值; (Ⅱ)设d 是非负整数,证明:()1,2,3,n d d n =-=的充分必要条件是{}n a 是公差为d 的等差数列;(Ⅲ)证明:若12a =,1(1,2,3,)n d n ==,则{}n a 的项只能是1或者2,且有无穷多项为1.2012年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{|3B x x =>或}1x <-,易得{}|3AB x x =>.【提示】求出集合B ,然后直接求解A B .【考点】集合间的基本运算. 2.【答案】D【解析】题目中0202x y ≤≤⎧⎨≤≤⎩表示的区域表示正方形区域,而动点D 可以存在的位置为正方形面积减去四分之一的圆的面积部分,因此2122π24π4224P ⨯-⨯-==⨯,故选D .【提示】本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可. 【考点】不等式组,平面区域与几何概率. 3.【答案】B【解析】当0a =时,如果0b =,此时i 0a b +=是实数,不是纯虚数,因此不是充分条件;而如果i a b +已经是纯虚数,由定义实部为零,虚部不为零可以得到0a =,因此是必要条件,故选B . 【提示】利用前后两者的因果关系,即可判断充要条件. 【考点】复数的概念,充分、必要条件. 4.【答案】C【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的s 为8,故选C . 【提示】列出循环过程中s 与k 的数值,不满足判断框的条件即可结束循环. 【考点】循环结构的程序框图. 5.【答案】A【解析】由切割线定理可知2CE CB CD =,在直角ABC △中90,ACB CD AB ∠=⊥,则由射影定理可知2CD AD DB =,所以CE CB AD DB =.数学试卷 第10页(共36页)【提示】由题中三角形和圆的位置关系,通过条件求解即可. 【考点】几何证明选讲. 6.【答案】B【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共12618+=种,选B .【提示】选择数字进行排列,判断奇偶性即可. 【考点】排列组合. 7.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:10,10,10,65S S S S ====后右底左,因此该几何体表面积3065S =+,故选B .【提示】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可. 【考点】由三视图求几何体的表面积. 8.【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C . 【提示】由已知中图像表示某棵果树前n 年的总产量S 与n 之间的关系,结合图像可得答案. 【考点】函数图像的应用.第Ⅱ卷二、填空题 9.【答案】2【解析】直线转化为1x y +=,曲线转化为圆229x y +=,圆心(0,0)到直线1x y +=的距离132d =<,所以有两个交点.【提示】将参数方程化为普通方程,利用圆心到直线的距离与半径比较,即可得到结论. 【考点】直线和圆的位置关系. 10.【答案】1 【解析】23S a =,所以111211212a a d a d d a a d ++=+⇒=⇒=+=.【提示】由{}n a 是等差数列23S a =,解得12d =,由此能求出2a . 【考点】等差数列的通项. 11.【答案】4【解析】在△ABC 中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得4,3b c ==,答案为4.【提示】根据27a b c =+=,,1cos 4B =-,利用余弦定理可得,即可求得b 的值 【考点】余弦定理的运用. 12.【答案】3【解析】由24y x =,可求得焦点坐标为(1,0)F ,因为倾斜角为60,所以直线的斜率为tan603k ==,利用点斜式,直线的方程为33y x =-,将直线和曲线方程联立233123(3,23),,334y x A B y x⎧⎛⎫=-⎪⇒- ⎪⎨ ⎪=⎪⎝⎭⎩,因此11123322OAF A S OF y =⨯⨯=⨯⨯=△. 【提示】确定直线l 的方程,代入抛物线方程,确定A 的坐标,从而可求OAF △的面积.. 【考点】抛物线的简单性质,直线与抛物线的位置关系. 13.【答案】1【解析】根据平面向量的点乘公式cos DE CB DE DA DE DA θ==,可知cos DE DA θ=,所以21DE CB DA ==;||||cos ||cos DE DC DE DC DE αα==,又因为cos DE α就是向量DE 在DC 边上的射影,要想让DE DC 最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1. 【提示】直接利用向量转化,求出数量积即可. 【考点】平面向量在平面几何中的运用. 14.【答案】(4,2)--【解析】对于①∵()22xg x =-,当1x <时,()0g x <,又∵①()0x R f x ∀∈<,或()0g x <∴()(2)(3)0f x m x m x m =-++<在1x ≥时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左边,则03121m m m <⎧⎪--<⎨⎪<⎩,∴40m -<<,即①成立的范围为40m -<<,数学试卷 第16页(共36页)又∵②(,4)x ∈∞--,()()0f x g x <, ∴此时()220x g x =-<恒成立∴()(2)(3)0f x m x m x m =-++>在(,4)x ∈-∞-有成立的可能,则只要4-比12x x ,中的较小的根大即可,(i )当10m -<<时,较小的根为3m --,34m --<-不成立, (ii )当1m =-时,两个根同为24->-,不成立,(iii )当41m -<<-时,较小的根为224m m <,-即2m <-成立. 综上可得①②成立时42m -<<-.【提示】①由于()220x g x =->时,1x ≥,根据题意有()(2)(3)0f x m x m x m =-++<在1x >时成立,根据二次函数的性质可求.②由于(,4)x ∈∞--,()()0f x g x <,而()220xg x =-<,则()(2)(3)0f x m x m x m =-++>在(,4)x ∈∞--时成立,结合二次函数的性质可求 【考点】指数函数的性质,二次函数的性质. 三、解答题15.【答案】(Ⅰ){|π,}x x k k ≠∈Z π(Ⅱ)ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z 和3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z 【解析】(Ⅰ)(sin cos )sin2()sin x x xf x x-=(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x =-sin 21cos 2x x =--π2sin 214x ⎛⎫=-- ⎪⎝⎭,{|π}x x k k ≠∈Z ,原函数的定义域为{|π,}x x k k ≠∈Z ,最小正周期为π;(Ⅱ)由πππ2π22π+,242k x k k -≤-≤∈Z . 解得π3πππ,,88k x k k -≤≤+∈Z 又{|π,}x x k k ≠∈Z ,原函数的单调递增区间为ππ,π8k k k ⎡⎫-+∈⎪⎢⎭⎣Z ,3ππ,π8k k k ⎛⎤+∈ ⎥⎦⎝Z . 【提示】(Ⅰ)直接求出函数的定义域和最小正周期.(Ⅱ)利用正弦函数的单调增区间,结合函数的定义域求出函数的单调增区间即可. 【考点】三角函数的定义域,周期,单调性. 16.【答案】(Ⅰ)证明CD DE ⊥,1A D DE ⊥,又1CDA D D =,∴DE ⊥平面1A CD ,又1AC ⊂平面1A CD , ∴1AC ⊥DE ,又1AC CD ⊥,CD DE D =∴1AC ⊥平面BCDE . (Ⅱ)如图建立空间直角坐标系C xyz -,则(2,0,0)D -,1(00,23)A ,,(0,3,0)B ,(2,2,0)E -,(0,0,0)C , ∴1(0,3,23)A B =-,1(2,2,23)A E =--,设平面1A BE 法向量为(,,)n x y z =,则1100A B n A E n ⎧=⎪⎨=⎪⎩∴323022230y z x y z ⎧-=⎪⎨---=⎪⎩∴322z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(1,2,3)n =-又∵(1,0,3)M -∴(1,0,3)CM =-∴1342cos 2||||14313222CM n CM n θ+====+++∴CM 与平面1A BE 所成角的大小45数学试卷 第22页(共36页)(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈则1(0,,23)A P a =-,(2,,0)DP a =设平面1A DP 法向量为1111(,,)n x y z =,则111123020ay z x ay ⎧-=⎪⎨+=⎪⎩∴11113612z ay x ay⎧=⎪⎪⎨⎪=-⎪⎩∴1111(,,)(3,6,3)n x y z a a ==-,假设平面1A DP 与平面1A BE 垂直,则10n n =, ∴31230a a ++=,612a =-,2a =- ∵03a ≤≤,∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直.【提示】(Ⅰ)证明1A C ⊥平面BCDE ,因为1A C CD ⊥,只需证明1AC DE ⊥,即证明DE ⊥平面1A CD . (Ⅱ)建立空间直角坐标系,用坐标表示点与向量,求出平面1A BE 法向量(1,2,3)n =-,(1,0,3)CM =-,利用向量的夹角公式,即可求得CM 与平面1A BE 所成角的大小;(Ⅲ)设线段BC 上存在点P ,设P 点坐标为(0,,0)a ,则[0,3]a ∈,求出平面1A DP 法向量为1(3,6,3)n a a =-, 假设平面1A DP 与平面1A BE 垂直,则10n n =,可求得03a ≤≤,从而可得结论.. 【考点】平面图形的折叠问题,立体几何.17.【答案】(Ⅰ)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨, 故生活垃圾投放错误的概率为:40026003= (Ⅱ)由题意可知,生活垃圾投放错误有200602020300+++=, 故生活垃圾投放错误的概率:20060403100010++=(Ⅲ)由题意可知:600a b c ++=,,,a b c 的平均数为200,222222211[(200)(200)(200)](120000)33S a b c a b c =-+-+-=++-,因此有当600a =,0b =,0c =时有280000S =.【提示】(Ⅰ)厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故可求厨余垃圾投放正确的概率. (Ⅱ)生活垃圾投放错误有2006040300++=,故可求生活垃圾投放错误的概率.(Ⅲ)计算方差可得22221(120000)3S a b c =++-,因此有当600a =,0b =,0c =时,有280000S =. 【考点】概率,方差18.【答案】(Ⅰ)33a b =⎧⎨=⎩(Ⅱ)12a h ⎛⎫-= ⎪⎝⎭【解析】(Ⅰ)由(1,)c 为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()=3g x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩.(Ⅱ)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a -≤-,即2a ≤时,最大值为2(1)4a h a =-;②若126aa -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a -≥-时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭. 综上所述:当(02]a ∈,时,最大值为2(1)4a h a =-; 当(2,)a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.【提示】(Ⅰ)根据曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a b ,的值.(Ⅱ)根据24a b =,构建函数3221()()()14h x f x g x x ax a x =+=+++,求导函数,利用导数的正负,可确数学试卷 第28页(共36页)定函数的单调区间,进而分类讨论,确定函数在区间(,1)-∞-上的最大值. 【考点】利用导数求函数单调区间及最值.19.【答案】(Ⅰ)原曲线方程可化简得:2218852x y m m +=--, 由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:75.2m <<(Ⅱ)证明:由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得:232k >.由韦达定理得:21621M N k x x k +=-+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x 则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫ ⎪+⎝⎭, ∴316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线 即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证. 【提示】(Ⅰ)原曲线方程,化为标准方程,利用C 是焦点在x 轴点上的椭圆可得不等式组,即可求得m 的取值范围.(Ⅱ)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)0k ∆->,解得232k >设(,4)N N N x k x +,(,4)M M M x kx +,(,1)G G x ,则MB 方程为:62M Mkx y x x +=-,则3,16M M x G kx ⎛⎫⎪+⎝⎭, 从而可得316M M x AG x k ⎛⎫=- ⎪+⎝⎭,,(),2N N AN x x k =+,欲证A G N ,,三点共线,只需证AG ,AN 共线,利用韦达定理,可以证明.【考点】椭圆的性质,直线与椭圆的位置关系.11 / 1220.【答案】(Ⅰ)0.7(Ⅱ)1(Ⅲ)212t t ++ 【解析】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-∴()0.7k A =(Ⅱ)先用反证法证明()1k A ≤:若()1k A >,则1|()||1|11c A a a =+=+>,∴0a >同理可知0b >,∴0a b +>,由题目所有数和为0,即1a b c ++=-,∴11c a b =---<-与题目条件矛盾∴()1k A ≤.易知当0a b ==时,()1k A =存在∴()k A 的最大值为1.(Ⅲ)()k A 的最大值为212t t ++. 首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+: 1,11,21,1,11,21,211...1,...2t t t t t a a a a a a t +++-========-+,22,12,22,2,12,22,211...,...1(2)t t t t t t a a a a a a t t +++++========-+. 经计算知,A 中每个元素的绝对值都小于1,所有元素之和为0,且1221|()||()|2t r A r A t +==+,2121121|()||()|...|()|11(2)22t t t t t c A c A c A t t t t ++++====+>+>+++,1221121|()||()|...|()|122t t t t t c A c A c A t t +++-+====+=++. 下面证明212t t ++是最大值. 若不然,则存在一个数表(2,21)A S t ∈+,使得21()2t k A x t +=>+. 由()k A 的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[,2]x 中. 由于1x >,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于1x -.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g h <,则1g t h t ≤≥+,. 另外,由对称数学试卷 第34页(共36页)数学试卷 第35页(共36页) 数学试卷 第36页(共36页) 性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于1t +个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于1x -(即每个负数均不超过1x -). 因此11|()|()1(1)(1)21(1)[21(2)]r A r A t t x t t x x t t x x =≤++-=+-+=++-+<,故A 的第一行行和的绝对值小于x ,与假设矛盾.因此()k A 的最大值为212t t ++ 【提示】(Ⅰ)由题意可知1() 1.2r A =,2() 1.2r A =-,1() 1.1c A =,2()0.7c A =,3() 1.8c A =-,其中的最小值,即可求出所求.(Ⅱ)先用反证法证明()1k A ≤,然后证明()1k A =存在即可.(Ⅲ)首先构造满足21()2t k A t +=+的,{}(1,2,1,2,...,21)i j A a i j t ===+,然后证明212t t ++是最大值即可. 【考点】合情推理.。

2012考研数学真题+答案

2012考研数学真题+答案
2
x2 y 2 2
1 x x2 cos x 1 1 x 2
……10 分
的极值.

x2 y2 2
f y xye

x2 y2 2
, ……3 分

f x 0, 得驻点(1,0)和(-1,0). f 0 , y
2 x2 y2 2
x( x 3)e 记 A f xx
(C)
2
(D)
3Байду номын сангаас
(A)
n (D) ( 1) n !
(2) 设函数 f ( x) (e x 1)(e2 x 2) (en x n) ,其中 n 为正整数,则 f (0)
n 1 (A) ( 1) ( n 1)! n (B) ( 1) ( n 1)! n 1 (C) ( 1) n !
1 a 0 0
解: (I) A
0 1 a 0 0 0 1 a a 0 0 1
1 a4.
……3 分
(II)若方程组 Ax 有无穷多解,则 A 0. 由(I)可得 a 1 或 a 1 .
郝海龙:考研数学复习大全·配套光盘·2012 年数学试题答案和评分参考
1 x2 1 1 x ln , 又 S ( 0) 3 , 所以和函数 S ( x ) (1 x 2 ) 2 x 1 x 3,
(18)(本题满分 10 分) 已知曲线 L:
0 x 1,
(3) 如果函数 f ( x, y ) 在 (0, 0) 处连续,那么下列命题正确的是 (A) 若极限 lim
x 0 y 0
(B)
f ( x, y ) 存在,则 f ( x, y ) 在 (0, 0) 处可微 x y

2012年高考真题——数学理全国卷解析版

2012年高考真题——数学理全国卷解析版

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页.考试结束,务必将试卷和答题卡一并上交. 第I 卷注意事项:全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C. 【答案】C2、已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.【答案】B3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-c a ,所以842==c a ,448222=-=-=c a b ,所以椭圆的方程为14822=+y x ,选C.【答案】C4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B3 C 2 D 1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.【答案】D(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 【解析】由15,555==S a ,得1,11==d a ,所以n n a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1011001011110111001312121111110110021=-=-++-+-=+ a a a a ,选A.【答案】A(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)【解析】在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即b a b a AB AD 5454)(5454-=-==,选D. 【答案】D(7)已知α为第二象限角,33cos sin =+αα,则cos2α= (A) 5-3 (B )5-9 (C) 59 (D)53【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 【答案】A(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 【答案】C(9)已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e ,所以x z y <<,选D.【答案】D(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.【答案】A(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种【解析】第一步先排第一列有633=A ,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有1226=⨯种,选A.【答案】A(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 【答案】B2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 第Ⅱ卷 注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效......... 3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)若x ,y 满足约束条件则z=3x-y 的最小值为_________.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z . 【答案】1-(14)当函数取得最大值时,x=___________.【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 【答案】65π=x (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.【解析】因为展开式中的第3项和第7项的二项式系数相同,即62n n C C =,所以8=n ,所以展开式的通项为k k k kk k x C xxC T 288881)1(--+==,令228-=-k ,解得5=k ,所以2586)1(x C T =,所以21x的系数为5658=C .【答案】56(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等, BAA 1=CAA 1=60°则异面直线AB 1与BC 1所成角的余弦值为____________.【解析】如图设,,,1c AC b AB a AA ===设棱长为1,则,1b a AB +=b c a BC a BC -1+=+=,因为底面边长和侧棱长都相等,且01160=∠=∠CAA BAA 所以21=•=•=•c b c a b a ,所以3)(21=+=b a AB ,2)-(21=+=b c a BC ,2)-()(11=+•+=•b c a b a BC AB ,设异面直线的夹角为θ,所以36322cos 1111=⨯=•=BC AB BC AB θ. 【答案】36 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y )2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2 x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。

2012年全国高中数学联合竞赛试题及解答.(B卷)

2012年全国高中数学联合竞赛试题及解答.(B卷)

2012年全国高中数学联合竞赛(B 卷)一试一、填空题:本大题共8个小题,每小题8分,共64分。

2012B1、对于集合{}b x a x ≤≤,我们把a b -称为它的长度。

设集合{}1981+≤≤=a x a x A ,{}b x b x B ≤≤-=1014,且B A ,都是集合{}20120≤≤=x x U 的子集,则集合B A 的长度的最小值是◆答案:983★解析:因为B A ,都是集合{}20120≤≤=x x U 的子集,所以310≤≤a ,20121014≤≤b ,{}19811014|+≤≤-=a x b x B A ,或{}b x a x B A ≤≤=| ,故当2012,0==b a 或者1014,31==b a 时,集合B A 的长度最小,最小为9833110149981981=-=-2012B 2、已知0,0>>y x ,且满足⎪⎩⎪⎨⎧=-=+=+120)sin()sin(1)sin(2)(cos 222y x y x y x ππππ,则有序实数对=),(y x ◆答案:()2,4★解析:由1)sin(2)(cos 2=+y x ππ及0)sin()sin(=+y x ππ得()()[]0sin 2sin =+x x ππ,得()0sin =x π,代入0)sin()sin(=+y x ππ得()0sin =y π可得y x ,都是整数。

由()()1222=-+=-y x y x y x ,y x y x +<-,得⎩⎨⎧=+=-62y x y x ,解得⎩⎨⎧==24y x ,故有序实数对),(y x 即为()2,4。

2012B3、如图,设椭圆12222=+b y a x (0>>b a )的左右焦点分别为21,F F ,过点2F 的直线交椭圆于),(11y x A ,),(22y x B 两点。

若B AF 1∆内切圆的面积为π,且421=-y y ,则椭圆的离心率为◆答案:1★解析:由性质可知B AF 1∆的周长为a 4,内切圆半径为1,则2122114211y y c a S B AF -⨯⨯=⨯⨯=∆,可得c a 2=,即21==a c e 2012B 4、若关于x 的不等式组⎩⎨⎧≤-->--+012033223ax x x x x ,(0>a )的整数解有且只有一个,则a 的取值范围为◆答案:⎪⎭⎫⎢⎣⎡34,43★解析:由03323>--+x x x 解得13-<<-x 或1>x ,所以不等式组的唯一整数解只可能为2-或2。

2012考研数学一真题及详解

2012考研数学一真题及详解

2012年全国硕士研究生统一考试数学一试题及答案一、选择题:共8小题,每题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定的位置上。

1、曲线221x x y x +=-渐近线的条数( )(A )0; (B )1; (C )2; (D )3。

解:(C ):22211lim lim 1111x x x x x x x→∞→∞++==--,可得有一条水平渐近线1y =;222112lim 1lim 1x x x x x x →→+==∞--,可得有一条铅直渐近线1x =;22111(1)1lim lim lim 1(1)(1)12x x x x x x x x x x x x →-→-→-++===--+-,可得1x =-不是铅直渐近线,故答案为(C )。

2、设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则'(0)y =( ) (A )1(1)(1)!n n ---;(B )(1)(1)!n n --;(C )1(1)!n n --;(D )(1)!n n -。

解:(A ):(0)(11)(12)(1)0y n =---= ;则22000()(0)(1)(2)()(2)()'(0)lim lim lim0x x nx x nx x x x y x y e e e n x e e n y x x x→→→------===- 1(12)(1)(1)(1)!n n n -=--=-- 。

故答案为(A )。

3.如果函数(,)f x y 在(0,0)处连续,那么下列例题正确的是( )(A )若极限(,)(0,0)(,)lim ||||x y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(B )若极限22(,)(0,0)(,)limx y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(C )若(,)f x y 在(0,0)处可微,则极限(,)(0,0)(,)lim||||x y f x y x y →+存在;(D )若(,)f x y 在(0,0)处可微,则极限22(,)(0,0)(,)limx y f x y x y →+存在。

GCT数学真题(真题与答案解析)

GCT数学真题(真题与答案解析)

GCT 数学2003-2009年真题与答案解析2003年GCT 入学资格考试数学基础能力试题(25题,每题4分,满分100分,考试时间45分钟)1.12345678910111234567891011++++++++++=-+-+-+-+-+( )。

A .10 B .11 C .12 D .132.记不超过10的素数的算术平均数为M ,则与M 最接近的整数是( ) A .2 B .3 C .4 D .53.1 000 m 的大道两侧从起点开始每隔10 m 各种一棵树,相邻两棵树之间放一盆花,这样需要( )。

A .树200棵,花200盆B .树202棵,花200盆C .树202棵,花202盆D .树200棵,花202盆4.已知20012002a =,20022003b =,20032004c =,则( )。

A .a >b >cB .b >c >aC .c >a >bD .c >b >a5.某工厂月产值3月份比2月份增加10%,4月份比3月份减少10%,那么( )。

A .4月份与2月份产值相等B .4月份比2月份产值增加199C .4月份比2月份产值减少199D .4月份比2月份产值减少11006.函数y =ax 2+bx +c (a ≠0)在[0,+∞)上单调增的充分必要条件是( )。

A .a <0且b ≥0 B .a <0且b ≤0 C .a >0且b ≥0 D .a >0且b ≤0 7.函数1y f a x =+()(a ≠0)与2y f a x =-()的图像关于( )。

A .直线x -a =0对称 B .直线x +a =0对称 C .x 轴对称D .y 轴对称8.已知实数x 和y 满足条件99x y +()= -1和100-x y ()=1,则x 101+y 101的值是( )。

A .-1B .0C .1D .29.一批产品的次品率为0.1,逐件检测后放回,在连续三次检测中至少有一件是次品的概率为( )。

2012年高考数学(理科)试卷北京卷(含答案)最完美最高清word版

2012年高考数学(理科)试卷北京卷(含答案)最完美最高清word版

2012年普通高等学校夏季招生全国统一考试数学理工农医类(北京卷)本试卷共150分.考试时长120分钟.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()A.(-∞,-1) B.{-1,2 3 -}C.(23-,3) D.(3,+∞)2.在复平面内,复数10i3i+对应的点的坐标为()A.(1,3) B.(3,1)C.(-1,3) D.(3,-1)3.设a,b∈R,“a=0”是“复数a+b i是纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.165.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则() A.CE·CB=AD·DBB.CE·CB=AD·ABC.AD·AB=CD2D.CE·EB=CD26.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为() A.24 B.18 C.12 D.67.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+B.30+C.56+D.60+8.某棵果树前n年的总产量S n与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为()A.5 B.7 C.9 D.11第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.直线2,1x ty t=+⎧⎨=--⎩(t为参数)与曲线3cos3sinxyαα=⎧⎨=⎩(α为参数)的交点个数为________.10.已知{a n}为等差数列,S n为其前n项和.若112a=,S2=a3,则a2=________,S n=________.11.在△ABC中,若a=2,b+c=7,1cos4B=-,则b=________.12.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为________.13.已知正方形ABCD的边长为1,点E是AB边上的动点,则DE CB⋅的值为________,DE DC⋅的最大值为________.14.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①x∈R,f(x)<0或g(x)<0;②x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是________.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.已知函数(sin cos)sin2()sinx x xf xx-=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.16.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D,E分别是AC,AB上的点,且DE∥BC,DE =2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.图1 图2 17.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600,当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(求:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中x为数据x1,x2,…,x n的平均数)18.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.19.已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.20.设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记S(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),c j(A)为A的第j列各数之和(1≤j≤n);记k(A)为|r1(A)|,|r2(A)|,…,|r m(A)|,|c1(A)|,|c2(A)|,…,|cn(A)|中的最小值.(1)对如下数表A,求k(A)的值;(2)设数表A∈S(2,3)形如求k(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求k(A)的最大值.1.D由题意得,A={x|x>23-},B={x|x<-1或x>3},所以A∩B=(3,+∞).2.D由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A的是阴影部分区域μA,故由几何概型的概率公式得:()22212π24π424P A-⨯⨯-==.3.B由已知得,“a+b i是纯虚数”“a=0”,但“a=0”“复数a+b i是纯虚数”,因此“a=0”是“复数a+b i是纯虚数”的必要而不充分条件.4.C初始:k=0,S=1,第一次循环:由0<3,得S=1×20=1,k=1;第二次循环:由1<3,得S=1×21=2,k=2;第三次循环:由2<3,得S=2×22=8,k=3.经判断此时要跳出循环,因此输出的S值为8.5.A由切割线定理得,CD2=CE·CB,又在Rt△CAB中,△ACD∽△CBD,∴CD2=AD·DB,∴CE·CB=AD·DB.6.B先分成两类:(一)从0,2中选数字2,从1,3,5中任选两个所组成的无重复数字的三位数中奇数的个数为23C412⨯=;(二)从0,2中选数字0,从1,3,5中任选两个所组成的无重复数字的三位数中奇数的个数为23C26⨯=.故满足条件的奇数的总个数为12+6=18.7.B根据三棱锥的三视图可还原此几何体的直观图为此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S=12×(2+3)×4+12×4×5+12×4×(2+3)+12541530652⨯-=+8.C结合S n与n的关系图象可知,前2年的产量均为0,显然202S=为最小,在第3年~第9年期间,S n的增长呈现持续稳定性,但在第9年之后,S n的增速骤然降低.因为当n=9时,99S的值为最大,故m值为9.9.答案:2解析:由题意知直线与曲线的参数方程可分别化为x+y-1=0,x2+y2=9,进而求出圆心(0,0)到直线x+y-1=0的距离2322d==<,∴交点个数为2.10.答案:121()4n n+解析:由112a=,S2=a3得,a1+a2=a3,即a3-a2=12,∴{a n}是一个以112a=为首项,以12为公差的等差数列.∴111(1)222na n n⨯=+-=.∴a2=1,221111()()2444n nnS a a n n n n=+=+=+.11.答案:4解析:由余弦定理得,222224(7)1cos222(7)4a cb b bBac b+-+--===-⨯⨯-,解得b=4.12.3解析:由已知得抛物线的焦点坐标为(1,0),直线l的方程为y=tan 60°(x-1),即33y x=联立得233,4.y xy x⎧=⎪⎨=⎪⎩①②由①得313x y=+,③将③代入②并整理得243403y y--=,解得123y=2233y=又点A在x轴上方,∴A(3,3.∴111||||123322OAFS OF y∆=⋅⋅=⨯⨯=.13.答案:1 1解析:DE·CB=(DA+AE)·CB=(CB+AE)·CB=|CB|2+AE·CB.因为AE⊥CB,所以AE·CB=0.所以DE·CB=12+0=1.DE·DC=(DA+AE)·DC=DA·DC+AE·DC=λ|DC|2(0≤λ≤1),∴DE·DC的最大值为1.14.答案:(-4,-2)解析:(一)由题意可知,m≥0时不能保证对x∈R,f(x)<0或g(x)<0成立.(1)当m=-1时,f(x)=-(x+2)2,g(x)=2x-2,此时显然满足条件①;(2)当-1<m<0时,2m>-(m+3),要使其满足条件①,则需10,21,mm-<<⎧⎨<⎩解得-1<m<0;(3)当m<-1时,-(m+3)>2m,要使其满足条件①,则需1,(3)1,mm<-⎧⎨-+<⎩解得-4<m<-1.因此满足条件①的m的取值范围为(-4,0).(二)在满足条件①的前提下,再探讨满足条件②的m的取值范围.(1)当m=-1时,在(-∞,-4)上,f(x)与g(x)均小于0,不合题意;(2)当m<-1时,则需2m<-4,即m<-2,所以-4<m<-2;(3)当-1<m<0时,则需-(m+3)<-4,即m>1,此时无解.综上所述满足①②两个条件的m的取值范围为(-4,-2).15.解:(1)由sin x≠0得x≠kπ(k∈Z),故f(x)的定义域为{x∈R|x≠kπ,k∈Z}.因为(sin cos)sin2 ()sinx x x f xx-==2cos x(sin x-cos x) =sin2x-cos2x-1π)14x--,所以f(x)的最小正周期2ππ2T==.(2)函数y=sin x的单调递增区间为[2kπ-π2,2kπ+π2](k∈Z).由2kπ-π2≤2x-π4≤2kπ+π2,x≠kπ(k∈Z),得kπ-π8≤x≤kπ+3π8,x≠kπ(k∈Z).所以f(x)的单调递增区间为[kπ-π8,kπ)和(kπ,kπ+3π8](k∈Z).16.解:(1)因为AC⊥BC,DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.所以DE⊥A1C.又因为A1C⊥CD,所以A1C⊥平面BCDE.(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,则A1(0,0,,D(0,2,0),M(0,1,B(3,0,0),E(2,2,0).设平面A1BE的法向量为n=(x,y,z),则n·1A B=0,n·BE=0.又1A B=(3,0,-),BE=(-1,2,0),所以30,20.xx y⎧-=⎪⎨-+=⎪⎩令y=1,则x=2,z=所以n=(2,1).设CM与平面A1BE所成的角为θ.因为CM=(0,1,所以sin cos,2CMCMCMθ⋅====nnn,所以CM与平面A1BE所成角的大小为π4.(3)线段BC上不存在点P,使平面A1DP与平面A1BE垂直.理由如下:假设这样的点P存在,设其坐标为(p,0,0),其中p∈[0,3].设平面A1DP的法向量为m=(x,y,z),则m·1A D=0,m·DP=0.又1A D=(0,2,-,DP=(p,-2,0),所以20,20.ypx y⎧-=⎪⎨-=⎪⎩令x=2,则y=p,z=所以m=(2,p).平面A1DP⊥平面A1BE,当且仅当m·n=0,即4+p+p=0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.17.解:(1)厨余垃圾投放正确的概率约为4002=4001001003=++“厨余垃圾”箱里厨余垃圾量厨余垃圾总量.(2)设生活垃圾投放错误为事件A,则事件A表示生活垃圾投放正确.事件A的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P(A)约为400240600.71000++=,所以P(A)约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200, 所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.18.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b .因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1),且f ′(1)=g ′(1). 即a +1=1+b ,且2a =3+b . 解得a =3,b =3. (2)记h (x )=f (x )+g (x ),当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1,h ′(x )=3x 2+2ax +14a 2.令h ′(x )=0,得12a x =-,26ax =-.a >0时,h (x )与h ′(x )的情况如下:所以函数h (x )的单调递增区间为(-∞,2-)和(6-,+∞); 单调递减区间为(2a -,6a-). 当2a-≥-1,即0<a ≤2时, 函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2. 当2a -<-1,且6a-≥-1,即2<a ≤6时, 函数h (x )在区间(-∞,2a -)内单调递增,在区间(2a-,-1]上单调递减,h (x )在区间(-∞,-1]上的最大值为()12ah -=.当6a-<-1,即a >6时,函数h (x )在区间(-∞,2a -)内单调递增,在区间(2a -,6a -)内单调递减,在区间(6a-,-1]上单调递增,又因为h (2a -)-h (-1)=1-a +14a 2=14(a -2)2>0,所以h (x )在区间(-∞,-1]上的最大值为()12ah -=. 19.解:(1)曲线C 是焦点在x 轴上的椭圆,当且仅当50208852m m m m ⎧⎪->⎪->⎨⎪⎪>--⎩,,,解得72<m <5,所以m 的取值范围是(72,5).(2)当m =4时,曲线C 的方程为x 2+2y 2=8,点A ,B 的坐标分别为(0,2),(0,-2).由22428y kx x y =+⎧⎨+=⎩,,得(1+2k 2)x 2+16kx +24=0. 因为直线与曲线C 交于不同的两点, 所以∆=(16k )2-4(1+2k 2)×24>0,即232k >. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=kx 1+4,y 2=kx 2+4,x 1+x 2=21612k k -+,x 1x 2=22412k +. 直线BM 的方程为1122y y x x ++=,点G 的坐标为(1132x y +,1). 因为直线AN 和直线AG 的斜率分别为222AN y k x -=,1123AG y k x +=-,所以k AN -k AG =21212121222633y y kx kx x x x x -++++=+ =2121221622()4412=0243312k x x k k k x x k -⨯⨯+++=++,即k AN =k AG .故A ,G ,N 三点共线.20.解:(1)因为r 1(A )=1.2,r 2(A )=-1.2,c 1(A )=1.1,c 2(A )=0.7,c 3(A )=-1.8, 所以k (A )=0.7.(2)不妨设a ≤b .由题意得c =-1-a -b . 又因为c ≥-1,所以a +b ≤0.于是a ≤0. r 1(A )=2+c ≥1,r 2(A )=-r 1(A )≤-1,c 1(A )=1+a ,c 2(A )=1+b ,c 3(A )=-(1+a )-(1+b )≤-(1+a ). 所以k (A )=1+a ≤1.当a =b =0且c =-1时,k (A )取得最大值1.(3)对于给定的正整数t ,任给数表A任意改变A 的行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *∈S (2,2t +1),并且k (A )=k (A *).因此,不妨设r 1(A )≥0,且c j (A )≥0(j =1,2,…,t +1).由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c j (A )(j =1,2,…,t +1). 又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0,所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A )=r 1(A )-c t +2(A )-…-c 2t +1(A )=12112t t j jj j t a b++==+-∑∑≤(t +1)-t ×(-1)=2t +1. 所以21()2t k A t +≤+. 对数表A 0:第1列则A 0∈S (2,2t +1),且0()2k A t =+.综上,对于所有的A ∈S (2,2t +1),k (A )的最大值为212t t ++.。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

2012年普通高等学校招生全国统一考试理数北京卷pdf版含答案

2012年普通高等学校招生全国统一考试理数北京卷pdf版含答案

( )
∴= A1B 0 ,3,− 2 3 , A1E =(−2 ,−1,0)
设平面 A1BE 法向量为 n = ( x ,y ,z)

A1B

n
=0
A1E ⋅ n =0

3
y

2
3z
= 0 ∴
z
=
3y 2
−2x − y =0
x
=
−y 2
( )
∴ n = −1,2 , 3
( ) 又∵ M −1,0 , 3
( ) ( ) ( ) (求: s2=
1 n
2
x1 − x +
2
x2 − x + +
xn

x
2
,其中
x
为数据
x1

x2
,…,
xn
的平均数)
18.(本小题共 13 分)
已知函数 f ( x) = ax2 + 1(a > 0) , g ( x=) x3 + bx . (1)若曲线 y = f ( x) 与曲线 y = g ( x) 在它们的交点 (1,c) 处具有公共切线,求 a ,b 的值;
4
5
6
7
8
答案
D
D
B
C
A
B
B
C
二、填空题
题号 答案
9
10
11
n2 + n
2
1;
4
4
12
13
14
3
1;1
(−4 ,− 2)
三、解答题 15.
解:
= f (x) (sin x − cos x)s= in 2x (sin x − cos x)2sin x= cos x 2(sin x − cos x) cos x

2012考研数学二真题及答案解析

2012考研数学二真题及答案解析

dy
,所以
=
2x
dx ey +1
(10)计算
lim
x→∞
n
⎛ ⎜⎝
1
1 +n
2
+
22
1 +
n2
+…+
n2
1 +
n2
⎞ ⎟⎠
= ________。
3
π
【答案】:
4
∑ ∫ 【解析】:原式 = lim 1
n→∞ n
n
1
i=1
1
+
⎛ ⎜⎝
i n
⎞2 ⎟⎠
=
1 dx 0 1+ x2
=
arctan x 1 0
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或 演算步骤. (15)(本题满分 10 分)
已知函数 f (x) = 1+ x − 1 ,记 a = lim f (x)
sin x x,
x→0
(1)求 a 的值
(2)若当 x → 0 时, f (x) − a 是 xk 的同阶无穷小,求 k
D
∫∫ ∫ ∫ 【解析】:
xydσ = π dθ 1+cosθ r cosθ ⋅ r sin θ ⋅ rdr
0
0
D
∫ = 1 π sin θ ⋅ cosθ ⋅ (1 + cosθ )4 dθ 40
6
∫ = 16
πθ sin
cos θ
(2 cos2
θ
− 1) cos8
θ

022
2
22
π

2012年高考试题理科数学(北京卷)——含答案及解析 免费

2012年高考试题理科数学(北京卷)——含答案及解析 免费

2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、 选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A∩B=A. (﹣∞,﹣1)B. (﹣1,﹣23)C.(﹣23,3) D. (3,+∞) 【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

2.设不等式组0202x y ≤≤⎧⎨≤≤⎩,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A . 4πB . 22π- C. 6π D. 44π- 【考点】概率【难度】容易【点评】本题考查几何概率的计算方法。

在高二数学(理)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(理)强化提高班中有对概率相关知识的总结讲解。

3.设a ,b ∈R .“a =O ”是“复数a +b i 是纯虚数”的A .充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D .既不充分也不必要条件【考点】复数的计算【难度】容易【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

4.执行如图所示的程序框图,输出S值为A. 2B. 4C. 8D. 16【考点】算法初步【难度】中等【点评】本题考查几何概率的计算方法。

在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。

2012年全国高中数学联赛试题及详细解析

2012年全国高中数学联赛试题及详细解析

2012年全国高中数学联赛一试参考答案及详细评分标准一、填空题:本大题共8小题,每题8分,共64分.把答案填在题中的横线上. 1.设P 是函数2y x x=+〔0x >〕的图像上任意一点,过点P 分别向 直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 . 2.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=, 则tan tan AB的值是 .3.设,,[0,1]x y z ∈,则M =是 .4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的 两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N , 则||||MN AB 的最大值是 . 5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.假设正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 .()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.假设对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 . 7.满足11sin 43n π<<的所有正整数n 的和是 . 8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .〔用最简分数表示〕二、解答题:本大题共3小题,共56分.解答应写出文字说明、推理过程或演算步骤. 9.〔本小题总分值16分〕已知函数131()sin cos 2,,022f x a x x a a R a a =-+-+∈≠ 〔1〕假设对任意x R ∈,都有()0f x ≤,求a 的取值范围; 〔2〕假设2a ≥,且存在x R ∈,使得()0f x ≤,求a 的取值范围.10.〔本小题总分值20分〕已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23331212()n n a a a a a a +++=+++〔1〕当3n =时,求所有满足条件的三项组成的数列123,,a a a ;〔2〕是否存在满足条件的无穷数列{}n a ,使得20132012?a =-假设存在, 求出这样的无穷数列的一个通项公式;假设不存在,说明理由.11.〔本小题总分值20分〕如图,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==.〔1〕求证:||||OA OC ⋅为定值;〔2〕当点A 在半圆22(2)4x y -+=〔24x ≤≤〕上运动时, 求点C 的轨迹.2012年全国高中数学联赛加试试题一、〔此题总分值40分〕如图,在锐角ABC ∆中,,,AB AC M N >是BC 边上不同的两点,使得.BAM CAN ∠=∠设ABC ∆和AMN ∆的外心分别为12,O O ,求证:12,,O O A三点共线。

2012年全国高中数学联赛加试试题(B卷)参考答案及评分标准

2012年全国高中数学联赛加试试题(B卷)参考答案及评分标准

)
)
)
因此, P A M= P A+ M B . 所以 A M= M B 1 0分 故M N B . ⊥A 连结 Q I 并延长, 交A N于 C , 则C Q B . ⊥A 1 1 因而 M N Q 2 0分 ∥C 1 因此, C Q= N M= P Q . ∠A ∠A ∠A 1 故A 、 P 、 C 、 Q四点共圆 3 0分 1 从而∠A P C 1 8 0 ° - Q C 9 0 ° = P C . ∠A ∠A 1= 1= 所以点 C 即C 、 I 、 Q三点共线 1 与点 C重合, 二、 ( 本题满分 4 0分) 给定整数 n > 1 , 设a , a , …, a 记集合 1 2 n 是互不相同的非负实数, A={ a a B={ a a }, } │1 ≤i ≤j ≤n │1 ≤i ≤j ≤n. i+ j i j 求 │A │ 的最小值. 这里, │X │表示集合 X中元素的个数. │B │
2 0 1 2年全国高中数学联赛加试试题( B卷) 参考答案及评分标准
说明:
1 、 评阅试卷时, 请严格按照本评分标准的评分档次给分; 2 、 如果考生的解答方法和本解答不同, 只要思路合理, 步骤正确, 在评卷时可参考本评分标准适当划分档次评 分, 1 0分为一个档次, 不要再增加其他中间档次.
一、 ( 本题满分 4 0分) 如图, 圆I 内切于圆 O , 切点为 P , 圆 O的弦 A B切圆 I 于点 Q , P Q的延长线交圆 O于点 M, M N为圆 O的直径. 过点 P作 P A的 垂线交 A N于点 C . 求证: C 、 I 、 Q三点共线. 证明: 作圆 O , 圆I 的公切线 P D , 则∠M P D= Q P . ∠A
2 | x 1- A | n - 1+ | x A | =| x + 1- A | = 0分 3 n- n - 1 槡 x 1+ A n - 1+ 槡 2 由 A满足方程①知, 1- A =- A . 又槡 x 1+ A> A> 1 , n - 1+

2012年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科) 解析版

2012年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科) 解析版

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素 的个数为( )()A 3 ()B 6()C 8()D 10【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D.【答案】D(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动, 每个小组由1名教师和2名学生组成,不同的安排方案共有( ) ()A 12种 ()B 10种 ()C 9种 ()D 8种 【解析】先安排老师有222=A 种方法,在安排学生有624=C ,所以共有12种安排方案,选A. 【答案】A(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】因为i i i i i i z --=--=--+---=+-=12)1(2)1)(1()1(212,所以2=z ,i i z 2)1(22=--=,共轭复数为i z +-=1,z 的虚部为1-,所以真命题为42,p p 选C.【答案】C(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30o的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解析】因为12PF F ∆是底角为30o 的等腰三角形,则有P F F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C. 【答案】C (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选D.【答案】D(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】根据程序框图可知,这是一个数据大小比较的程序,其中A 为最大值,B 为最小值,选C. 【答案】C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.【答案】B(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C.【答案】C(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【解析】函数)4sin()(πω+=x x f 的导数为)4cos()('πωω+=x x f ,要使函数)4sin()(πω+=x x f 在),2(ππ上单调递减,则有0)4cos()('≤+=πωωx x f 恒成立, 则πππωππk x k 223422+≤+≤+,即ππωππk x k 24524+≤≤+,所以Z k k x k ∈+≤≤+,ωπωπωπωπ2424,当0=k 时,ωπωπ454≤≤x ,又ππ<<x 2,所以有πωππωπ≥≤45,24,解得45,21≤≥ωω,即4521≤≤ω,选A. 【答案】A(10) 已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )【解析】排除法,因为022ln 1)2(<-=f ,排除A.02ln 12121ln 1)21(<=+=-e f ,排除C,D ,选B.【答案】B(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A ()B()C()D 【解析】ABC ∆的外接圆的半径r =O 到面ABC的距离d ==,SC 为球O的直径⇒点S 到面ABC的距离为23d =此棱锥的体积为11233ABC V S d ∆=⨯==另:1236ABC V S R ∆<⨯=排除,,B C D ,选A.【答案】A(12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( ) ()A 1ln2- (B )ln 2)- ()C 1ln2+ ()D ln 2)+【解析】函数12x y e =与函数ln(2)y x =互为反函数,图象关于y x =对称函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒= 由图象关于y x =对称得:PQ最小值为min 2ln 2)d -, 【答案】B第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答.二.填空题:本大题共4小题,每小题5分.(13)已知向量,a b r r 夹角为45︒,且1,2a a b =-=r r r ;则_____b =r【解析】因为102=-,所以10)2(2=-,即104=+•-,所以1045cos 4402=-+b b,整理得06222=--b b ,解得23=b 或2-=b (舍去).【答案】32(14) 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为【解析】做出不等式所表示的区域如图,由y x z 2-=得z x y 2121-=,平移直线x y 21=,由图象可知当直线经过点)0,3(D 时,直线z x y 2121-=的截距最小,此时z 最大为32=-=y x z ,当直线经过B 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-31y x y x ,解得⎩⎨⎧==21y x ,即)2,1(B ,此时3412-=-=-=y x z ,所以33≤≤-z ,即z 的取值范围是]3,3[-. 【答案】]3,3[-(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常相互独立,那么该部件的使用寿命 超过1000小时的概率为【解析】三个电子元件的使用寿命均服从正态分布2(1000,50)N得:三个电子元件的使用寿命超过1000小时的概率为12p =超过1000小时时元件1或元件2正常工作的概率2131(1)4P p =--=那么该部件的使用寿命超过1000小时的概率为2138p p p =⨯=.【答案】83(16)数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为【解析】由12)1(1-=-++n a a n nn 得,12]12)1[()1(12)1(112++-+--=++-=-++n n a n a a n n n n n n 12)12()1(++--+-=n n a n n ,即1212)1(2++--=++n n a a n n n )(,也有3212)1(13+++--=+++n n a a n n n )(,两式相加得44)1(2321++--=++++++n a a a a n n n n n ,设k 为整数,则10`164)14(4)1(21444342414+=+++--=++++++++k k a a a a k k k k k , 于是1830)10`16()(14443424141460=+=+++=∑∑=++++=k a a a aS K k k k k K【答案】1830三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ∆的面积为3;求,b c . 【解析】(1)由正弦定理得:cos 3sin 0sin cos 3sin sin sin sin a C a C b c A C A C B C +--=⇔-=+sin cos 3sin sin sin()sin 13sin cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 342S bc A bc ==⇔=2222cos 4a b c bc A b c =+-⇔+= 解得:2b c ==(l fx lby )18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售, 如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解析】(1)当16n ≥时,16(105)80y =⨯-=当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80(60)0.1,(70)0.2,(80)0.7P X P X P X ====== X60 70 80 P0.10.20.7600.1700.2800.776EX =⨯+⨯+⨯= 222160.160.240.744DX =⨯+⨯+⨯= (ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476> 得:应购进17枝(19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1 (1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【解析】(1)在Rt DAC ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠= 得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥(2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角设AC a =,则122a C O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒(20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.【解析】(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =点A 到准线l的距离d FA FB ===122ABD S BD d p ∆=⇔⨯⨯=⇔=圆F 的方程为22(1)8x y +-=(2)由对称性设2000(,)(0)2x A x x p >,则(0,)2pF点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔=得:3,)2pA,直线3:022p p p m y x x -=+⇔+=222233x x x py y y x p p p '=⇔=⇒==⇒=⇒切点)6p P直线:06p n y x x p -=⇔-= 坐标原点到,m n距离的比值为:326=.(lfx lby )(21)(本小题满分12分)已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ≥++,求(1)a b +的最大值. 【解析】(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔=得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()xg x e y g x '=+>⇒=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=⇔><=⇔< 得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞(2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+ 得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++> 令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=- ()00,()0F x x e F x x e ''>⇔<<<⇔> 当x e =时,max ()2eF x =当1,a e b e =-=时,(1)a b +的最大值为2e请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分, 做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图,,D E 分别为ABC ∆边,AB AC 的中点,直线DE 交ABC ∆的外接圆于,F G 两点,若//CF AB ,证明: (1)CD BC =;(2)BCD GBD ∆∆: 【解析】(1)//CF AB ,//////DF BC CF BD AD CD BF ⇒⇒=//CF AB AF BC BC CD ⇒=⇔= (2)//BC GF BG FC BD ⇒==//BC GF GDE BGD DBC BDC ⇒∠=∠=∠=∠⇒BCD GBD ∆∆:(23)本小题满分10分)选修4—4;坐标系与参数方程已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围.【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ点,,,A B C D 的直角坐标为(1,3),(3,1),(1,3),(3,1)----(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数2222224440t PA PB PC PD x y =+++=++ 25620sin [56,76]ϕ=+∈(24)(本小题满分10分)选修45-:不等式选讲已知函数()2f x x a x =++-(1)当3a =-时,求不等式()3f x ≥的解集;(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围. 【解析】(1)当3a =-时,()3323f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩1x ⇔≤或4x ≥(2)原命题()4f x x ⇔≤-在[1,2]上恒成立24x a x x ⇔++-≤-在[1,2]上恒成立 22x a x ⇔--≤≤-在[1,2]上恒成立 30a ⇔-≤≤。

2012高考试题—数学理(湖北B卷)word版

2012高考试题—数学理(湖北B卷)word版

试卷类型B2012年普通高等学校招生全国统一考试(湖北卷)数学(理工类)本试卷共5页,共22题,其中第15、16题为选考题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方块涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。

答在试卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号答在答题卡上指定的位置用统一提供的2B 铅笔涂黑。

考生应该根据直接的选做的题目准确填涂题号,不得多选,答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只有一项是符合题目要求的1. 方程 2x +6x +13 =0的一个根是A -3+2i B.3+2i C.-2 + 3i D.2 + 3i2 命题“∃x 0∈C R Q , 30x ∈Q ”的否定是A ∃x 0∉C R Q ,30x ∈QB ∃x 0∈C R Q ,30x ∉QC ∀x 0∉C R Q , 30x ∈QD ∀x 0∈C R Q ,30x ∉Q3 已知二次函数y =f(x)的图像如图所示 ,则它与X 轴所围图形的面积为A.2πB.32C.43D.25π 4.已知某几何体的三视图如图所示,则该集合体的体积为 A. 83π B.3π C. 103π D.6π5.设a ∈Z ,且0≤a ≤13,若512012+a 能被13整除,则a=A.0B.1C.11D.126.设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则a b c x y z++=++A.34B. 12 C 13 D. 147.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”。

2012年全国高考理科数学试题及答案-北京卷

2012年全国高考理科数学试题及答案-北京卷

2012年全国各地高考数学试题汇编汇总数学(理)(北京卷)本试卷共5页. 150分.考试时长120分钟.考试生务必将答案答在答题卡上.在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题。

每小题5分.共40分.在每小题列出的四个选项中,选出符合胜目要求的一项.1.已知集合A ={x ∈R|3x+2>0} B ={x ∈R|(x+1)(x -3)>0} 则A ∩B =A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞) 【解析】和往年一样,依然的集合(交集)运算,本次考查的是一次和二次不等式的解法。

因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D. 【答案】D 2.设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A)4π (B)22π- (C)6π (D)44π-【解析】题目中⎩⎨⎧≤≤≤≤2020y x 表示的区域如图正方形所示,而动点D 可以存在的位置为正方形面积减去四分之一圆的面积部分,因此4422241222ππ-=⨯⋅-⨯=P ,故选D 。

【答案】D3.设a,b ∈R 。

“a =0”是“复数a+bi 是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【解析】当0=a 时,如果0=b 同时等于零,此时0=+bi a 是实数,不是纯虚数,因此不是充分条件;而如果bi a +已经为纯虚数,由定义实部为零,虚部不为零可以得到0=a ,因此想必要条件,故选B 。

【答案】B4.执行如图所示的程序框图,输出的S 值为( )A. 2 B .4 C.8 D. 16【解析】0=k ,11=⇒=k s ,21=⇒=k s ,22=⇒=k s ,8=s ,循环结束,输出的s 为8,故选C 。

2012年考研数学(二)真题

2012年考研数学(二)真题

(D) 0 0 1
二、填空题(9—14 小题,每小题 4 分,共 24 分)
9.设 y
d2y y(x) 是由方程 x2 y 1 ey 所确定的隐函数,则 dx2
x0
________。
10.
lim
n
n
1
1 n2
22
1
n2
n2
1
n2
________。
11.设
z
f
2. 【答案】A
【解析】 f (0) (11)(1 2)(1 n) 0 ,则
f
'(0)
lim
x0
y(x) x
y(0) 0
lim
x0
(ex
1)(e2x
2)(enx x
n)
lim
x0
x(e2x
2) (enx x
n)
(1 2)(1 n) (1)n1(n 1)!。
3. 【答案】B
【解析】充分性:因为 an 0 ,所以数列 Sn 单调递增,又因为数列{Sn} 有界,所以数列{Sn}
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x
x2 2

2012年GCT数学真题及解析(B卷)

2012年GCT数学真题及解析(B卷)

2012年GCT 数学真题及解析(B 卷)第二部分 数学基础能力测试 (25题,每题4分,共100分)1.在平面上,正方形共有( )条对称轴.A.1B.2C.3D.4 【解析】 选D两对对边的平分线,和两条对角线所在直线都是正方形的对称轴,共有4条.2.若,,a b c 分别为ABC ∆的三边之长,则a b c b c a c a b --+-----=( ). A.a b c +- B.b c a +- C.3a b c -- D.3c a b -- 【解析】 选D由三角形的性质三角形两边之和大于第三边,两边之差小于第三边可得0,0,0a b c b c a c a b --<--<--<则()3a b c b c a c a b b c a a c b a b c c a b --+-----=+-++--+-=--故选D.3.边长分别为8厘米和6厘米的两个正方形ABCD 与BEFG 并排放在一起,如图所示,直线EG 交DC 于P ,AC 交PG 于K ,则三角形AEK 的面积是( ).A.48B.49C.50D.51【解析】 选B过点K 作垂线段KH 交BC 于点H ,由题意可得2CG BC BG =-=,故AEK ∆的高为7BH BG GH =+=,所以三角形AEK 的面积是11(86)74922AE BH ⨯⨯=⨯+⨯=。

4.要建一座小型水库,若单独投资,甲村缺资金92万元,乙村缺资金88万元。

而两村合作投资仍需贷款20万元,则建该水库需要资金( )万元.A.100B.120C.140D.160 【解析】 选D设建该水库需要资金x 万元,则由题意可得:928820160x x x x -+-=-⇒=故选D.5.如图所示的数阵中,每行、每列的三个数均成等比数列.如果数阵中所有数的乘积等于1512,那么22a =( ). A.18 B.14C.12D.1 111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭【解析】 选C由题意可得数阵中所有数的乘积为11121321221331323333312223233123222233222292222()()()()()151212a a a a a a a a a a a a a a a a a a a ⨯⨯=====⇒=故选C.6.若()f x 是以3为周期的奇函数,()g x 是以2π为周期的偶函数,且()2g ππ=,则sin((2012)(2))6cos((3)2())3f fg g ππππ+-+=+-+( ). A.3-B.3C.33D.3 【解析】 选C 由题意可得11sin((2012)(2))sin((2)(2))3662211cos((3)2())cos(()2())cos(2)cos()332236f f f f g g g g ππππππππππππ+-++-+====+-++++⨯+故选C.7.如图所示,矩形ABCD 的对角线BD 过坐标原点O ,矩形的边分别平行于坐标轴,点C 在反比例函数31k y x+=的图像上,若A 点的坐标为(2,2)--,则k =( ).A.2B.1C.0D.-1【解析】 选B由题意可知(2,2),(4,1)A C --,则3141k k +=⇒=,故选B.8.若n 是大于100的正整数,且1231,2!3!4!!n M n -=++++…则M 所在的区间是( ).A.(0,1)B.(1,2)C.(2,3)D.(3,4) 【解析】 选A 由题意可知1111!!!(1)!!n n n n n n n -=-=--, 所以1231111111112!3!4!!1!2!2!3!(1)!!!n M n n n n -=++++=-+-++-=--……故选A.9.盒中有十张卡片,分别写有数码1,2,3,4,5,6,7,8,9,10.若从中任取3张,则其中恰有一张卡片写的是质数的概率为( ). A.12 B.512 C.110 D.2140【解析】 选A1,2,3,4,5,6,7,8,9,10中的质数为2,3,5,7,则由题意可得恰有一张卡片写的是质数的概率为:12463104151109826C C C ⨯==⨯⨯,故选A.10.若复数23234,z i i i i =+++则z =( ).A.6B.【解析】 选B 由题意可得2323423433z i i i i i i i i=+++=--+=-故z =11.若三角形ABC 中,角,,A B C 的对边分别为,,a b c 则表达式222cos cos cos ()abc A B Ca b c a b c++++的值为( ). A.12 B.23C.1D.32【解析】 选A由余弦定理可得222222222cos ,cos ,cos 222b c a a c b a b c A B C bc ac ab+-+-+-===,则:222222222222222222222222222222222cos cos cos ()()2221()2()2()12abc A B Ca b c a b cabc b c a a c b a b c a b c abc abc abcb c a a c b a b c a b c a b c a b c +++++-+-+-=++++=+-++-++-++++=++= 故选A.12.一次选举有四个候选人甲、乙、丙、丁,若投票的结果是,丁得票比乙多,甲、乙得票之和超过丙、丁得票之和,甲、丙得票之和与乙、丁得票之和相等,则四人得票数由高到低的排列次序是( ). A.甲、丁、丙、乙 B.丁、乙、甲、丙 C.丁、甲、乙、丙 D.甲、丁、乙、丙 【解析】 选DA 选项甲、丙得票之和大于乙、丁得票之和,B 选项甲、丙得票之和小于乙、丁得票之和,C 选项甲、丙得票之和小于乙、丁得票之和,D 选项符合题意.13.二次函数2y ax bx c =++的图像与x 轴有两个交点A 和B ,顶点为C .如果60ACB ∠=.那么24b ac -的值是( ).A.4B.8C.10D.12 【解析】 选D由抛物线的对称性可得,ABC ∆为正三角形,则由题意可得顶点到x 轴的距离与底边(两解之间距离)的关系为22222424()443423,412ac b b c b aca a a ab ac b ac --=-=⇒-=-=故选D.14.一个棱长为4分米的密封的正方体盒子里(壁厚忽略不计)放有一个半径为1分米的球,若盒子随意翻动,则该盒子的内表面接触不到球的那部分面积是( )平方分米. A.24 B.60 C.72 D.96 【解析】 选C对于每一个面上球体能接触到的面积为以2为边长的正方形,故可以接触的面积为4,则可接触的总面积为4624⨯=,不可接触的面积为2642472⨯-=15.椭圆22221(0,0)x y a b a b+=>>如图所示,其中1F 是左焦点.若11290,F B A ∠=则该椭圆的离心率ca=( ). A.1112-+ B.17-+【解析】 选C 由题意可得22212112122222222222222()2()30()1012F A F B A B a c b c a b c a a c a c c ac a c ca a c e a =+⇒+=+++=++-=-⇒+-=⇒+-=-±⇒==由于离心率是正的那么12e =,故选C.16.若()f x是非负连续函数,且222()2lim 4x f x x →-=-,(2)f =( ). A.4 B.2【解析】 选A由222()2lim 4x f x x →-=-2x →时,240x -→,则2()20f x -→,由()f x是非负连续函数可得(2)f =,则22222,,()2lim 4(()2)(()2)lim (2)(2)(()2)()(2)lim (2)222(2)8(2)4x x x f x x f x f x x x f x f x f x x f f →→→--+-=+-+-=⋅+-+==⇒=故选A.17.在直径为D 的大圆内作两两外切的n 个小圆.小圆的圆心都在大圆的同一直径上,两端的小圆又分别内切于大圆(如图是4n =的情形).若第k 个小圆的周长为k l ,则1limnkn k l→+∞=∑( )A.等于D πB.等于2DC.等于DD.不存在【解析】 选A由题意可知第k 个小圆的直径k D 为kl π,则111limlimlimnnnkkkn n n k k k l DD lD ππ→+∞→+∞→+∞=====⇒=∑∑∑,故选A.18.已知(1)ln2xf x x -=-.若(())ln ,fg x x =则()g x =( ). A.11x x +- B.11x x -+ C.11x x -+ D.11xx+- 【解析】 选A 由题意可设1t x =-,则1x t =+,1()ln1t f t t +=-,由(())ln f g x x =,可得()1(())ln ln ()1()1()11()1g x f g x xg x g x xg x x g x x +==-+⇒=-+⇒=-故选A.19.若函数()xy x ex eλ-=-有正的极值点,则参数λ的取值范围是( ).A.(,)e -∞-B.(,0)e -C.(0,)eD.(,)e +∞ 【解析】 选B,11()01ln()11ln()0x x x y x e e e e x x λλλλλλλλλλ---+=+=⇒=-⇒=---⇒+=-⇒=>可得00ln()10e λλλ->⎧⇒-<<⎨--<⎩,故选B.20.若函数()y f x =由参数方程2211sin t t x du uy ⎧=⎪⎪⎨⎪=⎪⎩⎰⎰确定,则3t dy dx π==( ).【解析】选A由题意可得3333cot33t t t dy dt dy dxdx dt πππππ========,故选A. 21.若函数()f x 的二阶导数连续,且满足,,()(),f x f x x -=则()cos f x xdx ππ-=⎰( ).A.,,()()f f ππ-- B. ,,()()2f f ππ---C.()()f f ππ--D.()()2f f ππ---【解析】 选B,,,,,,,,,,()cos ()sin ()sin sin ()sin ()()cos cos ()cos ()()()cos (())()()cos ()cos 2()f x xdx f x d x f x xx f x dxx f x dx f x d xx f x x f x dxf f x f x x dxf f x f x dx x xdxf x ππππππππππππππππππππππππππ-----------==-⋅=-⋅==⋅-⋅=---+=---⋅-⎰⎰⎰⎰⎰⎰⎰⎰⎰,,,,cos ()()()()()cos 2xdx f f f f f x xdx ππππππππ--=----⇒=⎰⎰故选B.22.若00230()4036012xx x f x x-=-,则,,(0)f =( ). A.2 B.4 C.8 D.16 【解析】选C2,,,,,3020()036(1)()4364601202()860()8(0)8x xf x x x x xx x f x x f x f =+-⨯--=-⇒=-⇒=⇒=故选C.23.设3阶可逆矩阵A 满足122A B B E -=+(E 是单位矩阵).若1002110,223002B ⎛⎫-⎪ ⎪⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭则矩阵A E -的第二行是( ).A.(-1 -1 0)B.(-1 1 0)C.(1 -1 0)D.(1 1 0) 【解析】 选C由题意可得112(2)2(2)2(2)AA B A B A B A B E A B B E --=+⇒=+⇒=+即为1010********0003002---⎛⎫⎛⎫ ⎪⎪- ⎪⎪ ⎪⎪--⎝⎭⎝⎭11010011010010001010001001011001011000200100110011000022⎛⎫⎛⎫ ⎪ ⎪--⎛⎫⎪ ⎪ ⎪→-→-⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭-- ⎪ ⎪⎝⎭⎝⎭即0100101101100031002A ⎛⎫⎪-⎛⎫⎪ ⎪=-- ⎪⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭可得第二行为(1,0,0),则矩阵A E -的第二行为(1,-1,0),故选C.24.设向量1α=(1 0 1)T,2α=(1 a -1)T,3α=(a 1 1)T.如果β=(2 2a -2)T 不能用123,,ααα线性表示,那么a =( ).A.-2B.-1C.1D.2 【解析】 选B设112233k k k βααα=++则有12322312322k k ak ak k a k k k ++=⎧⎪+=⎨⎪-+=-⎩则系数矩阵为1101111a a ⎛⎫ ⎪⎪ ⎪-⎝⎭,211012(2)(1)01111,2aa a a a a a a =+-=-+=-⇒=-=当1a =-时111011111-⎛⎫ ⎪- ⎪⎪-⎝⎭与增广矩阵111201111112-⎛⎫⎪- ⎪ ⎪--⎝⎭的秩不同,故无解;当2a =时,112021111⎛⎫ ⎪ ⎪⎪-⎝⎭与增广矩阵112202111111⎛⎫⎪⎪ ⎪-⎝⎭的秩都为2,此时有解;故1a =-,选B.25.设340450.21A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭若A 的三重特征值λ对应两个线性无关的特征向量,则a =( ).A.1B.2C.-1D.-2【解析】 选D设特征值为λ,对应的一个特征向量为ξ:3340450(1)0211E A a λλλλλλ-⎛⎫ ⎪-=-+=+= ⎪ ⎪--+⎝⎭⇒=-则()0A A E ξλξξξ==-⇒+= 故A E +的秩为3-2=1,即44044021a λ-⎛⎫ ⎪- ⎪ ⎪--+⎝⎭秩为1,故2,2a a -==-,故选D.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档