八年级数学下册第18章平行四边形18.1平行四边形18.1.2平行四边形的判定(2)教案(新版)新人教版

合集下载

18.1.2 平行四边形的判定(第一课时)(原创) (2)

18.1.2 平行四边形的判定(第一课时)(原创) (2)
情感态度
价值观
体验数学活动来源于生活又服务于生活,提高我们的学习兴趣。
重点
平行四边形的判定方法及应用
难点
平行四边形的判定定理与性质定理的灵活应用
教法
主体性学习法
学法
合作探究
课型
新授课
课时
1课时
教学过程
学生行为
教师行为
设计意图
一、复习回顾:前几节课我们共同学习了平行四边形概念,共同研究了平行四边形的性质。下面我找同学来说一下平行四边的概念是什么?平行四边形又有哪些性质?
(四)归纳:
平行四边形判定的方法:
语言叙述
符号叙述
学生齐读平行四边形的判定方法。
教师利用多媒体展示内容,并引导学生发现性质定理和判定定理的关系。
便于学生理解和掌握平行四边形的判定方法,理解平行四边形性质定理和判定定理的关系。
四、看谁最快
小练习。
(多媒体)
回答问题,给出答案。
教师对学生给出的答案及时给予肯定与修正。




知识与能力
1、经历并了解平行四边形的判别方法探索过程,我们可以逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法,能根据判别方法进行有关的应用。
3、在探索过程中发展我们的合理推理意识、主动探究的习惯。
过程与方法
通过创设情境激发学生学习探究的兴趣,学生通过合作探究理解并掌握平行四边形的判定。
便于学生加深对平行四边形的判定的理解。
五、例题讲解
46页例3。
由两名同学分别上黑板写出证明过程,其他同学在座位上写出证明。
教师对学生的证明过程及时给予肯定或修正。
真正落实学生的证明书写过程,提高学生书写过程的能力。

18.1.2 平行四边形的判定(1)平行四边形的判定 参考解析

18.1.2  平行四边形的判定(1)平行四边形的判定 参考解析

18.1.2 平行四边形的判定第1课时平行四边形的判定课前预习1.平行四边形的判定定理:(1)两组对边分别相等(或分别平行)的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.【数学表述】(1)如图1,在四边形ABCD中,∵AB=CD,AD=BC (或AB∥CD,AD∥BC),∴四边形ABCD是平行四边形;(2)如图1,在四边形ABCD中,∵∠A=∠C,∠B=∠D ,∴四边形ABCD是平行四边形;(3)如图2,在四边形ABCD中,AC,BD相交于点O,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形;(4)如图1,在四边形ABCD中,∵AD=BC,AD∥BC(或AB=CD,AB∥CD),∴四边形ABCD是平行四边形.课堂练习知识点1 两组对边分别平行或相等的四边形是平行四边形1.如图,在四边形ABCD中,当∠1=∠2,且___AD___∥BC___时,这个四边形是平行四边形.2.在四边形ABCD中,AB=3 cm,BC=5 cm,那么当DC=___3___ cm,AD=___5___ cm时,四边形ABCD是平行四边形.3.在四边形ABCD中,AD∥BC,要使四边形ABCD是平行四边形,则应添加的条件是(D)A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°知识点2 两组对角分别相等的四边形是平行四边形4.如图,已知∠B=∠D,要使四边形ABCD成为平行四边形,需要添加的一个条件是___∠A=∠C___.5.在下列条件中,不能判定四边形ABCD是平行四边形的是(D)A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°知识点3 对角线互相平分的四边形是平行四边形6.【核心素养·数学建模】小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是(A)A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形知识点4 一组对边平行且相等的四边形是平行四边形7.如图,将线段AB 平移得到线段DC ,连接AD ,BC ,则四边形ABCD 为___平行___四边形,其依据为___一组对边平行且相等的四边形是平行四边形___.8.(2020文山期末)如图,在四边形ABCD 中,E ,F 是对角线AC 上的两点,BE⊥AC,DF⊥AC,且BE=DF ,AF=CE.求证:四边形ABCD 是平行四边形.证明:∵BE⊥AC,DF⊥AC,∴∠BEC=∠DFA=90°,在△BCE 和△DAF 中,,,,BE DF BEC DFA CE AF =⎧⎪∠=∠⎨⎪=⎩∴△BCE≌△DAF(SAS ).∴BC=AD,∠BCE=∠DAF.∴BC∥AD.∴四边形ABCD 是平行四边形.课时作业练基础1.(2020个旧期末)如图,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有哪几种,请一一写出___①③或②④或①②或③④___.2.在四边形ABCD中,AC,BD相交于点O.(1)如果AC=10 cm,BD=8 cm,那么当AO=CO = 5___cm,DO=BO=___4___cm 时,四边形ABCD为平行四边形;(2)如果∠BAD=65°,∠ABC=115°,那么当∠BCD=___65___°,∠ADC=___115___°时,四边形ABCD为平行四边形.3.如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点,则图中平行四边形的个数一共有(B)A.3个B.4个C.5个D.6个4.如图,在平面直角坐标系xOy中,以A(-1,0),B(2,0),C(0,1)为顶点构建平行四边形,下列各点中不能作为平行四边形顶点坐标的是(B)A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)5.有下列命题:①一组对边平行且一组对角相等的四边形是平行四边形;②一组对边相等且一组对角相等的四边形是平行四边形;③一组对边平行且一条对角线平分另一条对角线的四边形是平行四边形; ④一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形. 其中正确的个数为( B )A.1个B.2个C.3个D.4个6.(2020盘龙区期末)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 是AC 上的两点,且B F∥DE.(1)求证:△BFO≌△DEO;(2)求证:四边形BFDE 是平行四边形.证明:(1)∵四边形ABCD 是平行四边形,∴OB=OD,∵BF∥DE,∴∠OFB=∠OED.在△BFO 和△DEO 中,,,,OFB OED FOB EOD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFO≌△DEO(AAS );(2)∵△BFO≌△DEO,∴OF=OE.又∵OB=OD,∴四边形BFDE 是平行四边形.7.如图,E ,F 分别为 ABCD 中AD ,BC 的中点,分别连接AF ,BE 交于点G ,连接CE ,DF 交于点H.求证:EF 与GH 互相平分.证明:∵E 为AD 的中点,F 为BC 的中点, ∴AE=12AD ,CF=12BC. ∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC.∴AE∥CF,AE=CF.∴四边形AFCE 是平行四边形.∴AF∥CE,同理可证BE∥DF.∴四边形GFHE 是平行四边形.∴EF 与GH 互相平分.8.(2020昆明期末)如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的两点,且BF=DE.求证:(1)AE=CF ;(2)四边形AECF 是平行四边形.证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.又∵BF=DE,∴BF -EF=DE-EF ,即BE=DF.在△ABE 和△CDF 中,,,,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△CDF(SAS ).∴AE=CF;(2)∵△ABE≌△CDF,∴∠AEB=∠CFD.∴∠AEF=∠CFE.∴AE∥CF.∵AE=CF,∴四边形AECF 是平行四边形.9.如图,以△ABC 的三边为一边的BC 的同侧作等边三角形△ABE,△BCF,△ACG.求证:四边形AEFG 是平行四边形.证明:∵△ABE、△BCF 为等边三角形,∴AB=BE=AE,BF=BC ,∠ABE=∠CBF=60°.∴∠FBE=∠CBA.在△FBE 和△CBA 中,,,,BF BC FBE CBA EB AB =⎧∠=∠=⎪⎨⎪⎩∴△FBE≌△CBA(SAS).∴EF=AC.又∵△AGC 为等边三角形,∴CG=AG=AC.∴EF=AG.同理可得AE=GF.∴四边形AEFG 是平行四边形.提能力10.如果一个四边形ABCD 的边长依次是a ,b ,c ,d ,且a 2+b 2+c 2+d 2=2ac+2bd ,那么这个四边形是 平行四边形.【解析】∵a2+b2+c2+d2=2ac+2bd,∴(a2-2ac+c2)+(b2-2bd+d2)=0,即(a-c)2+(b-d)2=0.∴a-c=0,b-d=0.∴a=c,b=d.∴四边形ABCD是平行四边形.11.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F,CE=BE,(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∴AD∥BC.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.∵CE=BE,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.由等边△ABD得∠D=60°,∴∠AFE=∠D.∴FC∥BD.由AD∥BC知FD∥BC.∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,AB=3,AC=∴BC=12∴SBCFD。

赵县五中八年级数学下册 第18章 平行四边形18.2 平行四边形的判定第2课时由对角线判定平行四边形

赵县五中八年级数学下册 第18章 平行四边形18.2 平行四边形的判定第2课时由对角线判定平行四边形

2x-3y=5, 8.(2019·潍坊)已知关于 x,y 的二元一次方程组x-2y=k 的解 满足 x>y,求 k 的取值范围.
解:2xx--23y=y=k5②①,, ①-②,得 x-y=5-k, ∵x>y,∴x-y>0. ∴5-k>0.解得 k<5
9.(2019·天门)不等式组x5--12>x≥01, 的解集在数轴上表示正确的是( C)
13.如图,▱ ABCD 的对角线相交于点 O,直线 EF 经过点 O,分别与 AB、CD 的延 长线交于点 E、F,求证:四边形 AECF 是平行四边形.
解:证△BOE≌△DOF 或△AOE≌△COF 得 OE=OF,易知 OA=OC, ∴四边形 AECF 是平行四边形.
14.如图,四边形 ABCD 是平行四边形,AE⊥BD,CF⊥BD,垂足分别为 E、F,BG ⊥AC,DH⊥AC,垂足分别为 G、H.判断四边形 GEHF 的形状,并说明理由.
请用这种方法解决下面的问题: 如图,在△ABC 中,AB=AC,延长 AB 到点 D,使 DB=AB,E 是 AB 的中点.求证: CD=2CE.
解:延长 CE 到点 F,使 EF=CE,连结 AF、BF, ∵EF=CE,E 是 AB 的中点,∴四边形 ACBF 是平行四边形, ∴AF 平行且等于 BC,∴∠FAB=∠ABC. ∵AB=AC,∴∠ACB=∠ABC=∠FAB, ∴∠FAC=∠FAB+∠BAC=∠ACB+∠BAC=∠DBC. 又∵AC=AB=BD,AF=BC,∴△AFC≌△BCD(S.A.S.),∴CF=CD=2CE.
解:四边形 BECF 是平形四边形,理由如下:∵CF∥BE,∴∠FCD=∠EBD. ∵D 是 BC 的中点,∴CD=BD.∵∠FDC=∠EDB,∴△CDF≌△BDE(A.S.A.), ∴DF=DE.又∵DC=DB,∴四边形 BECF 是平形四边形.

八级下册数学第18章知识点集锦

八级下册数学第18章知识点集锦

八年级下册数学第18 章知识点集锦18.1 平行四边形1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等 ;(2)平行四边形的邻角互补,对角相等 ;(3)平行四边形的对角线相互均分 ;>>>> 点击阅读:平行四边形18.1.1 平行四边形的性质1:两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行 ;(2)平行四边形的对角相等,邻角互补 ;>>>> 点击阅读:平行四边形的性质18.1.2 平行四边形的判断①对边平行②对边相等①对角相等②邻角互补对角线相互均分中心对称①两组对边分别分别平行的四边形是平行四边形>>>>点击阅读:平行四边形的判断18.2 特别的平行四边形1、在同一平面内不订交的两条直线叫做平行线,也能够说这两条直线相互平行。

例 1 、1、在同一平面内两条直线的地点关系为(相交)和(平行 )。

2 、两条直订交成直角,就两条直相互垂直,其⋯>>>>点:特别的平行四形18.2.1 矩形1、矩形的观点有一个角是直角的平行四形叫做矩形。

2、矩形的性(1)拥有平行四形的全部性 (2) 矩形的四个角都是直角(3)矩形的角相等 (4)矩形是称形>>>>点:矩形18.2.2 菱形1、定:相等的平行四形是菱形。

2、性:(1)菱形的四形都相等。

(2)菱形的角相互垂直,而且每一条角均分一角,>>>>点:菱形18.2.3 正方形1、正方形的观点有一相等而且有一个角是直角的平行四形叫做正方形。

2、正方形的性(1)拥有平行四形、矩形、菱形的全部性 ;(2)正方形的四个角都是直角,四条都相等 ;(3)正方形的两条对角线相等,而且相互垂直均分,每一条对角线均分一组对角 ;精心整理,仅供学习参照。

最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用

【最新版】八年级数学下册课件:18.1.2平行四边形的判定

【最新版】八年级数学下册课件:18.1.2平行四边形的判定

求证:四边形ABCD是平行四边形
证明:∵∠A=∠C,∠B=∠D(已知)
A
D
又∵∠A+ ∠B+ ∠C+ ∠D =360 °
∴ 2∠A+ 2∠B=360 °
B
C
即∠A+ ∠B=180 °
∴ AD∥BC (同旁内角互补,两直线平行)
同理可证AB∥CD
∴四边形ABCD是平行四边形(两组对边分别平行的 四边形是平行四边形)
A
D
A
D
几何语言:
在四边形ABCD中,
B
B
C
C
∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形.
探究新知
18.1 平行四边形/
素养考点 1 利用两组对边分别相等识别平行四边形 例1 如图,在Rt△MON中,∠MON=90°.求证: 四边形PONM是平行四边形.
证明:在Rt△MON中,
由勾股定理得(x-5)2+42=(x-3)2,
探究新知
18.1 平行四边形/
知识点 2 平行四边形的判定定理2 一天,八年级的李明同学在生物实验室做实验时,不小心 碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图 所示部分,他想去割一块赔给学校,带上玻璃剩下部分去玻璃店 不安全,于是他想把原来的平行四边形重新在纸上画出来,然 后带上图纸去就行了,可原来的平行四边形怎么画出来呢?
由上面的过程你得到了什么结论?
是平行四边形
B
两组对边分别相等的四边形是平行四边形 如何证明这
个结论呢?
探究新知
18.1 平行四边形/
已知: 四边形ABCD中,AB=DC,AD=BC. 你能用平行
求证: 四边形ABCD是平行四边形.

人教版八年级数学下册优秀作业课件(RJ) 第十八章 平行四边形 第2课时 平行四边形的判定2

人教版八年级数学下册优秀作业课件(RJ) 第十八章 平行四边形 第2课时 平行四边形的判定2

6.(7分)(陕西中考改编)如图,在四边形ABCD中,AD∥BC,∠B=∠C,E是 边BC上的一点,且DE=DC.求证:四边形ABED是平行四边形.
证明:∵DE=DC,∴∠DEC=∠C=∠B,∴AB∥DE.又∵AD∥BC,∴四边 形ABED是平行四边形
7.(8分)如图,四边形ABCD和四边形AEFD都是平行四边形,求证:四边形 BEFC是平行四边形.
9.(威海中考)如图,E是▱ABCD的边AD延长线上的一点,连接BE,CE,BD, BE交CD于点F,添加以下条件,不能判定四边形BCED为平行四边形的是( C )
A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD
二、填空题(共6分) 10.如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD的延长线 于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是__1__.
12.(14分)(教材P50习题18.1T4变式)如图,在▱ABCD中,点E,F分别在边AB, CD上,且AE=CF,AF,DE相交于点G,BF,CE相交于点H,求证:四边形 EHFG是平行四边形.
证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.又∵AE=CF,∴ 四边形AECF是平行四边形,DF=BE,∴GF∥EH,四边形BFDE是平行四边形, ∴GE∥FH,∴四边形EHFG是平行四边形
4.(4分)如图,四边形ABCD的对角线AC,BD相交于点O,下列条件不能判定 四边形ABCD是平行四边形的是( D )
A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.OA=OC,OB=OD D.AB∥DC,AD=BC
5.(4分)(黑龙江中考)如图,在四边形ABCD中,AD=BC,在不添加任何辅助 线的情况下,请你添加一个条件:__A__D_∥__B__C_(_答__案__不__唯__一__) _,使四边形ABCD是 平行四边形.

18.1.2平行四边形的判定(1)教学设计

18.1.2平行四边形的判定(1)教学设计

人教版义务教育课程标准实验教科书八年级下册18.1。

2平行四边形的判定(1)教学设计一、教材地位和作用:本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。

它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,在教学内容上起着承上启下的作用。

“承上”,首先,在探究判定定理的证明方法和运用判定定理时,都用到了全等三角形的相关知识;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理,本节课在引入新课时就是类比性质引入判定的.“启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础。

并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神.二、教学目标(一)知识与能力1、运用类比的方法,通过学生的合作探究,得出平行四边形的两个判定方法.2、理解平行四边形的这两种判定方法,并学会简单运用。

3、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力、合情推理能力。

4、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。

(二)过程与方法1、使学生学会将平行四边形的问题转化为三角形的问题,渗透化归意识。

2、通过对平行四边形两个判定方法的探究,提高学生解决问题的能力。

(三)、情感态度与价值观通过对平行四边形两个判定方法的探究和运用,使学生感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

三、教学重点、难点1、教学重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用.2、教学难点:对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。

18.1.2平行四边形的判定-三角形中位线(教案)

18.1.2平行四边形的判定-三角形中位线(教案)
首先,关于导入新课的部分,我通过提问方式引导学生回顾三角形中位线的定义,希望以此激发他们的学习兴趣。但从课堂反馈来看,部分学生对这个问题显得有些迷茫,可能是因为他们对中位线的概念还不够熟悉。在以后的教学中,我需要更加注重对学生基础知识掌握情况的了解,以便更好地设计导入环节。
其次,在新课讲授环节,我尝试用理论介绍、案例分析和重点难点解析的方式,帮助学生理解三角形中位线与平行四边形之间的关系。但在这个过程中,我发现有些学生在分析案例时仍然存在困难。这可能是因为我讲解得不够透彻,或者课堂实践环节还不够充分。针对这个问题,我打算在接下来的课程中增加一些互动环节,让学生更多地参与到课堂实践中来,以提高他们的理解和应用能力。
举例:通过绘制具体图形,让学生观察并理解三角形中位线的定义;讲解如何利用中位线判定平行四边形,强调步骤和条件;设计实际情境题,让学生将所学知识应用于解决具体问题。
2.教学难点
-难点内容:三角形中位线判定平行四边形的逻辑推理过程,以及在实际问题中的应用。
-难点突破方法:
a.使用直观教具,如模型、图形等,帮助学生形成直观认识。
4.培养学生的合作交流意识:通过小组合作、讨论交流等形式,促进学生分享观点,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
-核心知识:三角形中位线的性质及其与平行四边形的关系。
-重点细节:
a.理解并掌握三角形中位线的定义。
b.学会运用三角形中位线判定平行四边形。
c.掌握三角形中位线与平行四边形之间的关系,并能应用于解决实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探究三角形中位线性质,使学生能够运用逻辑推理,理解并掌握平行四边形的判定方法。
2.提升学生的空间想象力:借助实物模型、图形绘制等手段,帮助学生形成对三角形中位线和平行四边形的空间想象,培养空间思维能力。

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。

18.1.2 平行四边形的判定(2)人教版数学八年级下册课件

18.1.2 平行四边形的判定(2)人教版数学八年级下册课件

证明: ∵ 四边形是平行四边形
∴ ∥
=
∴ ∠ = ∠
平行四边形
∵ ⊥ ⊥
的性质
∴ ∠ = ∠ ∥
∴ △ ≌△
∴ =
∵ ∥ =
∴ 四边形是平行四边形
1
2
平行四边形
∴ ∠ = ∠
解: ∵ 四边形是平行四边形
∴ = =
∴ ∥
∵ ∠ = °
∵ ∥ ∥
∴ = − =
∴ 四边形是平行四边形
∵ 为中点
∴ = =
作业
3.如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足
∴ =
∵ = =
∴ 四边形AECF是平行四边形
作业
2.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,
CE∥AD.若AC=2,CE=4;
(1)求证:四边形ACED是平行四边形.
(2)求BC的长.
证明: ∵ ⊥
∴ ∠ = °
∠ = ∠
答: △ 、 △ 、
△ ≌△
△ 、 △
=
= =
四边形是平行四边形
知识回顾
平行四边形的判定方法
两组对边分别平行的四边形是平行四边形

∵ AB∥CD AD∥BC
∴ 四边形ABCD是平行四边形
18.1.2平行四边形的判定
第二课时
第十八章





作业
. 如图,将平行四边形的对角线向两个方向延长至
点和点,使 = .
求证:四边形是平行四边形.

初中八年级下册数学1812 平行四边形的判定(第2课时)课件q

初中八年级下册数学1812 平行四边形的判定(第2课时)课件q

18.1 平行四边形/
命题:一组对边平行且相等的四边形是平行四边形. 请你将上述命题改写成已知、求证,并画出图形,
然后思考如何证明.
已知:如图 ,在四边
A
D
形ABCD中,AB//CD,
AB=CD.
求证:四边形ABCD是 平行四边形.
B
C
18.1 平行四边形/
证明:方法1:
如图, 连接 AC.
∵AB //CD ,


一组对边平行且相等的四边 形是平行四边形
平行四边形的性质与判定 的综合运用
作业 内容
18.1 平行四边形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
18.1 平行四边形/
(2)当t为何值时,四边形APQB是平行四边形?
解:根据题意有AP=tcm,CQ=2tcm, PD=(12-t)cm,BQ=(15-2t)cm. ∵AD∥BC, ∴当AP=BQ时,四边形APQB是平行四边形. ∴t=15-2t, 解得t=5. ∴t=5时四边形APQB是平行四边形.
如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD 的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是 平行四边形.
证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD, 在△ACE和△DBF中, AC=DB ,∠A=∠D, AE=DF , ∴△ACE≌△DBF(SAS). ∴CE=BF,∠ACE=∠DBF. ∴CE∥BF. ∴四边形BFCE是平行四边形.
1. 掌握用一组对边平行且相等来判定平行四边 形的方法 .
18.1 平行四边形/
知识点 平行四边形的判定定理4
我们知道两组对边分别平行或相等的四边形是平行四边形. 请同学们猜想一下,如果只考虑四边形的一组对边,当它满足 什么条件时这个四边形是平行四边形?

人教版八年级下册数学第18章18.1.2平行四边形的判定(教案)

人教版八年级下册数学第18章18.1.2平行四边形的判定(教案)
五、教学反思
在今天的教学中,我发现同学们对平行四边形的定义和性质掌握得比较扎实,能够顺利地完成基本的判定题目。但在实践活动和小组讨论中,我也注意到一些问题。
首先,对于判定方法的灵活运用,部分同学还显得有些吃力。他们在面对一些不规则或者角度不是特别明显的图形时,往往不能迅速判断出是否为平行四边形。这说明我们在教学中需要更多的实例分析,让学生在不同的图形中练习判定方法,增强他们的直观判断能力和逻辑思维能力。
人教版八年级下册数学第18章18.1.2平行四边形的判定(教案)
一、教学内容
人教版八年级下册数学第18章18.1.2节,主要教学内容包括:
1.平行四边形的定义:两组对边分别平行的四边形。
2.平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。
3.平行四边形的判定方法:
a.两组对边分别平行的四边形是平行四边形。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的判定方法及如何在实际问题中应用。对于难点部分,我会通过举例和对比来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来验证平行四边形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我Hale Waihona Puke 提出一些开放性的问题来启发他们的思考。

八年级数学下册第十八章平行四边形18.1平行四边形18.1.2平行四边形的判定练习人教版

八年级数学下册第十八章平行四边形18.1平行四边形18.1.2平行四边形的判定练习人教版

18.1.2 平行四边形的判定第1课时平行四边形的判定(1)1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC= cm,CD= cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=CO = cm,DO=BO= cm时,四边形ABCD为平行四边形.(3)若∠A=65°,∠B=115°,那么当∠C=°,∠D= °时,四边形ABCD为平行四边形.2、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A、88°,108°,88°B、88°,104°,108°C、88°,92°,92°D、88°,92°,88°3、在四边形ABCD中,ADBC,要使四边形ABCD是平行四边形,则应满足的条件是()A、∠A+∠C=180°B、∠B+∠D=180°C、∠A+∠B=180°D、∠A+∠D=180°4、下列能判定四边形一定为平行四边形的个数有()(1)两组对边分别相等的四边形。

(2)两组对边分别平行的四边形。

(3)两组对角分别相等的四边形。

(4)有两组邻角分别互补的四边形。

(5)两组对角线互相平分的四边形。

(6)两条对角线相等的四边形。

A、2B、3C、4D、55、已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.6、如图,在平行四边形ABCD中,E、F、G、H分别是各边中点。

PFED CBA求证:四边形EFGH 是平行四边形。

7、如图,在四边形ABCD 中,AD=12,DO=BO=5,AC=26,∠ADB=90°。

求BC 的长和四边形ABCD 的面积。

8、如图,ABC ∆是等边三角形,P 是三角形内任一点,,//,//BC PE AB PDAC PF //,若ABC ∆周长为12,求PD+PE+PF 的值.18.1.2 平行四边形的判定 第2课时 平行四边形的判定(2)一、选择——基础知识运用1.下列条件中,不能判定四边形是平行四边形的是( ) A .两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等2.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A.AD=BC B.OA=OCC.AB=CD D.∠ABC+∠BCD=180°3.分别过一个三角形的3个顶点作对边的平行线,这些平行线两两相交,则构成的平行四边形的个数是()A.1个B.2个C.3个D.4个4.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是()①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形.②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.A.①和② B.①③和④C.②和③D.②③和④5.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1) C.(1,-1) D.(-3,1)二、解答——知识提高运用6.如图,凸四边形ABCD中,AB∥CD,且AB+BC=CD+AD.求证:ABCD是平行四边形。

人教版八下数学18.1.2 课时1 平行四边形的判定(1)教案+学案

人教版八下数学18.1.2  课时1 平行四边形的判定(1)教案+学案

人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)教案【教学目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【教学难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学过程设计】一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究知识点一:两组对边分别相等的四边形是平行四边形例1如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF =60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC =DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.知识点二:两组对角分别相等的四边形是平行四边形例2如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB =∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D =∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.知识点三:对角线相互平分的四边形是平行四边形例3如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎨⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.知识点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等例4如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用例5如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎨⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC=∠BCA .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、教学小结本节课我们主要学习了平行四边形的判定方法:平行四边形的定义文字语言:两组对边分别平行的四边形叫做平行四边形.符号语言:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形.平行四边形的判定定理1文字语言:两组对边分别相等的四边形是平行四边形.符号语言:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.平行四边形的判定定理2文字语言:两组对角分别相等的四边形是平行四边形.符号语言:∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形.平行四边形的判定定理3文字语言:对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.四、学习检测1..如图所示,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8 cm,AB=4 cm,那么当BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8 cm,BD=10 cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.解析:(1)此题主要考查了平行四边形的判定定理的应用.根据两组对边分别相等的四边形是平行四边形,即可确定BC,CD的长.(2)此题主要考查了平行四边形的判定定理的应用.根据对角线互相平分的四边形是平行四边形,即可确定AO,DO的长.答案:(1)84(2)4 52.如图所示,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件: (只添加一个即可),使四边形ABCD是平行四边形.解析:答案不唯一.所填条件能使△AOB≌△COD,或者△AOD≌△COB即可.可填:①AB∥CD,②AD∥BC,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠ADO=∠CBO,⑥∠DAO=∠BCO等.故可填AB∥CD.3.如图所示的是由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察、分析发现:①第4个图形中平行四边形的个数为.②第8个图形中平行四边形的个数为.解析:根据“两组对边分别相等的四边形是平行四边形”,可以判断图中的平行四边形的个数.通过观察、分析,寻找规律,即可解决问题.答案:①6②204.如图所示,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证∠EBF=∠FDE.解析:要证明∠EBF=∠FDE,根据平行四边形的性质,只要证明四边形BEDF是平行四边形即可.由AE,CF在▱ABCD的对角线上,可考虑利用“对角线互相平分的四边形是平行四边形”,证明EF与BD互相平分即可.证明:连接BD交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形BEDF是平行四边形,∴∠EBF=∠FDE.【板书设计】18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)征1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用【教学反思】在本节数学课的教学中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)学案【学习目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【学习重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【学习难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【自主学习】一、知识回顾1.平平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?二、自主探究知识点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.【典例探究】例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.【跟踪练习】如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.知识点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.【典例探究】例3如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【跟踪练习】1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2知识点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.【典例探究】例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC 于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天林莉同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,她想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是她想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)【跟踪练习】1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.四、学习中我产生的疑惑【学习检测】1.判断题(对的在括号内填“√”,错的填“×”):(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.下列命题中,正确的是()A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形3.四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是()A.①②B.①③④C.②③D.②③④4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD5.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是___ _______.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.6.如图所示,在▱ABCD中,E,F分别为AB,CD的中点,求证四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E,F分别为AB,CD的中点,∴AE=BE=AB,CF=DF=CD.∴AE=CF,BE=DF,在△ADF和△CBE 中,AD=BC,∠B=∠D,BE=DF,∴△ADF≌△CBE(SAS).∴AF=CE,∴四边形AECF 是平行四边形.7.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形AB PE是平行四边形.第4题图第5题图8.如图,平行四边形ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证BM∥DN,且BM=DN.证明:连接DM,BN,如图所示.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵M,N分别是OA,OC的中点,∴OM=OA,ON=OC,∴OM=ON.∴四边形BMDN是平行四边形,∴BM∥DN,且BM=DN.9.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.10.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.11.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?12.如图,在▱ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.(1)猜想EF与GH的关系;(2)证明你的猜想.(1)解:EF与GH互相平分.(2)证明:连接EG,GF,FH,HE,∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵DH=BG,∴AD-DH=BC-BG,即AH=CG.又∵AE=CF,∴△AEH≌△CFG.∴EH=FG,同理可证明HF=GE.∴四边形EGFH是平行四边形.∴EF与GH互相平分.。

《平行四边形的判定》PPT2

《平行四边形的判定》PPT2

A13..1如8分米图,别B在.是四24边米A形PAB,CDR中P,对的角中线A点C和,BD当相交点于点PO在,ACC=DB上D,从M,CP,向N分D别移是动边A而B,点BC,RC不D的动中点时,Q,是M那N的么中点.
求证:四边形DEFG是平行四边形.
下列结论成立的是( C ) 14.(1)如图①所示,在四边形ABCD中,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N,且
(2)判定△OEF的形状.
1AA133....12如如80米图 图B=, ,.B在 在.1126四 四24边 边米CC形 形.DAA12BB,CCDDD中 .中∴, 8,对 对∠角 角线 线HAAECC和 和FBB=DD相相∠交 交于 于B点 点MOO, ,EAA,CC= =BB∠DD, ,HMM, ,FPPE, ,=NN分 分∠别 别是 是C边 边NAABBE, ,.BBCC又, ,CCDD∵的 的∠中 中点 点B, ,MQQ是 是EMMNN=的 的中 中点 点. . 1∠4.BM(1E)如=∠图∠C①CN所EN示,E,求,在证四:∴边AB形∠=ACBHDC;DE中F,=E,∠F分H别是FAED,,B∴C的E中H点,=连F接HFE,并延∴长,A分B别=与BCA,DCD的延长线交于点M,N,且
∠BME=∠CNE,求证:AB=CD;
A.线段EF的长逐渐增大
4.(泸州中考)如图,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,且AE+EO=4,则▱ABCD的周长为(
)
10 . (2020· 凉 山 州 ) 如 图 , ▱ ABCD 的 对 角 线 AC , BD 相 交 于 点 O , OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周 长等于_____1_6___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册第18章平行四边形18.1平行四边形18.1.2平行四边形的判定(2)教案(新版)新人教版
教学目标:
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二、重点、难点
1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
2.难点:平行四边形的判定定理与性质定理的综合应用.
三、课堂引入
平行四边形的性质;
四、探究1
已知:四边形ABCD中,AB=DC,AD=BC,
试问:四边形ABCD是平行四边形吗?
五、探究2
已知:四边形ABCD中,AB=CD, AB∥CD
试问:四边形ABCD是平行四边形吗?请说明理由。

六、探究3
已知:四边形ABCD中,OA=OC OB=OD,
试问:四边形ABCD是平行四边形吗?请说明理由。

七、探究4
已知:四边形ABCD中, ∠A=∠C ,∠B=∠D.
试问:四边形ABCD是平行四边形吗?请说明理由。

八、练习
九、小结。

相关文档
最新文档