有理数混合运算(1)

合集下载

有理数的混合运算(1)

有理数的混合运算(1)

2.7有理数的混合运算(1)主备人:邹红宝学习目标:进一步掌握有理数的运算法则和运算律;知道有理数混合运算的运算顺序,能正确进行有理数的混合运算课前预习1.计算:1) 54(2)9+⨯-- 2) 108-+÷-⨯(-2)(-2)(-3)3)3311()( 1.5)444⎡⎤÷--⨯--⎢⎥⎣⎦ 4)()()57423+-⨯-÷2.提问:怎样进行有理数的混合运算?请学生联想小学四则运算的顺序及前面简单的混合运算概括出有理数混合运算的顺序一般地,有理数的运算顺序是:先 ,再 ,最后 ;如果有括号,那么先算 。

3.巩固计算: (1) ()318-÷-2 (2) ()()32222233--+---(3) ()()[]6253--⨯- (4)1125()(60)3456-+-⨯-教学过程一、展示交流:二、合作探究:例题:计算:(1)[]127(9)(6)3-+÷-+-⨯ (2)1116()24236--+⨯(1) ()()423592÷---⨯+ (2) ()()34233005-⨯---÷⎡⎤⎣⎦三、质疑反馈:1.计算:(1)(4)(8.9)(0.25)-⨯+⨯- (2)(7)(8)(3)6(2)---⨯-+÷-(5)231151()()3442⎡⎤+÷-+-⎢⎥⎣⎦ (6)335(10.2)(2)5⎡⎤---+-⨯÷-⎢⎥⎣⎦(7)35310)3221(÷⨯- (8)322)2()3()1()2(-⨯-+-⨯-2.现有四个有理数3,,4,-6,10.将这四个数进行加、减、乘、除四则混合运算,使其结果为24,请写出两个不同的算式:⑴ ; ⑵ . 课作:课本P51 练一练 P52 习题1 2家作:《每日数学》。

有理数的加减混合运算1-

有理数的加减混合运算1-
• 解题小技巧:在式子中若既有分数又有小数,把小数 统一成分数或把分数统一成小数
课堂练习(1)10-24-15+26-24+18-20 (2)(+0.5)-1/3+(-1/4)-(+1/6)ห้องสมุดไป่ตู้
• (1)解: 10-24-15+26-24+18-20 • =(10+26+18)+(-24-15-24-20) • =54-83 • =-29 • (2)解: (+0.5)-1/3+(-1/4)-(+1/6) • =(+1/2)+( -1/3)+(-1/4)+(-1/6) • =1/2-1/3-1/4-1/6 • =(1/2-1/4)+(-1/3-1/6) • =1/4-1/2 • =-1/4
(1)到原点的距离是4的点有几个?若A.B 的距离是6,且到原点的距离相等,A在原 点的左边,B在原点的右边 A.B分别带表什 么数? 答:到原点的距离是4的点有2个,分别是+4和-4. 若A.B的距离是6,且到原点的距离相等, A在原点的左边,B在原点的右边, A为-3,B 为+3.
(2) (1-a)的相反数是什么? (1+a)与什么是互为相反数? • 答: (1-a)的相反数是- (1-a) 。 (1+a)与-(1+a)是互为相反 数。 • 因为在一个数的前面添上“-”号就表 示这个数的相反数。
; / 河北学习网
duh50exc
此人有意来找麻烦的,生怕在马车前打起来,妨碍宝音回府诊蛤,故此偏离开大街。后头马车再过来时,就没再见到他们。那 赭红单衣的人也离开了大街,又打横走向明犬。明犬跑得快,那人走得慢。而且那人明明已被明犬抛在后面了,可不知怎么一 来,他走得又要撞上明犬了。明犬又出手,那人不避,只管走自己的路。明犬又揪向那人的衣领,那人不躲,就给明犬捉住。 明犬挥臂,这次不是往后面抛,而是往地上掼。那人不招不架、不闪不躲,就给他掼。明犬曾经活活掼死一只老虎。取代“咚” 的一声的,又是“嗤”的一声。那人活生生、好端端的从地上站了起来,懒懒散散,不丁不八。苏明远终于停住马。他要纵马 时,可以冲得很急,好像什么都不能让他停下,可一旦停下,又停得很稳,好像什么都不能把他移动。这样的控马术,莫要说 锦城,恐怕全天下都少有更高明的了。他对着那人看。那人虽说个子小,相貌倒是很堂堂的。那样雄浑的鼻子、那样慨然的眉 眼、那样方正的脸架子、那样豪侠的大胡子,谁都不能不说真是个汉子。苏明远看得都喜欢起来了,笑道:“在下苏明远。阁 下尊姓大名?”那人回答:“我叫张神仙。”苏明远大惊,上上下下打量他:“你哪里像神仙?”“神仙应该像什么样子?” 张神仙反问苏明远。“神仙应该像——”苏明远想了想,“白鬒飘飘,鹤发童颜。或者,神威凛凛,朱袍玉带。或者,假痴不 颠,身具异像„„”他说不下去了,觉得自己很俗。而且,如果把“假痴不颠”作为神仙的一类,那许多自命不凡的家伙岂不 全都立刻荣升神仙一流?张神仙抚掌一笑:“那你便当我是不是神仙的神仙罢!”苏明远问:“然则阁下到此有何贵 干?”“我没有贵干。”张神仙回答,“我在走路。”“两次走到我奴仆的身上。”苏明远提醒他。“世上的路是多么宽啊,” 张神仙转头四顾,一副很茫然的样子,“但脚下的路又总是这么窄。”明犬摩拳擦掌,很想把这满嘴不知所云的小个子汉子揪 起来再摔一次。他真不信摔不死他!“阁下是为了什么事来的吗?”苏明远继续好耐心的询问,并用眼神阻止明犬的企图。 “不为什么。”张神仙怡然答道,“我有很多很多的时间可用,暂时不必为了什么奔忙。倒是阁下,为什么还不忙呢?”“我 应该忙着什么?”苏明远笑问。“忙着救人。”张神仙举单掌于胸,行了个礼,“这对你来说难道不该是最紧急的事吗?”苏 明远神情严肃,深深凝视他:“我应该怎么救人?”张神仙的回复是,该请他去做法。那时宝音的马车已回府,刘晨寂竟已等 在那里了。他似早知这病要糟似的,毫无废话,干净利落开药箱给病人诊治。明远不便领这样一个外头男人到宝音的病榻前, 先领他去宝音原居住的院子,看看那两株芙蓉花

有理数的混合运算参考例题一

有理数的混合运算参考例题一

参考例题例1计算:(-4)×(-75)÷(-74)-(21)3 分析:此题含有乘方、乘、除和减法的混合运算.根据算式中的加、减关系,可将算式分成两段,“-”号前边的部分为第一段,“-”号后面的部分为第二段,运算时,第一步,应将第一段的除法变成乘法,计算第二段中的乘方;第二步,计算乘法;第三步,计算加减法,得出结果.解:(-4)×(-75)÷(-74)-(21)3 =(-4)×(-75)×(-47)-81=-5-81 =-581例2计算:-1-{(-3)3-[3+32×(-121)]÷(-2)}分析:此题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:-1-{(-3)3-[3+32×(-121)]÷(-2)} =-1-{-27-[3+32×(-23)]÷(-2)}=-1-{-27-(3-1)÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27+1}=-1-(-26)=-1+26=25例3计算:(-5)-(-5)×101÷101×(-5)分析:本题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算.解:(-5)-(-5)×101÷101×(-5) =(-5)-(-21)÷101×(-5) =(-5)-(-21)×10×(-5) =(-5)-25=-30。

有理数的混合运算练习题(含答案)(大综合17套)

有理数的混合运算练习题(含答案)(大综合17套)

【素质优化训练】
1.(1)>,>; (2)24,-576; (3)2 或 6.[提示:∵ x =2 ∴x2=4,x=±2]. 2.(1)-31; (2)-8 19 ; 27
【生活实际运用】 B
(3)224
有理数的四则混合运算练习 第 2 套
◆warmup
知识点 有理数的混合运算(一)
1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(- 1 )-(-2)=______. 3
有理数的混合运算练习题(含答案)(大综合 17 套)
有理数混合运算练习题及答案 第 1 套
同步练习(满分 100 分) 1.计算题:(10′×5=50′)
(1)3.28-4.76+1 1 - 3 ; 24
(2)2.75-2 1 -3 3 +1 2 ; 64 3
(3)42÷(-1 1 )-1 3 ÷(-0.125); 24
53
25
=(- 2 )×( )+1+ 1 - 1
5
25
=____+1+ 5 2 10
=_______.
◆Exersising
7.(1)若-1<a<0,则 a______ 1 ; (2)当 a>1,则 a_______ 1 ;
a
a
(3)若 0<a≤1,则 a______ 1 . a
8.a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,则 | a b | +2m2-3cd 值是( )
(3)-1 1 ×[1-3×(- 2 )2]-( 1 )2×(-2)3÷(- 3 )3
2
34
4
(4)(0.12+0.32) ÷ 1 [-22+(-3)2-3 1 × 8 ];

【苏科版】有理数的混合运算计算题(50题)(附解析版)

【苏科版】有理数的混合运算计算题(50题)(附解析版)

(苏科版)七年级上册数学《第二章有理数》专题有理数的混合运算的计算题(50题)一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(−12)×(﹣4)﹣22.2.(2022秋•大竹县校级期末)计算:(1)(−12+16−38)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.4.(2022秋•长顺县期末)计算(−1)3−(−1)+(−6)÷(−12 ).5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).7.(2023春•松江区期末)计算:(516−14)×(−4)2−32+14.8.(2022秋•海丰县期末)计算:﹣6÷2+(13−34)×12+(﹣3)29.(2023春•黄浦区期中)计算:229×(−1)9−(−115)2÷(−0.9)2.10.(2023春•杨浦区期末)计算:−32−(23−32)÷|−16|.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).12.(2023春•青秀区校级月考)计算:23×(−12+1)÷(2−3).13.(2022秋•西宁期末)计算:−14−16×[2−(−3)2].14.(2023春•长宁区期末)计算:(2−0.4)×416÷(−123)−14.15.(2022秋•宁明县期末)−22+|5−8|+24÷(−3)×1 316.(2023•大连一模)计算:(−2)3−(16+38−0.75)×|−24|.17.(2023春•长宁区期末)计算:−22+(−43)−13×[(−2)3+1].18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|−12|+(﹣1)2023.19.(2023春•普陀区期末)计算:−32+(−214)÷32+(38−512)×24.20.(2023•桂平市三模)计算:−32×|−29|+(−1)2023−5+(−54).21.(2023春•普陀区期末)计算:−32+(−214)÷32+(38−512)×24.22.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.523.(2022秋•大冶市期末)计算:﹣14+[4﹣(38+16−34)×24]÷5.24.计算:﹣14﹣(0.5﹣1)÷13×[5﹣(﹣3)2].25.计算:|4﹣412|+(−12+23−16)÷112−22−(+5).26.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].27.(2022秋•滕州市校级期末)计算(1)(−79+56−34)×(﹣36);(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.28.(2022秋•禹城市期中)计算(1)36﹣27×(73−119+227)(2)﹣72+2×(﹣3)2﹣(﹣6)÷(−13)2.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)−24−(13−1)×13[6−(−3)].30.(2022秋•洛江区期末)计算:(1)(12−23−34)×(﹣24). (2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].31.(2022秋•运城期末)计算:(1)(−1)2023−12×14+|−3|;(2)−32÷(−2)2×|−113|×6+(−2)3.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)33.(2022秋•庐江县期中)计算:(1)−12÷3×[3﹣(﹣3)2];(2)﹣52×|1−1615|−|−13|+34×[(−1)3−7].34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(−512)﹣|+18|÷(−12)3.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(−79+56−34)×(﹣36);(4)75×(13−12)×37÷54.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13; (3)(34−13−56)×(﹣12); (4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷94×49÷(﹣16);(3)﹣42﹣3×22×(13−12)÷(﹣113).39.(2022秋•德州期中)计算:(1)−14−16×[3+(﹣3)2]÷(﹣112);(2)(−12+23−56)÷(−118);(3)(512+34−58+712)÷(−724)−227;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2].40.(2022秋•光明区期中)计算题:(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)−14−16×[3−(−3)2];(3)(−60)×(34−56+112);(4)16÷(−2)2−(−12)3×(−4).41.(2022秋•新野县期中)计算题:(1)(−1)5+5÷(−14)−(1−4);(2)−22+313×(−65)+1÷(−14)2;(3)(75−2110−2815)÷(−710)+(−83);(4)[323÷(−2)−114×(−0.2)2÷110]÷(−13)−23.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53;(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3.43.计算:(1)(18−13+16)×(−24);(2)|−2|×(−1)2013−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+534+(﹣825); (3)(23−110+16−25)÷(−130); (4)﹣12020+(﹣2)3×(−12)﹣|﹣1﹣6|.。

有理数的混合运算(好题1)

有理数的混合运算(好题1)
A、买甲站的B、买乙站的
C、买两站的都可以D、先买甲站的1罐,以后再买乙站的
10、(2002•扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是数( )
A、A种包装的洗衣粉B、B种包装的洗衣粉
C、C种包装的洗衣粉D、三种包装的都相同
9、(2005•潍坊)某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是( )
解答:解:因为填入“﹣”后,平方的值最大,
所以计算出来的值是最小的.
故选B
点评:任何数的平方都是非负数.
6、(2006•安顺)规定一种新的运算“*”:对于任意实数x,y,满足x*y=x﹣y+xy.如3*2=3﹣2+3×2=7,则2*1=( )
A、4B、3
C、2D、1
考点:有理数的混合运算。
专题:新定义。
分析:根据混合运算的顺序,先算较高级的运算,再算较低级的运算,如果有括号,就先算括号里面的.本题要把括号内的分数先通分计算,再把除法转化为乘法.
解答:解:48÷( + )
=48÷( )
=48
=
= .
故选C.
点评:含有有理数的加、减、乘、除、乘方多种运算的算式,根据几种运算的法则可知:减法、除法可以分别转化成加法和乘法,所以有理数混合运算的关键是加法和乘法.异分母相加要先通分.

有理数的加减混合运算 (1)

有理数的加减混合运算 (1)

七 年级 数学 科目导学案内容(章节课时): 第一章 1.3节有理数的加减法 主备课人: 辅助备课人签名:课题名称: 有理数的加减混合运算 (1)一、学习目标:1、能把有理数的加、减法混合运算的算式写成几个有理数的和式,并能正确地进行有理数加减混合运算。

2、能体会数学中的转化思想。

有理数加减法的混合运算及其应用。

二、学习重点:有理数加减法的混合运算及其应用。

三、学习难点:有理数加减法的混合运算及其应用。

四、导学内容:1.有理数的加法法则,有理数的减法法则。

2.一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?3.(-8)-(-10)+(-6)-(+4),这是有理数的加减混合运算题,你会做吗?请同学们思考练习。

根据有理数减法法则,有理数的加减混合运算可以统一为五、合作探究:1.加法、减法统一成加法由于减法可以改写成加法进行运算,因此所有加法、减法的运算在有理数范围内都可以统一成加法运算。

如:(-12)+(-5)-(-8)-(+9)可以改写成 (-12)+(-5)+(+8)+(-9)做一做:(1) (-9)-(+5)-(-15)-(+9)(2) 2+5-8(3) 14-(-12)+(-25)-172.有理数加法运算中,加号可以省略如: 12+(-8)=12-8; (-12)+(-8)=(-12)-(+8)=(-12)-8(-9)+(-5)+(+15)+(-20)= -9-5+15-20练一练:将(-15)-(+63)-(-35)-(+24)+(-12)先统一成加法,再省略加号。

3.加、减混合运算中“+”“—”号的理解(1)可以看作是运算符号(第一个数除外)如:-5-3+8-7可读作负5减去3加上8减去7(2)可以看作是一个数的本身的符号如:-5-3+8-7可以看作是(-5)+(-3)+(+8)+(-7),可读作负5、负3、正8、负7的和4.省略加号的加法算式的运算练一练: (1)-3-5+4 (2)-26+43-24+13-46六、活动交流内容:例题1 计算:(-20)+(+3)-(-5)-(+7)七、课堂测评:计算(1)(-4)+9-(-7)-13 (2)11-39.5+10-2.5-4+19 (3)54)1.3()53(4.2+-+--八、教学反思:。

1.4有理数加减乘除混合运算教案[1]

1.4有理数加减乘除混合运算教案[1]

1.4有理数乘除混合运算(1)教学目标知识与技能:通过复习课,进一步夯实有理数的加减乘除法的运算以及运算法则。

过程与方法:通过复习同级混合运算,为有理数的乘方的学习打下基础。

情感态度、价值观:在复习课的学习过程中,培养学生的小组合作能力。

重点:有理数各种运算的运算法则难点:有理数的四则混合运算教学方法:小组合作,教师适当指导,点评教学准备:班班通、彩色粉笔教学过程一、学生阅读教材,并回答下列问题1、有理数的加法法则2、有理数的减法法则3、有理数的乘法法则4、有理数的除法法则5、有理数同级四则混合运算的运算顺序二、小组合作,完成练习1、计算:(1)-5-9+3;(2)10-17+8;(3)-3-4+19-11;(4)-8+12-16-23(5)(+3.41)-(-0.59)(6)—9+(—3 )+32、计算:(1) - 4.2+5.7-8.4+10;(2) 6.1-3.7- 4.9+1.83、计算:(1)(—36)—(—25)—(+36)+(+72)(2)(—8)—(—3)+(+5)—(+9);4、计算:(1)12-(-18)+(-7)-15;(2)(2)-40-28-(-19)+(-24)-(-32);(3)4.7-(-8.9)-7.5+(-6);(4)(-0.6)+1.7+(+0.6 )+(-1.7 )+(-9 )三、课堂小结有理数加减混合运算方法1:有理数加减混合运算时先减法统一为加法然后计算方法2:有理数加减混合运算时先省略括号(或省略加号)然后计算四、达标测评5、有理数加法(1)、(-9)+(-13)(2)、(-12)+27(3)、(-28)+(-34)(4)、67+(-92)(5)、(-27.8)+43.9 (6)、(-23)+7+(-152)+65 (8)、38+(-22)+(+62)+(-78)(9)、(-8)+(-10)+2+(-1)(10)、(-)+0+(+ )+(-)+(-)(11)、(-8)+47+18+(-27)(12)、(-5)+21+(-95)+29(13)、(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)(14)、6+(-7)+(9)+2(15)、72+65+(-105)+(-28)(16)、(-23)+|-63|+|-37|+(-77)(17)、(+18)+(-32)+(-16)+(+26)(18)、19+(-195)+47(19)、(-0.8)+(-1.2)+(-0.6)+(-2.4)6、有理数减法(1)、7-9(2)、―7―9(3)、0-(-9)(4)、(-25)-(-13)(5)、8.2―(―6.3)(6)、(-3 )-5(7)、(-12.5)-(-7.5)(8)、(-26)―(-12)―12―18(9)、(-20)-(+5)-(-5)-(-12)(10)、(-23)―(-59)―(-3.5)(11)、|-32|―(-12)―72―(-5)(12)、(+6.1)―(-4.3)―(-2.1)―5.1(13)、(-)―(-1 )―(-1 )―(+1.75)(14)、(-3 )―(-2) ―(-1 )―(-1.75)(15)、-8 -5 +4 -3(16)、0.5+(-)-(-2.75)+(17)、(+4.3)-(-4)+(-2.3)-(+4)(18)、(-0.5)-(-3 )+6.75-5五、课堂检测能力培养与测试微课堂讲解(四)针对练习部分六、布置作业:课本36页习题1.4的第5题、第6题.七、中考考点分析:中考要求学生掌握有理数的加减乘除混合运算,但并不是刻意求难求繁。

有理数混合运算专项训练1

有理数混合运算专项训练1

有理数混合运算专项训练11.﹣14﹣×[2﹣(﹣3)2]. 2.﹣14+16÷(﹣2)3×|﹣3﹣1|.3.(1)(﹣+)÷(2)﹣12×4﹣(﹣2)2÷2 4.(1)(﹣2)2×2+(﹣2)3÷4 (2)﹣(﹣1)4×(﹣)×6÷2 5.﹣(﹣2)﹣|﹣1|+(﹣0.125)8×886.(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.7.(1)(﹣36)÷9 (2)﹣(﹣16)+10+(5)﹣17 (3)12÷(﹣2)3﹣(﹣)×(﹣4)(4)3×(8﹣3)÷1×8.(1)(2).9.(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣)3(3)(4)10.(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|11.(1)(2)﹣110﹣8÷(﹣2)+4×|﹣5| 12.(1)(﹣)×(﹣24).(2)﹣.13.(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.14.(1)()×(﹣60)(2)×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×+1|.15.(﹣1)4×5+(﹣10)÷2﹣3×(﹣)16.(1)﹣12×2+(﹣2)2÷4﹣(﹣3)(2)12+(﹣7)﹣(﹣18)﹣32.5.17.(1)(﹣1)3﹣×[2﹣(﹣3)2] (2)﹣22+|5﹣8|+24÷(﹣3)×.18.﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2] 19.﹣32+(﹣12)×||﹣6÷(﹣1).20.﹣×[﹣32×(﹣)3﹣2].21.(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5| (2)﹣16+42﹣(﹣1)×(﹣)÷﹣.22.(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.23.(1)40÷(﹣8)+(﹣3)×(﹣2)2+17 (2)﹣42×+|﹣2|3×(﹣)3.24.(1)(﹣+﹣)×(﹣48)(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×25.(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.26.(1)﹣14+×(﹣2)3(2)(﹣+﹣)×4827.(1)(2)28.(1)(1﹣+)×(﹣24);(2).29.(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12018×[2﹣(﹣3)2].30.(1)(﹣2)2﹣6×÷(﹣3);(2)36×(﹣)2﹣(﹣7).31.﹣12+(﹣2)2÷|﹣|﹣(﹣1)201832.(1)﹣22﹣9×(﹣)2+4÷|﹣|;(2)(﹣24)×(﹣+﹣).33.计算:﹣8+|32÷(﹣2)3|﹣(﹣42)×5.34.(1)(﹣)+|0﹣5|﹣(﹣4)(2)×(﹣5)+(﹣)×9﹣×8 (3)(﹣1)3﹣×[2﹣(﹣3)2].35.(1)﹣14+|3﹣5|﹣16÷(﹣2)×;(2)6×﹣32÷(﹣12).36.用简便方法计算:×18﹣1.45×6+3.95×6.37.﹣(﹣2)2+(﹣3)3÷(﹣)+|﹣4|×(﹣1)2017.38.(1)(1﹣1﹣+)÷(﹣)(2)﹣25÷(﹣4)×()2﹣12×(﹣15+24)3 39.(1)(﹣)×(﹣24)﹣(﹣49÷7)(2)﹣19﹣5×(﹣2)+(﹣4)2÷(﹣8)40.(1)22+2×[(﹣3)2﹣3+] (2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.有理数混合运算专项训练1参考答案1.计算:﹣14﹣×[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.2.计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.3.计算:(1)(﹣+)÷(2)﹣12×4﹣(﹣2)2÷2【解答】解:(1)原式=(﹣+)×12=8﹣9+2=1;(2)原式=﹣4﹣2=﹣6.4.计算(1)(﹣2)2×2+(﹣2)3÷4(2)﹣(﹣1)4×(﹣)×6÷2【解答】解:(1)原式=4×2﹣8÷4=8﹣2=6;(2)原式=﹣1×(2﹣3)÷2=1÷2=0.5.5.计算;﹣(﹣2)﹣|﹣1|+(﹣0.125)8×88【解答】解:原式=2﹣1+1=2.6.计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.【解答】解:原式=1﹣64×(﹣),=1﹣64×(﹣),=1+8,=9;(2)原式=7×(2.6+1.5)﹣4.1×8,=7×4.1﹣8×4.1,=(7﹣8)×4.1,=﹣4.1.7.计算(1)(﹣36)÷9(2)﹣(﹣16)+10+(5)﹣17(3)12÷(﹣2)3﹣(﹣)×(﹣4)(4)3×(8﹣3)÷1×【解答】解:(1)原式=﹣(36÷9)=﹣4;(2)原式=16+10+5﹣17=31﹣17=14;(3)原式=12÷(﹣8)﹣=﹣﹣=﹣2;(4)原式=×(﹣)××=(﹣)×=×﹣×=8﹣3=5.8.计算:(1)(2).【解答】解:(1)原式=﹣1+2﹣16×(﹣)×,=﹣1+2+4,=5;(2)原式=6×﹣6×﹣9×(﹣),=2﹣3+,=﹣.9.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.10.计算:(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|【解答】解:(1)16﹣(﹣18)+(﹣9)﹣15 =16+18﹣9﹣15=10;(2)(﹣+﹣)×24﹣=﹣4+14﹣9﹣=;(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|=﹣9+4×(﹣5)﹣6=﹣9﹣20﹣6=﹣35.11.计算:(1)(2)﹣110﹣8÷(﹣2)+4×|﹣5|【解答】解:(1)原式=×(﹣48)﹣×(﹣48)+×(﹣48)=﹣8+36﹣4=24;(2)原式=﹣1+4+4×5=3+20=23.12.计算:(1)(﹣)×(﹣24).(2)﹣.【解答】解:(1)原式=18+15﹣18=15;(2)原式=﹣4+2×+×16=﹣4+3+1=0.13.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.【解答】解:(1)原式=(﹣28)÷(﹣2)+(﹣5)=14﹣5=9;(2)原式=(﹣++)×36=9﹣30+12+54=45.14.计算:(1)()×(﹣60)(2)×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×+1|.【解答】解:(1)原式=﹣40+55﹣16=﹣1;(2)原式=﹣×(﹣8)÷4﹣2×|(﹣1)×+1|=1×﹣2×=﹣=﹣.15.计算:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)【解答】解:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)=1×5+(﹣5)+2=5+(﹣5)+2=2.16.计算:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)(2)12+(﹣7)﹣(﹣18)﹣32.5.【解答】解:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)=﹣1×2+4÷4+3=﹣2+1+3=2;(2)12+(﹣7)﹣(﹣18)﹣32.5=12+(﹣7.5)+18+(﹣32.5)=﹣10.17.计算:(1)(﹣1)3﹣×[2﹣(﹣3)2](2)﹣22+|5﹣8|+24÷(﹣3)×.【解答】解:(1)原式=﹣1﹣×(﹣7)=﹣1+=;(2)原式=﹣4+3﹣=﹣.18.计算:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]【解答】解:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]=﹣1﹣÷×(2﹣9)=﹣1﹣×7×(2﹣9)=﹣1﹣×7×(﹣7)=﹣1﹣(﹣)=﹣1+=.19.计算:﹣32+(﹣12)×||﹣6÷(﹣1).【解答】解:﹣32+(﹣12)×||﹣6÷(﹣1)=﹣9+(﹣12)×+6=﹣9+(﹣6)+6=﹣9.20.计算:﹣×[﹣32×(﹣)3﹣2].【解答】解:原式=﹣×[﹣9×(﹣)﹣2]=﹣×(﹣2)=﹣×=﹣.21.计算:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5|(2)﹣16+42﹣(﹣1)×(﹣)÷﹣.【解答】解:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5|=135+(﹣2)﹣20=113;(2)﹣16+42﹣(﹣1)×(﹣)÷﹣=﹣16+16+1×(﹣)×6﹣=﹣16+16+(﹣1)﹣=.22.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.【解答】解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13.23.计算(1)40÷(﹣8)+(﹣3)×(﹣2)2+17(2)﹣42×+|﹣2|3×(﹣)3.【解答】解:(1)原式=﹣5﹣12+17=0;(2)原式=﹣1﹣1=﹣2.24.计算下列各题:(1)(﹣+﹣)×(﹣48)(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×【解答】解:(1)(﹣+﹣)×(﹣48)=﹣44+56+(﹣36)+26=2;(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×=1﹣=1﹣=0.25.计算:(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.【解答】解:(1)原式=﹣0.5+6﹣7+4=(﹣0.5﹣7.5)+(6+4)=﹣8+11=3;(2)原式=[25×(﹣)+8]×(﹣8)÷7 =[﹣15+8]×(﹣8)÷7=﹣7×(﹣8)÷7=56÷7=8.26.计算:(1)﹣14+×(﹣2)3(2)(﹣+﹣)×48【解答】解:(1)原式=﹣1+×(﹣8)=﹣1﹣1=﹣2;(2)原式=﹣8+36﹣4=24.27.计算:(1)(2)【解答】解:(1)原式=﹣2××=﹣2;(2)原式=﹣9﹣6+1+8=﹣6.28.计算:(1)(1﹣+)×(﹣24);(2).【解答】解:(1)原式=﹣24+9﹣14=﹣29;(2)原式=﹣8×﹣(﹣4)=﹣6+4=﹣2.29.计算:(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12018×[2﹣(﹣3)2].【解答】解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣1+=.30.计算:(1)(﹣2)2﹣6×÷(﹣3);(2)36×(﹣)2﹣(﹣7).【解答】解:(1)原式=4+1=5;(2)原式=1+7=8.31.计算:﹣12+(﹣2)2÷|﹣|﹣(﹣1)2018【解答】解:原式=﹣1+4÷﹣1=﹣1+16﹣1=14.32.计算:(1)﹣22﹣9×(﹣)2+4÷|﹣|;(2)(﹣24)×(﹣+﹣).【解答】解:(1)﹣22﹣9×(﹣)2+4÷|﹣|=﹣4﹣9×+4×=﹣4﹣1+6=1;(2)(﹣24)×(﹣+﹣)=20+(﹣9)+2=13.33.计算:﹣8+|32÷(﹣2)3|﹣(﹣42)×5.【解答】解:﹣8+|32÷(﹣2)3|﹣(﹣42)×5=﹣8+|32÷(﹣8)|﹣(﹣16)×5=﹣8+4+80=76.34.计算(1)(﹣)+|0﹣5|﹣(﹣4)(2)×(﹣5)+(﹣)×9﹣×8 (3)(﹣1)3﹣×[2﹣(﹣3)2].【解答】解:(1)原式=﹣+5+4=﹣+10=9;(2)原式=﹣×(5+9+8)=﹣7;(3)原式=﹣1﹣×(﹣7)=﹣1+=.35.计算:(1)﹣14+|3﹣5|﹣16÷(﹣2)×;(2)6×﹣32÷(﹣12).【解答】解:(1)﹣14+|3﹣5|﹣16÷(﹣2)×=﹣1+2+4=5;(2)6×(﹣)﹣32÷(﹣12)=2﹣3﹣9÷(﹣12)=﹣1+=﹣.36.计算:用简便方法计算:×18﹣1.45×6+3.95×6.【解答】解:原式=14﹣15+3﹣6×(1.45﹣3.95)=2+15=17.37.计算:﹣(﹣2)2+(﹣3)3÷(﹣)+|﹣4|×(﹣1)2017.【解答】解:原式=﹣4+(﹣27)×(﹣)+4×(﹣1)=﹣4+6﹣4=﹣238.计算:(1)(1﹣1﹣+)÷(﹣)(2)﹣25÷(﹣4)×()2﹣12×(﹣15+24)3【解答】解:(1)原式=(1﹣1﹣+)×(﹣24)=﹣24+36+9﹣14=7;(2)原式=﹣32×(﹣)×﹣12×(﹣15+16)3=2﹣12×1=2﹣12=﹣10.39.计算:(1)(﹣)×(﹣24)﹣(﹣49÷7)(2)﹣19﹣5×(﹣2)+(﹣4)2÷(﹣8)【解答】解:(1)原式=﹣3+2+7=6;(2)原式=﹣1+10﹣2=7.40.计算题:(1)22+2×[(﹣3)2﹣3+](2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.【解答】解:(1)22+2×[(﹣3)2﹣3+]=4+2×[9﹣3+]=4+2×=4+13=17;(2)﹣0.25÷×(﹣1)3+(﹣3.75)×24=﹣×(﹣1)+33+56﹣90=1+33+56﹣90=0.。

有理数的混合运算(1)

有理数的混合运算(1)

第25课时有理数的混合运算(一)教学内容:§2·13有理数的混合运算(课本P 67---P 68)教学目标:1、了解有理数的混合运算顺序,并能根据法则实行简单的计算。

2、掌握有理数的混合运算中常用的运算技巧,能解决分数乘除运算中的问题。

3、培养学生的运算水平,提升运算的准确性。

教学重点:有理数的混合运算顺序教学难点:有理数的混合运算教具准备:小黑板学习方法:自主学习 小组合作探究教学过程:一:引入新课:小学我们已经学过混合运算,请看下面的算式里有哪几种运算?3+50÷22×(51-)-1.这个算式中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算。

二:展示目标,板书课题(小黑板)三:出示自学指导阅读课本课本P 67---P 68回答问题①有理数的混合运算顺序是什么?什么是第一级运算?什么是第二级运算?什么是第三级运算?②什么是同级运算?在同级运算中按什么顺序实行计算?③指出下列各题的运算顺序:(1)-50÷2×(51) (2)6÷(3×2) (3)6÷3×2 (4)17-8÷(-2)+4×(-3)(5)32-50÷22×(101)-1(6)(-321)×(0.5-32)÷911 (7)-1- [1-(1-0.5×43)](8)3+50÷22×(51-)-1④思考:2÷(21--2)与2÷(21--2)有什么不同? (-2)÷(2×3)与(-2)÷2×3有什么不同?四:课堂训练:(1)(31-21)÷411÷101 (2)412×(76-)÷(21-2) (3)2×(-3)3-4×(-3)+15(4)-321×(1-32)÷91 (5)[12-4×(3-10)] ÷4 五:课堂检测:(1)5-(-7-5)×(241-) (2)-22-(-2)2+(-2)3-32(3)2+30÷22×(31-)-1 (4)-321×(1-32)÷91 (5)[1-(-3)]×[(-2)-(-4)] ×(-8)(6)-32÷95×(-32)2×(-1)5六:小结:你能顺利实行有理数的混合运算吗?谈谈你的收获。

有理数的混合运算练习题(含答案)(大综合17套)[1]

有理数的混合运算练习题(含答案)(大综合17套)[1]

有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-32×[-5+(1-0.2÷35)÷(-2)]-1ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数加减混合计算题100道含答案(七年级数学)

有理数加减混合计算题100道含答案(七年级数学)

有理数运算练习(一)【加减混合运算】一、有理数加法.1、【基础题】计算:(1)2+(-3);(2)(-5)+(-8);(3)6+(-4);(4)5+(-5);(5)0+(-2);(6)(-10)+(-1);(7)180+(-10);(8)(-23)+9;(9)(-25)+(-7);(10)(-13)+5;(11)(-23)+0;(12)45+(-45).2、【基础题】计算:(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25;(4)45+(-23);(5)(-45)+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65);(2)(-64)+17+(-23)+68;(3)(-42)+57+(-84)+(-23);(4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75);(6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0;(8)(-26)+52+16+(-72).4、【综合Ⅰ】计算: (1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1;(4))432()413(-+-; (5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-;(4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.【基础题】计算: (1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0;(5)3-5; (6)3-(-5); (7)(-3)-5 (8)(-3)-(-5);(9)(-6)-(-6); (10)(-6)-6.【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52;(4)521-(-7.2); (5)0-(-74); (6)(-21)-(-21);(7)525413- ; (8)-64-丨-64丨【基础题】填空: (1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-40 8、【基础题】计算:(1)(-72)-(-37)-(-22)-17;(2)(-16)-(-12)-24-(-18);(3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31);(6)(-2112)-[ -6.5-(-6.3)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算 (1)-7+13-6+20; (2)-4.2+5.7-8.4+10;(3)(-53)+51-54; (4)(-5)-(-21)+7-37;(5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)4.7-3.4+(-8.3); (2)(-2.5)-21+(-51);(3)21-(-0.25)-61; (4)(-31)-15+(-32);(5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算: (1)33.1-(-22.9)+(-10.5); (2)(-8)-(-15)+(-9)-(-12);(3)0.5+(-41)-(-2.75)+21; (4)(-32)+(-61)-(-41)-21; (5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-3.4; (2)(-21.6)+3-7.4+(-52);(3)31+(-45)+0.25; (4)7-(-21)+1.5;(5)49-(-20.6)-53; (6)(-56)-7-(-3.2)+(-1); (7)11512+丨-11611丨-(-53)+丨212丨;(8)(- 9.9)+ 1098 + 9.9 +(- 1098) 13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678;(2)-0.5+1.75+3.25+(-7.5)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)-0.5-(-413)+2.75-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30. 4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2)4.25 (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-126.1、【答案】 (1)51; (2)-25; (3)-1516; (4)4.1; (5)74; (6)0;(7)-2043(8)-128 7、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-6.1或-10169、【答案】 (1)20; (2)3.1; (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-3.2; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1)45.5; (2)10; (3)27; (4)-1213; (5)152; (6)65; 12、【答案】 (1)1.6; (2)-26.4; (3)30; (4)9; (5)69; (6)-6;(7)27.1; (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313(注:文档可能无法思考全面,请浏览后下载,供参考。

第一册有理数的混合运算

第一册有理数的混合运算

第一册有理数的混合运算1. 引言有理数是数学中一个重要的概念,包括整数、分数和小数。

有理数的混合运算指的是在计算过程中,涉及到不同形式的有理数进行加、减、乘、除等运算。

本文档将详细介绍有理数的混合运算的概念和一些常见的计算方法。

2. 混合数的定义混合数是由整数和分数组成的数,通常通过一个整数部分和一个分数部分表示。

例如,5和1/2可以表示为5 1/2。

混合数可以转化为假分数,即将整数部分和分数部分的和作为分子,分母不变。

例如,5 1/2可以转化为11/2。

3. 有理数的混合运算有理数的混合运算包括加法、减法、乘法和除法。

下面分别介绍这四种运算的计算方法。

3.1 加法混合数的加法可以通过以下步骤来进行:1.将混合数转化为假分数。

2.找到两个假分数的公共分母。

3.将两个假分数的分子相加,保持分母不变。

4.如果分子相加后超过公共分母,则将结果转化为混合数。

3.2 减法混合数的减法可以通过以下步骤来进行:1.将混合数转化为假分数。

2.找到两个假分数的公共分母。

3.将两个假分数的分子相减,保持分母不变。

4.如果分子相减后变为负数,则将结果转化为混合数。

3.3 乘法混合数的乘法可以通过以下步骤来进行:1.将混合数转化为假分数。

2.将两个假分数的分子相乘,分母相乘。

3.如果分子和(或)分母是负数,则将结果转化为负数。

4.如果分子可以整除分母,则将结果转化为混合数。

3.4 除法混合数的除法可以通过以下步骤来进行:1.将混合数转化为假分数。

2.将除数转化为倒数。

3.将被除数的分子和除数的分子相乘,被除数的分母和除数的分母相乘。

4.如果分子和(或)分母是负数,则将结果转化为负数。

5.如果分子可以整除分母,则将结果转化为混合数。

4. 示例下面以几个示例来说明混合数的混合运算的计算方法。

4.1 加法示例计算5 1/2 + 3 3/4的过程如下:1.将两个混合数转化为假分数,得到11/2和15/4。

2.找到公共分母为4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.运用运算律进行有理数的混合运算的简便计算.
教具
与课件




2.8有理数的混合运算(1)教学环节学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化






问题引入
在算式8-23÷(-4)×(-7+5)=?中,有几种运算?
小学里,我们在进行含有加、减、乘、除的混合运算时,是按照怎样的顺序进行的?
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第课(章)第节(单元)第课时,总课时年月日
课题
2.8有理数的混合运算(1)
教学模式
讨论交流
教学
目标(认知技能
情感)
1.知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;
2.会用计算器进行较繁杂的有理数混合运算.
教学重难点
1.有理数的混合运算;
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化




例题讲解
例1判断下列计算是否正确.
(1)3-3×=0×=0;
(2)-120÷20×=-120÷10=-12;
(3)9-4×()3=9-23=1;
(4)(-3)2-4×(-2)=9+8=17.
例2计算:
(1)9+5×(-3)-(-2)2÷4;
教师施教提要
(启发、精讲、活动等)
再次
优化
随堂
练习
课堂
小结
达标
检测
布置
作业
课堂作业课后作业
下节课预习内容
教后感
(2)(-5)3×[2-(-6)]-300÷5;
(3)(-)×3÷3×(-).
练一练计算:
(1)18-6÷(-3)×(-2);
(2)24+16÷(-2)2÷(-10);
(3)(-3)3÷(6-32);
(4)(5+3÷)÷(-2)+(-3)2.
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
有理数的混合运算的运算顺序
也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:
先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算.
你会根据有理数的运算顺序计算上面的算式吗?
教学
环节
学生自学共研的内容方法
相关文档
最新文档