逻辑门电路

合集下载

深入详解逻辑门电路

深入详解逻辑门电路
输入端悬空时,VCC通过R1加在 T1集电结、T2、T5发射结上,使T2、T5 导通,输出低电平。故相当于输入端 接高电平。 ★
R1 4kΩ
VCC VB1=2.1V
T1
be2
be5
28
二、输出特性(输出电压随负载电流的变化情况)
1.高电平输出特性 输出高电平时,T4导通,T5截止,
R2
VCC R4
b1 c1 T1

T3
T2
R5

T4

+5V F
F ABC

R3
输入级 倒相级
T5
输出级15
R1 3k b1
R2 750
c2
V3
V1 c1
V2
A B C
e1 e2 e3
R3
R4 3k
360
UCC= +5 V R5 100
V4 F
V5 UO
UCC
R1 b
e1e2e3 c ABC
UCC
A e1 VD1 B e2 VD2 C e3 VD3
2.1.4 半导体三极管的开关特性
1. 三极管开关电路
VCC
RB + vI iB -
Rc iC +
vO
-
③vI继续增加,RC上的压降也随之增 大,vCE下降,当vCE↓≈0时,三极管 处于深度饱和状态, vO≈0,为低电 平。
注:当VCE=VBE时,三极管为临界饱和导通;
集电极临界饱和导通电流 ICS≈VCC/RC 基极临界饱和导通电流 IBS=ICS/β=VCC/ (β RC)

负号表示输入电流流出门.
26
2.vI=VIH=3.6V时
VIH=3.6V IIH=?

什么是逻辑门电路常见的逻辑门有哪些

什么是逻辑门电路常见的逻辑门有哪些

什么是逻辑门电路常见的逻辑门有哪些逻辑门电路是现代电子电路中常见的一种技术组件,在计算机科学和电子工程领域中扮演着重要的角色。

本文将介绍逻辑门电路的概念以及常见的逻辑门类型。

一、什么是逻辑门电路逻辑门电路是一种由逻辑门组成的电子电路,用于执行逻辑运算。

逻辑门是一个具有一个或多个逻辑输入和一个逻辑输出的设备,它根据输入信号的逻辑状态(通常是高电平或低电平)产生相应的输出信号。

逻辑门电路由多个逻辑门组成,通过逻辑门之间的连接和组合,可以实现复杂的逻辑运算和控制功能。

逻辑门电路广泛应用于数字电子系统,如计算机、手机、数码电视等。

二、常见的逻辑门类型1. 与门(AND Gate)与门是最基本的逻辑门之一,它具有两个或多个输入端和一个输出端。

当所有输入端都为高电平时,输出端才为高电平;只要有一个输入端为低电平,输出端就为低电平。

与门的符号通常用一个圆圈表示,并在圆圈内部标注与门的名称和输入端的数量。

例如,一个具有两个输入端的与门的符号为: |───|AND|───|2. 或门(OR Gate)或门是另一个常见的逻辑门,在多个输入端中只要有一个为高电平时,输出端就为高电平;只有所有输入端都为低电平时,输出端才为低电平。

或门的符号通常用一个“+”符号表示,并在符号上标注或门的名称和输入端的数量。

例如,一个具有三个输入端的或门的符号为: ___───| OR |───___3. 非门(NOT Gate)非门也被称为反相器,它只有一个输入端和一个输出端。

非门的输出与输入电平相反,即当输入端为高电平时,输出端为低电平;当输入端为低电平时,输出端为高电平。

非门的符号通常用一个小圆圈表示,并在圆圈内部标注非门的名称。

例如,一个非门的符号为:|───|NOT|───|4. 异或门(XOR Gate)异或门是逻辑门中的一种特殊类型,它具有两个输入端和一个输出端。

当两个输入端的电平相同时,输出端为低电平;当两个输入端的电平不同时,输出端为高电平。

什么是逻辑门电路逻辑门电路的注意事项

什么是逻辑门电路逻辑门电路的注意事项

什么是逻辑门电路逻辑门电路的注意事项实现基本和常用逻辑运算的电子电路叫逻辑门电路。

那么你对逻辑门电路了解多少呢?以下是由店铺整理关于什么是逻辑门电路的内容,希望大家喜欢!逻辑门电路的简介定义最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。

实现“与”运算的叫与门,实现“或”运算的叫或门,实现“非”运算的叫非门,也叫做反相器,等等。

逻辑门是在集成电路(也称:集成电路)上的基本组件。

组成逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。

也可以将门电路的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。

简单的逻辑门可由晶体管组成。

这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。

作用高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现逻辑运算。

常见的逻辑门包括“与”门,“或”门,“非”门,“异或”门(也称:互斥或)等等。

逻辑门可以组合使用实现更为复杂的逻辑运算。

类别逻辑门电路是数字电路中最基本的逻辑元件。

所谓门就是一种开关,它能按照一定的条件去控制信号的通过或不通过。

门电路的输入和输出之间存在一定的逻辑关系(因果关系),所以门电路又称为逻辑门电路。

基本逻辑关系为“与”、“或”、“非”三种。

逻辑门电路按其内部有源器件的不同可以分为三大类。

第一类为双极型晶体管逻辑门电路,包括TTL、ECL电路和I2L电路等几种类型;第二类为单极型MOS逻辑门电路,包括NMOS、PMOS、LDMOS、VDMOS、VVMOS、IGT等几种类型;第三类则是二者的组合BICMOS门电路。

常用的是CMOS逻辑门电路。

1、TTL全称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用的一种逻辑门电路,应用较早,技术已比较成熟。

TTL主要有BJT(Bipolar Junction Transistor 即双极结型晶体管,晶体三极管)和电阻构成,具有速度快的特点。

逻辑门电路

逻辑门电路

vDS线性增加, rds为受vGS控制可变
电阻。
rds
dvDS diD
vGS cost
1 2K n (vGS
VT )
iD (a)输出特性曲线
ห้องสมุดไป่ตู้
o 饱和区:vGS VT , vDS vGS VT
O VT
vGS
(b)转移特性曲线
3. 其他类型的MOS管
(1) P沟道增强型MOS管
o 结构与NMOS管相反。
3. 逻辑门电路
3.1 逻辑门电路简介
3.1.1 各种逻辑门电路系列简介 3.1.2 开关电路
3.1.1 各种逻辑门电路系列简介
1 、逻辑门:实现基本逻辑运算和常用逻辑运算的单元电路。
2、 逻辑门电路的分类 分立门电路
逻辑门电路 集成门电路
二极管门电路
三极管门电路
TTL门电路 MOS门电路 BiCMOS门电路
o vGS>0, 建立电场 反型层 vDS>0, iD 0。
o 沟道建立的最小 vGS 值称为开启电压 VT.
VDS
S
VGS G
D
N
N
P
n-沟道
B
1. N沟道增强型MOS管的结构和工作原理
(2) VGS 和VDS共同作用
o vGS> VT, vDS>0, 靠近漏极的电压减小。
o当VGS> VT, iD 随VDS增加几乎成线性增加 。
o 当vDS vGD=(vGSvDS)VT, 漏极 处出现夹断。
VDS
S
VGS G
D
o 继续增加VDS 夹断区域变 N 大, iD 饱和。
N P
n-沟道 B
2. N沟道增强型MOS管的输出特性和转移特性 输出特性分为

什么是逻辑门电路它在电子电路中的作用是什么

什么是逻辑门电路它在电子电路中的作用是什么

什么是逻辑门电路它在电子电路中的作用是什么逻辑门电路是指应用于数字电路中的逻辑元件。

它由一组有特定逻辑功能的晶体管或其他半导体器件组成,能够对输入的电信号进行逻辑运算,然后输出相应的处理结果。

逻辑门电路是数字电子电路中最基本的组成部分,其作用是实现不同的逻辑功能,如与门、或门、非门、异或门等。

一、逻辑门电路的定义与基本概念逻辑门电路是指由逻辑门组成的数字电路。

逻辑门是能够接受一个或多个输入信号,并根据规定的逻辑关系对输入信号进行逻辑运算,最后输出一个结果信号的电子元件。

逻辑门电路是基于二进制数字的运算与处理,其输出信号可以被其他逻辑门电路接收作为输入信号进行级联运算。

二、逻辑门电路的作用逻辑门电路在数字电路中起着重要的作用,主要有以下几个方面。

1. 实现逻辑功能逻辑门电路通过对输入信号进行逻辑运算,能够实现与门、或门、非门等不同的逻辑功能。

例如,与门电路只有在所有输入信号都为高电平时才会输出高电平,否则输出低电平;或门电路只要任何一个输入信号为高电平,输出就为高电平。

通过逻辑门电路的组合,可以实现复杂的逻辑运算,如加法器、计数器等。

2. 实现布尔运算逻辑门电路可以实现布尔运算,即逻辑运算的基本操作,如与运算、或运算、非运算等。

这些布尔运算可以用于数字电路的设计与实现,用来实现各种逻辑功能并完成复杂的数据处理。

3. 实现控制与决策逻辑门电路可以用作控制与决策的基础。

例如,在计算机的中央处理器(CPU)中,逻辑门电路被用来实现指令的解码和执行,根据不同的指令类型进行相应的操作。

逻辑门电路还可以用于控制开关、触发器等元件的状态,从而实现各种电路的控制与决策。

4. 实现存储与记忆逻辑门电路可以与触发器、存储器等元件结合使用,实现数字电路中的存储与记忆功能。

例如,通过级联的触发器电路可以实现寄存器,用来存储数字数据。

逻辑门电路还可以用于存储器的地址选择、数据读写等操作,从而实现数据的存储与检索。

5. 实现信号的转换与匹配逻辑门电路可以用于信号的转换与匹配。

第2章 逻辑门电路

第2章   逻辑门电路
第二章(1) 第二章( 2
20102010-9-14
2.1.1 非门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“非”逻辑关系。 逻辑关系。 逻辑符号: 逻辑符号: 非门电路: 非门波形图: 非门电路: 非门波形图:
非门工作特点: 非门工作特点: ● 当输入端A 为高电平1(+5V)时,晶体管 当输入端A 为高电平1 +5V) 导通, 端输出0.2~0.3V的电压 的电压, 导通,L 端输出0.2~0.3V的电压,属于低电平 范围; 范围; ● 当输入端为低电平0(0V)时,晶体管截止,晶体管集电 当输入端为低电平0 0V) 晶体管截止, 发射极间呈高阻状态,输出端L的电压近似等于电源电压; 极—发射极间呈高阻状态,输出端L的电压近似等于电源电压; ● 任何能够实现 L = A “非”逻辑关系的电路均称为“非门”, 逻辑关系的电路均称为“非门” 也称为反相器。式中的符号“ 表示取反, 也称为反相器。式中的符号“-”表示取反,在其逻辑符号的输出 端用一个小圆圈来表示。 端用一个小圆圈来表示。
同或门电路: 同或门电路:
逻辑符号: 逻辑符号:


双输入端同或门波形图: 双输入端同或门波形图:
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为低电平; 一定为低电平;而当输入端 A、B 的电平状态相同时, 的电平状态相同时, 一定为高电平。 输出端 L 一定为高电平。
20102010-9-14
第二章(1) 第二章(
3
2.1.2 与门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“与”逻辑关系。 逻辑关系。 与门电路: 逻辑符号: 与门波形图: 与门电路: 逻辑符号: 与门波形图:

什么是逻辑门电路它有哪些常见的应用

什么是逻辑门电路它有哪些常见的应用

什么是逻辑门电路它有哪些常见的应用逻辑门电路是由逻辑门组成的电子电路,用于处理和控制数字信号的传输和处理。

逻辑门电路由多个逻辑门组成,每个逻辑门接收一个或多个输入信号,并生成一个输出信号,用来实现特定的逻辑功能。

逻辑门电路的基本组成部分是逻辑门,逻辑门是基于逻辑运算的元件,常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。

逻辑门的输入信号可以是0或1的电平信号,输出信号也是0或1的电平信号,根据输入信号的不同组合,逻辑门可以实现不同的逻辑功能。

常见的逻辑门电路应用包括:1. 数据处理和计算机逻辑:逻辑门电路在计算机领域中广泛应用,用于实现各种逻辑运算和算术运算,例如,加法器、减法器、乘法器、除法器等。

2. 数字电子电路设计:逻辑门电路可以用于设计各种数字电子电路,如时钟电路、计数器、触发器、多路选择器、编码器、解码器等。

3. 存储器控制:逻辑门电路可用于存储器的控制和读写操作,例如,随机存储器(RAM)和只读存储器(ROM)。

4. 接口电路:逻辑门电路可用于不同数字系统之间的接口转换和信号调整,例如,电平转换、信号调整和匹配等。

5. 自动控制系统:逻辑门电路可以用于实现自动控制系统中的逻辑判断和决策,例如,逻辑控制器(PLC)和自动控制系统中的逻辑控制模块。

6. 电子游戏和娱乐设备:逻辑门电路可以用于电子游戏和娱乐设备中的逻辑处理和控制,例如,游戏机、电子琴、电子乐器等。

7. 通信和网络设备:逻辑门电路在通信和网络设备中起着重要的作用,例如,数据编码、数据解码、调制解调器、网络交换机等。

综上所述,逻辑门电路是数字电子电路的基本部分,用于处理和控制数字信号,常见的应用包括数据处理、计算机逻辑、存储器控制、接口电路、自动控制系统、电子游戏和娱乐设备,以及通信和网络设备等领域。

逻辑门电路的广泛应用使得数字电子技术在各个领域中得到了大规模的应用和发展。

数电逻辑门电路

数电逻辑门电路

数电逻辑门电路
逻辑门电路是数字电路中最基本的组成部分,它执行基本的逻辑运算,如 AND、OR、NOT 等。

常见的逻辑门
•AND 门:只有当所有输入都为高电平时,输出才为高电平。

•OR 门:只要有一个输入为高电平时,输出就为高电平。

•NOT 门:当输入为高电平时,输出为低电平,反之亦然。

•NAND 门:与 AND 门相同,但输出取反。

•NOR 门:与 OR 门相同,但输出取反。

•XOR 门:只有当输入不同时,输出才为高电平。

•XNOR 门:只有当输入相同时,输出才为高电平。

逻辑门符号
每个逻辑门都有一个标准符号,用于表示其功能和输入/输出关系。

逻辑门特性
•逻辑电平:逻辑门通常使用高电平和低电平表示二进制信号。

•传递延迟:逻辑门之间有延迟时间,称为传递延迟。

•扇出:逻辑门可以驱动多个其他逻辑门,其数量称为扇出。

•功耗:逻辑门消耗功率,这取决于其尺寸、类型和开关频率。

逻辑门应用
逻辑门电路用于各种数字系统中,包括:
•计算机
•智能手机
•数字仪表
•控制系统
•数据通信
逻辑门实现
逻辑门电路可以通过以下方式实现:
•分立器件:使用晶体管、电阻器和二极管等分立器件构建。

•集成电路(IC):将多个逻辑门集成到一个单一的 IC 芯片中。

•现场可编程门阵列(FPGA):提供可编程逻辑,允许用户配置自定义逻辑门电路。

八种逻辑门电路

八种逻辑门电路

八种逻辑门电路1. 逻辑门简介逻辑门是数字电路中的基本组成部分,它通过对电信号的逻辑运算来实现特定的功能。

逻辑门包括与门、或门、非门、与非门、或非门、异或门、同或门和与或非门。

本文将逐一介绍这八种逻辑门电路的原理和应用。

2. 与门(AND Gate)与门是最基本的逻辑门之一,它的输出信号为1的条件是所有输入信号都为1,否则输出信号为0。

与门电路通常由两个输入端和一个输出端组成。

当且仅当两个输入信号同时为1时,输出信号才为1。

3. 或门(OR Gate)或门是另一种常见的逻辑门,它的输出信号为1的条件是至少有一个输入信号为1,否则输出信号为0。

或门电路通常由两个或多个输入端和一个输出端组成。

当任意一个输入信号为1时,输出信号即为1。

4. 非门(NOT Gate)非门是最简单的逻辑门,它只有一个输入和一个输出。

非门的输出信号与输入信号相反。

当输入信号为1时,输出信号为0;当输入信号为0时,输出信号为1。

非门通常用于翻转信号的逻辑状态。

5. 与非门(NAND Gate)与非门是由与门和非门组成的复合逻辑门。

与非门的输出信号与与门的输出信号相反。

当且仅当所有输入信号都为1时,与非门的输出信号为0;其他情况下,输出信号都为1。

与非门可用于实现各种逻辑功能。

6. 或非门(NOR Gate)或非门是由或门和非门组成的复合逻辑门。

或非门的输出信号与或门的输出信号相反。

当且仅当所有输入信号都为0时,或非门的输出信号为1;其他情况下,输出信号都为0。

或非门常用于逻辑计算、控制和存储等领域。

7. 异或门(XOR Gate)异或门是一种有两个或多个输入端和一个输出端的逻辑门。

异或门的输出信号为1的条件是输入信号中只有一个信号为1,其他信号为0;否则输出信号为0。

异或门在数字电路中有广泛的应用,例如数据比较、错误检测和纠正等。

8. 同或门(XNOR Gate)同或门与异或门相似,不同之处在于同或门的输出信号与异或门的输出信号相反。

深入详解逻辑门电路

深入详解逻辑门电路

基于可编程逻辑阵列的实现
可编程逻辑阵列(PLA)是一种 可编程的集成电路,通过编程可 以实现任意复杂的数字逻辑电路。
PLA由多个可编程的逻辑宏单元 组成,通过宏单元的组合可以实
现各种逻辑功能。
PLA具有高集成度、高可靠性、 低功耗等特点,广泛应用于数字
系统设计。
06 逻辑门电路的性能参数
电压和电流参数
锁存器在电路中起到暂存数据的作用, 可以用于实现数据总线、地址总线等。
锁存器通常由多个与门、非门和或非 门组成,通过控制信号控制数据的存 储和输出。
05 逻辑门电路的实现
基于晶体管的实现
晶体管作为基本电子元件,具 有开关特性,可以用于实现逻 辑门电路。
基本逻辑门电路如与门、或门、 非门等都可以通过晶体管组合 实现。
静态功耗
指逻辑门电路在没有输入信号时的功耗,主 要由电路内部的漏电流产生。
动态功耗
指逻辑门电路在执行逻辑操作时的功耗,主 要由输入和输出电流以及电压的变化产生。
THANKS FOR WATCHING
感谢您的观看
控制电路
逻辑门电路也广泛应用于各种 控制电路中,如电机控制、灯
光控制、报警系统等。
02 基本逻辑门电路
AND门
总结词
当所有输入都为高电平时,输出才为高电平。
详细描述
AND门是逻辑门电路中的基本门之一,其输出信号仅在所有输入信号都为高电 平时才为高电平。在电路实现中,通常使用与门芯片来实现AND门的逻辑功能。
深入详解逻辑门电路
contents
目录
• 逻辑门电路概述 • 基本逻辑门电路 • 复合逻辑门电路 • 特殊逻辑门电路 • 逻辑门电路的实现 • 逻辑门电路的性能参数

八种逻辑门电路

八种逻辑门电路

八种逻辑门电路逻辑门电路是由逻辑门组成的电路,用于实现数字电路中的逻辑运算。

常见的逻辑门有八种,分别是与门、或门、非门、异或门、与非门、或非门、同或门和三态门。

1. 与门(AND Gate)与门是一种基本的逻辑门,其输出信号只有在所有输入信号均为高电平时才为高电平。

其符号为“&”,代表“且”的意思。

与门通常用于实现多个条件同时满足时才执行某项操作的功能。

2. 或门(OR Gate)或门也是一种基本的逻辑门,其输出信号只要有一个输入信号为高电平时就为高电平。

其符号为“|”,代表“或”的意思。

或门通常用于实现多个条件中任意一个满足时就执行某项操作的功能。

3. 非门(NOT Gate)非门也称反相器,其输出信号与输入信号相反,即当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。

其符号为“~”,代表“非”的意思。

4. 异或门(XOR Gate)异或门是一种特殊的逻辑运算,其输出信号只有在两个输入信号不同时才为高电平。

其符号为“⊕”,代表“异或”的意思。

异或门通常用于实现某些特殊的运算,如加密和校验等。

5. 与非门(NAND Gate)与非门是一种由与门和非门组成的复合逻辑门,其输出信号只有在所有输入信号均为高电平时才为低电平,否则为高电平。

其符号为“&”,上方加一个小圆圈表示非的意思。

6. 或非门(NOR Gate)或非门是一种由或门和非门组成的复合逻辑门,其输出信号只有在所有输入信号均为低电平时才为高电平,否则为低电平。

其符号为“|”,上方加一个小圆圈表示非的意思。

7. 同或门(XNOR Gate)同或门是一种由异或门和非门组成的复合逻辑门,其输出信号只有在两个输入信号相同时才为高电平,否则为低电平。

其符号为“⊕”,上方加一个小圆圈表示非的意思。

8. 三态门(Tri-state Buffer)三态门是一种特殊的逻辑器件,其输出端可以处于三种状态之一:高电平、低电平、高阻态。

什么是逻辑门电路

什么是逻辑门电路

什么是逻辑门电路逻辑门电路是指由逻辑门组成的电路,用于对逻辑信号进行运算和控制。

逻辑门是一种基本的数电器件,可以实现逻辑运算,如与、或、非等,常见的逻辑门有与门、或门、非门、异或门等。

逻辑门电路可以简单的理解为一个逻辑功能的实现器,根据输入信号的不同,输出不同的逻辑结果。

逻辑门使用布尔代数进行描述,通过将输入信号与逻辑运算规则相结合,得到输出信号。

目前,常见的逻辑门电路有数字式和模拟式两种。

数字式逻辑门电路主要用于数字计算机、数字电路和通讯等领域,其中包括与门、或门、与非门等。

模拟式逻辑门电路主要用于模拟计算机、模拟电路和通讯等领域,其中包括模拟与门、模拟或门等。

在数字电路中,逻辑门电路广泛应用于计算机的计算和控制系统中。

例如,在计算机的中央处理器(CPU)中,逻辑门电路用于处理和运算指令,控制计算机的各项操作。

此外,逻辑门电路还可以用于编码器、解码器、计数器、存储器等的设计与实现。

逻辑门电路的设计和实现需要经过多个步骤。

首先,需要确定所需的逻辑运算规则和功能;然后,选择合适的逻辑门类型和数量;接着,按照逻辑门的真值表,确定逻辑门的输入输出关系;最后,将逻辑门按照设计要求进行连接和布局。

在逻辑门电路的实现中,一般使用逻辑门芯片。

逻辑门芯片是将多个逻辑门组合在一个集成电路芯片中,使得电路更加简洁、稳定和可靠。

逻辑门芯片具有功能强大、体积小巧等特点,能够满足不同规模和需求的电路设计。

逻辑门电路的应用不仅仅局限于计算机领域,还广泛应用于电子、通信、自动控制、仪器仪表等领域。

逻辑门电路在现代技术中扮演着重要的角色,推动了数字化、自动化和智能化的发展。

总之,逻辑门电路是一种基本的数电器件,用于对逻辑信号进行运算和控制。

逻辑门电路广泛应用于计算机、电子、通信等领域,是现代技术发展的重要组成部分。

随着科技的进步,逻辑门电路的应用将会更加广泛,对推动技术的发展和应用有着重要的作用。

第2章 逻辑门电路

第2章   逻辑门电路

等式两边的真值表如表1.3所示: 等式两边的真值表如表1.3所示: 1.3所示
A
0 0 1 1
B
0 1 0 1
A⋅ B
1 1 1 0
A+ B
1 1 1 0
2. 常用公式
利用上面的公理、定律、规则可以得到一些常用的公式。 利用上面的公理、定律、规则可以得到一些常用的公式。
(1)吸收律
A+A·B = A
工作原理 请自行分析
◆ 多变量的函数表达式
● ● ● ● ●
与 或 与非 或非
F=A·B·C… F=A+B+C…
F = A⋅ B ⋅C
F = A+ B +C
等等 ◆ 运算的优先级别
与或非 F = AB + CD
括号→非运算→与运算→ 括号→非运算→与运算→或运算
2.3 逻辑变量与逻辑函数
F=A+B
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为高电平;当输入端A 一定为高电平;当输入端A、 B的电平状态相同时输出L 的电平状态相同时输出L 一定为低电平。 一定为低电平。
4. 同或门
◆ 能够实现 同或” L = A ⋅ B + A ⋅ B = A⊙B “同或”逻辑关系的 电路均称为“同或门” 由非门、 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。 及逻辑符号如下图所示。
F = A ⋅ B ⋅C ⋅ D ⋅ E
1. 要保持原式中逻辑运算的优先顺序; 保持原式中逻辑运算的优先顺序; 原式中逻辑运算的优先顺序 2. 不是一个变量上的反号应保持不变,否则就要出错。 不是一个变量上的反号应保持不变,否则就要出错。 上的反号应保持不变

数字电子技术逻辑门电路

数字电子技术逻辑门电路
数字电子技术逻辑门电路
• 引言 • 逻辑门电路基础知识 • 逻辑门电路的工作原理 • 逻辑门电路的应用 • 逻辑门电路的实现方式 • 结论
01
引言
主题简介
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和
信号处理功能。
逻辑门电路由输入端和输出端组 成,根据输入信号的状态(高电 平或低电平)决定输出信号的状
基于CMOS的逻辑门电路实现方式
总结词
CMOS(Complementary Metal-Oxide Semiconductor)是一种常见的数字逻辑门电路实现方式,它利用互 补的NMOS和PMOS晶体管作为开关元件,具有功耗低、抗干扰能力强等优点。
详细描述
基于CMOS的逻辑门电路通常由输入级、中间级和输出级三部分组成。输入级由NMOS和PMOS晶体管组成,用 于接收输入信号;中间级由NMOS和PMOS晶体管组成,用于放大和传递信号;输出级由NMOS和PMOS晶体管 组成,用于驱动负载并输出信号。
04
逻辑门电路的应用
逻辑门电路在计算机中的应用
计算机的基本组成
逻辑门电路是计算机的基本组成单元,用于实现计算机内部的逻 辑运算和数据处理。
中央处理器(CPU)
CPU中的指令执行和数据处理都离不开逻辑门电路,它控制着计算 机的运算速度和性能。
存储器
存储器中的每个存储单元都是由逻辑门电路构成的,用于存储二进 制数据。
逻辑门电路在数字通信中的应用
数据传输
01
逻辑门电路用于实现数字信号的编码、解码和调制解调,确保
数据在通信信道中可靠传输。
信号处理
02
逻辑门电路用于信号的逻辑运算、比较和转换,实现数字信号
的处理和分析。

基本逻辑门电路

基本逻辑门电路

第一节根本逻辑门电路1.1 门电路的概念:实现根本和常用逻辑运算的电子电路,叫逻辑门电路。

实现与运算的叫与门,实现或运算的叫或门,实现非运算的叫非门,也叫做反相器,等等〔用逻辑1表示高电平;用逻辑0表示低电平〕11.2 与门:逻辑表达式F=A B即只有当输入端A和B均为1时,输出端Y才为1,不然Y为0.与门的常用芯片型号有:74LS08,74LS09等.11.3 或门:逻辑表达式F=A+ B即当输入端A和B有一个为1时,输出端Y即为1,所以输入端A和B均为0时,Y才会为O.或门的常用芯片型号有:74LS32等.11.4.非门逻辑表达式F=A即输出端总是与输入端相反.非门的常用芯片型号有:74LS04,74LS05,74LS06,74LS14等.11.5.与非门逻辑表达式 F=AB即只有当所有输入端A和B均为1时,输出端Y才为0,不然Y为1.与非门的常用芯片型号有:74LS00,74LS03,74S31,74LS132等.11.6.或非门:逻辑表达式 F=A+B即只要输入端A和B中有一个为1时,输出端Y即为0.所以输入端A和B均为0时,Y才会为1.或非门常见的芯片型号有:74LS02等.11.7.同或门: 逻辑表达式F=A B+A BAFB11.8.异或门:逻辑表达式F=A B+A B=1FB11.9.与或非门:逻辑表逻辑表达式F=AB+CDABC F11.10.RS触发器:电路结构把两个与非门G1、G2的输入、输出端交叉连接,即可构成根本RS触发器,其逻辑电路如图.(a)所示。

它有两个输入端R、S和两个输出端Q、Q。

工作原理 :根本RS触发器的逻辑方程为:根据上述两个式子得到它的四种输入与输出的关系:1.当R=1、S=0时,那么Q=0,Q=1,触发器置1。

2.当R=0、S=1时,那么Q=1,Q=0,触发器置0。

=1&≥1如上所述,当触发器的两个输入端参加不同逻辑电平时,它的两个输出端Q和Q有两种互补的稳定状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 各种门电路的延迟时间与功耗的关系
2.8 正负逻辑问题
1. 正负逻辑的规定 ①正逻辑体制
H 1
②负逻辑体制
L0 L 1
H 0
2.8 正负逻辑问题
2. 正负逻辑的等效变换
2.9 逻辑门电路使用中的几个实际问题
2.9.1 各种门电路之间的接口问题 采用接口电路,一般需要考虑下面三个条件
2.9 逻辑门电路使用中的几个实际问题
2.2.2 BJT的开关时间
2.3 基本逻辑门电路
2.3.1 二极管与门及或门电路
1. 与门电路
2.3 基本逻辑门电路
2.3.1 二极管与门及或门电路
2.3 基本逻辑门电路
2.3.1 二极管与门及或门电路
2.3 基本逻辑门电路
2.3.1 二极管与门及或门电路 2. 或门电路
2.3 基本逻辑门电路


为了正确而有效的使用集成逻辑门电路,用

户必须对组件内部电路特别是对他的外部特性有所了 解。因此,本章将揭开黑匣子的奥秘,讲述几种通用 的集成逻辑门电路,如 BJT-BJT逻(TTL)、射极耦合 逻辑门电路( ECL)和金属-氧化物-半导体互补堆成 逻辑门电路( CMOS)。 为了掌握上述各种电路的逻辑功能和特性,首先 必须熟悉开关器件的开关特性,这是门电路的工作基 础。在分析门电路时,着重他们的逻辑功能和外特性 对其内部电路只作一般介绍。
2.机电性负载接口
2.9 逻辑门电路使用中的几个实际问题 2.9.3 抗干扰措施
1. 多余输入端的处理措施 2. 去耦合滤波器 3. 接地和安装工艺 4. 使用和储藏过程中要注意静电感应导致 损伤的问题
2.9 逻辑门电路使用中的几个实际问题
返回
2.9 逻辑门电路使用中的几个实际问题
返回
2.9 逻辑门电路使用中的几个实际问题
1. 将电源地与信号地分开 2. 模拟和数字二者的地分开 3. 注意连线尽可能短,以减少接线电容而导 致寄生反馈有可能引起寄生振荡
返回
2.9 逻辑门电路使用中的几个实际问题 静电屏蔽是常用的措施
Ni 3
2.4 TTL逻辑门电路
①灌电流工作情况 .
N OL
I OL (驱动门) I IL (负载门)
I OH (驱动门) I IH (负载门)
②拉电流工作情况
N OH
一般TTL器件的数据 手册中并不给出扇出数, 而需用计算或实验的方 法求得,并留有余地。
2.4 TTL逻辑门电路
通常
2 逻辑门电路
引 言 2.1 二极管的开关特性 的开关特性 2.2 BJT BJT的开关特性 2.3 基本逻辑门电路 逻辑门电路 TTL逻辑门电路 2.4 TTL * 射极耦合逻辑门电路 2.5 .5* 逻辑门电路 CMOS逻辑门电路 2.6 CMOS 逻辑门电路 NMOS逻辑门电路 2.7 NMOS 2.8 正负逻辑问题 2.9 逻辑门电路使用中的几个实际问题
6. 功耗
空载导通功耗 PON 静态 截止功耗 POFF 动态
7. 延时——功耗积
DP t pd PD
2.4 TTL逻辑门电路
8. TTL逻辑门电路的封装
2.4 TTL逻辑门电路
1. TTL或非门
2.4 TTL逻辑门电路
2.集电极开路门 ①线与功能:在工程实践中,往往需要将两个门的 输出端并联以实现与逻辑的功能称为 线与 ②前述TTL与非门不能实现线与 ③采用集电极开路(OC)门来解决 ④上拉电阻 Rp 的计算
2.3.1 二极管与门及或门电路 2. 或门电路
2.3 基本逻辑门电路
2.3.2 非门电路 —— BJT反向器 ——BJT
2.3 基本逻辑门电路
2.4 TTL逻辑门电路
2.4.1 基本的BJT反向器的动态性能
C L 的充、放电过程
均需经历一定时间, 这必然会增加输出 电压 v 0波形的上升 和下降时间。
2.6.4 CMOS传输门 ①电路结构
2.6 CMOS逻辑门电路
2.6.4 CMOS传输门
2.6 CMOS逻辑门电路
Hale Waihona Puke 2.6 CMOS逻辑门电路
2.6.5 CMOS逻辑门电路的技术参数
2.7 NMOS逻辑门电路
1. NMOS反向器
2.6 CMOS逻辑门电路
2. NMOS或非门电路
2.6 CMOS逻辑门电路
N OL N OH
2.4 TTL逻辑门电路
5.传输延迟时间
2.4 TTL逻辑门电路
5.传输延迟时间 门电路输出由低电平转换到高电平所经历的时间
t PLH
门电路输出由高电平转换到低电平所经历的时间
t PHL
平均传输延迟时间
(t PLH t PHL ) t pd 2
2.4 TTL逻辑门电路
2.4 TTL逻辑门电路
2.集电极开路门
2.4 TTL逻辑门电路
VCC VOL (m ax) R p (m in) I OL (m ax) I IL ( total ) VCC VIH (m in) R p (m ax) I IH ( total )
2.4 TTL逻辑门电路
3. 工作速度
2.6 CMOS逻辑门电路
1. 与非门电路 2. 或非门电路
2.6 CMOS逻辑门电路
3. 异或门电路
2.6 CMOS逻辑门电路
2.6 CMOS逻辑门电路
2.6.3 BiCMOS 门电路 1. BiCMOS反向器
2.6 CMOS逻辑门电路
2. BiCMOS门电路
2.6 CMOS逻辑门电路
2.4 TTL逻辑门电路
2.4.7 改进型TTL门电路——抗饱和TTL电路
2.4 TTL逻辑门电路
2.4 TTL逻辑门电路
2.6 CMOS逻辑门电路
2.6.1 CMOS反向器
2.6 CMOS逻辑门电路
1. 工作原理
2.6 CMOS逻辑门电路
2.6 CMOS逻辑门电路
2. 传输特性
2.6 CMOS逻辑门电路
3. 二极管的开通时间
2.2 BJT的开关特性
2.2.1 BJT的开关作用
2.2 BJT的开关特性
2.2.1 BJT的开关作用
截止(相当于开关断开)
饱和(相当于开关闭和)
2.2 BJT的开关特性
2.2.1 BJT的开关作用
2.2 BJT的开关特性
2.2.2 BJT的开关时间
2.2 BJT的开关特性
2.1 二极管的开关特性
2.1 二极管的开关特性
1.二极管从正向导通到截止有一个反向恢复过程
反向恢复时间 = 存储时间+渡越时间
由于反向恢复时间的存 在,使二极管的开关速 度受到限制。
2.1 二极管的开关特性
2. 产生反向恢复过程的原因 ——电荷存储效应
2.1 二极管的开关特性
2.1 二极管的开关特性
2.4.4 TTL与非门
2.4 TTL逻辑门电路
2.4 TTL逻辑门电路
2.4.5 TTL与非门的技术参数 1. 传输特性 2. 输入和输出的高、低电压 3. 噪声容限
4. 扇入与扇出数
2.4 TTL逻辑门电路
4. 扇入与扇出数 (1)扇入数 (2)扇出数 灌电流负载:负载电流从外电路流 入与非门 拉电流负载:负载电流从与非门流 入外电路
2.4 TTL逻辑门电路
2.4.2 TTL反向器的基本电路
2.4 TTL逻辑门电路
1. TTL反向器的工作原理
2.4 TTL逻辑门电路
2.采用输入级以提高工作速度
2.4 TTL逻辑门电路
3.采用推拉式输出级以提高开关速度和带负载能力
2.4 TTL逻辑门电路
2.4.3TTL反向器的传输特性
2.4 TTL逻辑门电路
例 2.4.2
2.4 TTL逻辑门电路
2.
2.4 TTL逻辑门电路
3. 三态与非门( TSL)
2.4 TTL逻辑门电路
2.4 TTL逻辑门电路
2.4.7 改进型TTL门电路——抗饱和TTL电路 肖特基势垒二极管 SBD工作特点: (1)它和PN结一样,同样具有单向导电性,这种 SiSBD)导通电流的方向是从 铝—硅势垒二极管( AlAl-SiSBD 铝到硅。 SiSBD的导通域值电压较低,约为 0.4~0.5V, (2) AlAl-SiSBD 比普通硅PN结约低0.2 V。 (3)势垒二极管的导电机构是多数载流子,因而 电荷存储效应小。
1. CMOS门驱动TTL门
2.9 逻辑门电路使用中的几个实际问题
2.9 逻辑门电路使用中的几个实际问题
2.TTL门驱动CMOS门
2.9 逻辑门电路使用中的几个实际问题
2.9.2 门电路带负载时的接口电路 1. 用门电路直接驱动显示器件
2.9 逻辑门电路使用中的几个实际问题
2.9 逻辑门电路使用中的几个实际问题
相关文档
最新文档