双机串口通信的程序
单片机双机串口通信
单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。
而单片机之间的通信则是实现复杂系统功能的关键之一。
其中,双机串口通信是一种常见且重要的通信方式。
什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。
想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。
串口通信,顾名思义,是通过串行的方式来传输数据。
这和我们日常生活中并行传输数据有所不同。
在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。
虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。
在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。
比如波特率,它决定了数据传输的速度。
就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。
常见的波特率有 9600、115200 等。
还有数据位、停止位和校验位。
数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。
为了实现双机串口通信,我们需要在两个单片机上分别进行编程。
编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。
初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。
比如设置波特率发生器的数值,以确定合适的波特率。
发送数据相对来说比较简单。
我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。
接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。
当有新数据时,从接收寄存器中读取数据,并进行相应的处理。
在实际应用中,单片机双机串口通信有着广泛的用途。
比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。
双机串行通信的设计与实现
双机串行通信的设计与实现设计流程如下:1.确定通信协议:在设计双机串行通信时,首先要确定通信协议,包括数据格式、数据传输速率、错误检测和纠错等方面。
常见的协议有RS-232、RS-485、USB等。
2.硬件设计:双机串行通信需要使用串行通信接口进行数据传输。
设计中需要考虑硬件的选型,如选择合适的串行通信芯片、电平转换电路、线缆等。
根据通信协议的要求,确定串行通信接口的电平、波特率等参数。
3. 软件设计:在设计双机串行通信的软件时,需要实现数据的发送和接收功能。
常见的操作系统如Windows、Linux等提供了串口通信的API函数,可以方便地实现通信功能。
软件设计包括以下几个方面:a)串口初始化:设置串口的波特率、数据位数、停止位数、校验位等参数。
b)数据发送:将需要发送的数据经过封装后发送给串口。
c)数据接收:通过串口接收数据,并解析数据格式。
d)错误检测与纠错:对接收到的数据进行错误检测,如使用奇偶校验、CRC等方式进行数据完整性检验,针对错误数据进行纠正或丢弃。
e)数据处理:根据具体应用场景对接收到的数据进行处理,如进行数据解析、存储、显示等。
4.通信测试与调试:设计完成后,需要进行通信测试与调试,确保双机串行通信的正确性和稳定性。
通过发送和接收数据进行测试,检查通信协议的实现是否正确,数据的传输是否准确。
实现双机串行通信的关键在于硬件设计与软件设计的合理结合。
合理选择适合的硬件设备,同时根据通信协议的要求进行软件开发,能够保证通信的可靠性和稳定性。
总而言之,双机串行通信的设计与实现需要确定通信协议、硬件设计与软件开发,通过测试和调试保证通信的正确性与稳定性。
它是计算机通信的重要组成部分,应用广泛。
RS485双机通信程序
void delay(uint xms)
{
uint x,y;
for(x=xms;x>0;x--)
for(y=110;y>0;y--);
}
void master(uchar command)
{
uchar aa,i;
DR=1;
SBUF=command;
while(TI!=1);
0xb0,0x92,0x66,0xfF};
uchar rebuf[8];
void delay(uint xms)
{
uint x,y;
for(x=xms;x>0;x--)
for(y=110;y>0;y--);
}
void main()
{
uchar j;
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
RS-485双机通信程序
主机程序
此程序的主要特点是加的的校验少,适合初学者利用max485模拟单片机双机通信
建议看程序前看看郭天祥的单片机双机通信或者对于单片机双机通信协议有一个总体的了解,如果有了这个基础我相信你能够很快看明白下面的程序。
#include <reg52.h>
#define uchar unsigned char
PCON=0x00;
TR1=1;
SCON=0xd0;
EA=1;
while(1)
{
DR=0;
ES=1;
for(j=0;j<8;j++)
{
P0=rebuf[j];
delay(1000);
}
}
单片机单片机课程设计-双机串行通信
单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。
而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。
一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。
串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。
在串行通信中,数据是一位一位地按顺序传输的。
常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。
在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。
UART 协议包括起始位、数据位、奇偶校验位和停止位。
起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。
二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。
首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。
在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。
即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。
同时,还需要共地以保证信号的参考电平一致。
此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。
三、软件设计软件设计是实现双机串行通信的核心部分。
在本次课程设计中,我们使用 C 语言来编写单片机的程序。
对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。
然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。
对于接收方单片机,同样需要对 UART 模块进行初始化。
串口交叉线实现2台计算机通信步骤
一、串口交叉线实现2台计算机通信步骤1、制作交叉电缆步骤(1)使用DB-9针的RS-232C连接器和9芯电缆制作交叉线,制作方法按照空Modem 的连接规则,如图1.1.2所示。
图1.1.2 DB-9针空Modem连线在实际应用中,交叉线缆制作可以使用最简单的三线连接方式,如图1.1.3所示,相对的发送和接收针脚需要交叉相连,信号地SIG相连。
图1.1.3 RS-232C接口的简单连接方式步骤(2)使用万用表对各连接线进行测量,确认制作的电缆线是否已可用。
2、直连两台计算机步骤(1)使用“交叉线”连接两台计算机的串行口1(COM1口),也可以是串口2(COM2口),但要记录好每台计算机各使用的串口号。
步骤(2)启动两台计算机。
注:一定要先接线后开计算机,而且当计算机处在开机状态时,不要插拔串口,以免烧坏串口电路。
3、设置主机步骤(1)在Windows2000操作系统中,单击“开始”’“设置”’“网络和拨号连接”,打开如图1.1.4所示的窗口界面。
图1.1.4 网络和拨号连接窗口界面步骤(2)双击“新建连接”图标,进入“网络连接向导”,单击“下一步”。
步骤(3)设置网络连接类型,选择第5项“直接连接到另一台计算机(C)”,然后单击“下一步”,如图1.1.5所示。
图1.1.5 设置使用串行接口直连两台计算机步骤(4)设定此计算机为主机,并单击“下一步”,如图1.1.6所示。
图1.1.6 设置计算机为主机步骤(5)选择连接设置,设置通讯端口(COM1)或(COM2)作为通讯连接的设备,然后单击“下一步”,如图1.1.7所示。
注:所设置的通讯端口必须与串行线所接的计算机端口一致。
图1.1.7 设置串行通讯的连接设备步骤(6)允许连接到主机的用户为“Guest”,即设置客户机可以连接到主机,然后单击“下一步”,如图1.1.8所示。
图1.1.8 指定Guest用户可以连接到主机步骤(7)设置主机连接名为“传入的连接”,单击“完成”配置完主机的网络连接。
双机联动串口通信原理
双机联动串口通信原理双机联动串口通信是指两台计算机通过串口进行数据传输,其中一台计算机作为发送方,另一台计算机作为接收方。
串口通信使用的是异步串行通信协议,即在数据传输时不需要同步时钟信号,而是通过起始位、数据位、校验位和停止位等控制信号来识别和传输数据。
在双机联动串口通信中,发送方会将数据按照一定的格式打包成数据帧,并通过串口发送给接收方。
接收方会解析接收到的数据帧,并进行数据处理和应答。
串口通信使用的是RS232、RS422或RS485等标准协议,其中RS232是最常用的一种。
RS232协议规定了串口通信信号的电气参数和接口标准,包括标准的串口连接方式、数据传输速率、数据帧格式等。
在双机联动串口通信中,不同的计算机系统要求的串口设置可能会不同,例如波特率、数据位、校验位、停止位等。
为了保证串口通信的正确性,发送方和接收方需要进行串口设置的协商,确保两台计算机系统的串口设置一致。
双机联动串口通信还涉及到数据帧的分组、传输和处理等过程。
数据帧通常包括起始位、目的地址、源地址、数据、校验和和结束位等字段。
在传输数据帧时,发送方会首先发送起始位和目的地址,接收方在接收到起始位后开始等待数据,当目的地址与该计算机的地址一致时,才开始接收数据帧。
在接收数据帧后,接收方会进行数据处理和校验,并发送应答信号。
在实际应用中,双机联动串口通信主要用于工业控制、数据采集、通讯设备等领域。
由于串口通信具有简单、稳定、可靠、廉价等优点,因此在工业自动化控制系统中得到广泛应用。
同时,随着通信技术的发展,越来越多的设备开始采用以太网、无线网络等高速数据传输方式,使串口通信在某些领域面临着逐步替代的趋势。
串口通信原理及操作流程
串口通信原理及操作流程串口通信是一种通过串行连接来传输数据的通信方式。
相对于并行通信而言,串口通信只需要一条数据线来传输数据,因此更节省空间和成本。
串口通信常用于计算机与外设之间的数据传输,如打印机、调制解调器、传感器等。
串口通信的原理主要是通过发送和接收数据的方式来实现通信。
在串口通信中,发送方将要传输的数据按照一定的协议进行封装,然后逐位地通过数据线发送给接收方。
接收方在接收到数据后,根据协议进行解封,得到传输的数据。
串口通信的操作流程如下:1.配置串口参数:在进行串口通信之前,需要先对串口进行初始化和配置。
配置包括波特率、数据位、停止位、奇偶校验等。
波特率表示每秒钟传输的位数,不同设备之间的串口通信需要保持一致。
2.打开串口:打开串口可以通过编程语言的串口操作函数来实现。
打开串口时,应该确保该串口没有被其他程序占用。
3.发送数据:发送数据时,需要将待发送的数据封装成符合协议要求的数据包。
一般情况下,数据包开头会有起始符和目标地址、源地址等标识信息,以便接收方识别数据包。
4.接收数据:接收数据时,需要通过串口接收缓冲区来获取接收到的数据。
一般情况下,接收方会设置一个数据接收完成的标志位,用于通知上层应用程序接收到了数据。
5.解析数据:接收到的数据包需要进行解析,以获取有效的数据。
解析的方式根据协议的不同而不同,可以是根据提前约定的规则进行解析,或者是根据协议中的标志位进行解析。
6.处理数据:经过解析后得到的数据可以进行相应的处理。
处理的方式根据具体的应用场景来确定,例如将数据显示在界面上、存储到文件中等。
7.关闭串口:通信结束后,需要关闭串口以释放相关资源,并防止其他应用程序对串口的访问。
需要注意的是,串口通信的可靠性和稳定性对于一些实时性要求较高的应用来说是非常重要的。
在进行串口通信时,应该合理选择合适的串口参数,确保数据的正确传输和解析。
此外,在编程时应该进行异常处理,防止因异常情况导致的数据丢失或通信中断。
使用串口的流程
使用串口的流程介绍串口是一种用于在计算机和外部设备之间进行数据传输的通信接口。
它是一种一对一的全双工通信方式,可以实现数据的收发。
本文将介绍使用串口进行数据通信的基本流程。
步骤使用串口进行数据通信的流程一般包括以下几个步骤:1.打开串口:首先需要打开串口以建立与外部设备的连接。
在打开串口之前,需要先确定要使用的串口号、波特率、数据位、停止位和校验方式等参数。
2.配置串口参数:在打开串口后,需要根据实际需求配置串口的各种参数。
可以通过串口的配置接口来设置波特率、数据位、停止位和校验方式等参数。
3.发送数据:配置完串口参数后,就可以向外部设备发送数据了。
可以通过串口的发送接口将数据发送给外部设备。
在发送数据之前,需要将要发送的数据准备好,并将其转换成适合串口发送的格式。
4.接收数据:在发送完数据后,可以通过串口的接收接口来接收外部设备发送的数据。
可以通过串口的接收缓冲区来获取接收到的数据。
5.处理数据:接收到数据后,还需要对其进行处理。
可以根据实际需求对接收到的数据进行解析、处理或显示等操作。
6.关闭串口:在完成数据通信后,需要关闭串口以释放资源。
可以通过串口的关闭接口来关闭串口。
注意事项在使用串口进行数据通信时,还需要注意以下几个事项:•串口参数配置要与外部设备保持一致:在配置串口参数时,需要与外部设备的参数保持一致,否则可能会导致通信失败。
•数据格式要一致:在发送和接收数据时,要确保数据的格式一致。
可以约定好数据的格式,并在发送和接收时进行相应的转换。
•错误处理:在使用串口进行数据通信时,难免会出现一些错误。
因此,需要在程序中加入错误处理的代码,以便及时发现并处理错误。
•建立通信协议:在使用串口进行数据通信时,建议制定一套通信协议,包括数据的格式、指令的定义等。
这样可以更好地进行数据交换和数据处理。
示例代码下面是一个使用Python语言进行串口数据通信的示例代码:import serial# 打开串口ser = serial.Serial('COM1', 9600, timeout=1)# 配置串口参数ser.bytesize =8ser.stopbits =1ser.parity ='N'# 发送数据ser.write(b'Hello World')# 接收数据data = ser.readline()print(data)# 关闭串口ser.close()总结使用串口进行数据通信时,需要按照一定的流程进行操作。
单片机实验三双机通信实验程序
单片机实验三双机通信实验程序第一篇:单片机实验三双机通信实验程序实验三双机通信实验一、实验目的UART 串行通信接口技术应用二、实验实现的功能用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。
三、系统硬件设计实验所需硬件:电脑一台;开发板一块;串口通信线一根; USB线一根;四、系统软件设计实验所需软件:编译软件:keil uvision3;程序下载软件:STC_ISP_V480;试验程序:#include sbit W1=P0^0;sbit W2=P0^1;sbit W3=P0^2;sbit W4=P0^3;sbit D9=P3^2;sbit D10=P3^3;sbit D11=P3^4;sbit D12=P3^5;sbit DP=P1^7;code unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};sfr P1M1=0x91;sfr P1M0=0x92;sbit H1=P3^6;sbit H2=P3^7;sbit L1=P0^5;sbit L2=P0^6;sbit L3=P0^7;unsigned char dat;unsigned char keynum;unsigned char keyscan();void display();void delay(void);L1=1;L2=1;L3=1;H1=0;if(L1==0)return 1;else if(L2==0)return 2;else if(L3==0)return 3;H1=1;H2=0;if(L1==0)return 4;else if(L2==0)return 5;else if(L3==0)return 6;H2=1;return 0;} unsigned char keyscan(){ static unsigned int ct=0;static unsigned char lastkey=0;unsigned char key;key=getkey();if(key==lastkey){ct++;if(ct==900){ct=0;lastkey=0;return key;} } else {第二篇:单片机串行通信实验实验四单片机串行通信实验一、实验目的1、掌握单片机串行口工作方式的程序设计,及简易三线式通讯的方法。
单片机的双机串口通信原理
单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。
串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。
通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。
在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。
主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。
通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。
双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。
主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。
2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。
主机发送完所有数据位后,等待从机的响应。
3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。
4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。
从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。
5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。
从机发送完所有数据位后,等待主机的进一步操作。
6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。
7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。
单片机双机串行实验报告
单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。
实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。
常用的串行通信方式有同步串行通信和异步串行通信。
异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。
而同步串行通信是指通过外部时钟信号进行数据的同步传输。
实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。
2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。
3.在编程软件中,编写两个程序分别用于发送数据和接收数据。
4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。
然后利用串口发送数据的指令将数据发送出去。
5.在接收数据的程序中,同样要设置串口的参数。
然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。
实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。
发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。
实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。
否则,发送数据的单片机和接收数据的单片机无法正常进行通信。
同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。
实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。
掌握了串口的设置和使用方法,以及相关的指令和函数。
在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。
同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。
例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。
串口双机uart通信的工作原理
串口双机uart通信的工作原理串口通信是一种常见的通信方式,它通过串行通信将数据传输到另一个设备中。
串口通信可以使用不同的物理连接方式,例如RS-232、RS-485和UART等,本文将重点介绍串口双机UART通信的工作原理。
UART是通用异步收发传输器的缩写,它使用两线制进行全双工通信,一根线用于发送数据,另一根线用于接收数据。
UART通过发送和接收数据包,将信息传输到两个设备之间。
在串口双机通信中,两个设备都需要配置成UART模式,以便进行双向通信。
串口双机UART通信的工作原理如下:1.首先,两个设备必须连接到同一个串口,以便进行通信。
每个设备都必须配置为UART模式,并设置相同的波特率、停止位和校验位。
2.一旦两个设备都准备好了,它们就可以开始通过UART通信来交换数据包。
每个数据包都包含了数据和特定的控制字符,例如起始位、停止位和校验位等。
3.当一个设备要向另一个设备发送数据时,它会将数据包发送到UART发送缓冲区中,然后开始发送数据。
一旦数据被发送出去,接收设备将数据包从UART接收缓冲区中读取,并按照特定的协议处理数据包。
如果数据包正确无误,接收设备会向发送设备发送确认信号,告诉它可以继续发送数据。
4.如果发送设备收到确认信号,它会继续发送数据,直到所有数据都被发送完毕。
如果接收设备发现数据包有错误,它会向发送设备发出拒绝信号,告诉它重新发送数据。
5.一旦所有数据都被发送完成,整个过程就结束了。
两个设备可以继续进行其他操作,例如重新发送数据或等待新的数据包。
串口双机UART通信具有简单、可靠、稳定等特点。
它被广泛应用于各种设备之间的通信,例如计算机、电视、手机、家电等。
在实际应用中,我们需要根据不同的要求选择合适的波特率、数据位、停止位、校验位等参数,以确保通信的稳定和可靠。
总之,串口双机UART通信是一种成熟的通信方式,它通过简单的物理连接和软件协议,实现了设备之间的数据交换。
对于需要进行串口通信的应用来说,串口双机UART通信是一个非常不错的选择。
双单片机串口通信原理+程序
一、实验目的掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)编写发送方和接受方单片机程序,让发送方单片机向接受方单片机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:发送发程序:#include<reg51.h>#define uint unsigned intuchar table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0}; //要发送的数据void delay(uint x){uint i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void main(){uchar i=0;TMOD=0x20;TH1=0xfd;TL1=0xfd;SM0=0;SM1=1;TR1=1;EA=1;ES=1;while(1){SBUF=table[i];P1=table[i];while(!TI);TI=0;i++;if(i==8)i=0;delay(800);}}接收方程序:#include <reg51.h>#define uchar unsigned charuchar a;void main(){TMOD=0x20;TH1=0xfd;TL1=0xfd;REN=1;TR1=1;SM0=0;SM1=1;EA=1;ES=1;while(1);}void ser() interrupt 4{RI=0;a=SBUF;P1=a;}三、实验结果及分析本实验需要完成两个程序,发送方和接受方的,但是并没有要求加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数值,证明接受无误,实验结果正确。
双机串行通讯设计实验报告
双机串行通讯设计实验报告实验报告:双机串行通讯设计实验一、实验目的本实验的目的是通过双机串行通讯设计,实现两台计算机之间的数据传输和通信,掌握串行通讯的基本原理和应用。
二、实验原理串行通讯是指信息逐位地按顺序传送的通信方式。
串行通讯的优点是只需一对逻辑线路即可完成数据传输,可以减少硬件成本和物理排布空间。
而并行通讯需要多对逻辑线路,更加复杂。
在本实验中,我们使用两台计算机分别作为发送端和接收端。
数据通过串行通讯线路逐位传输,接收端按照发送端发送的顺序恢复数据。
具体步骤如下:1.确定双机串行通讯的物理连接方式,例如通过串口线连接两台计算机的串行端口。
2.在发送端,将待传输的数据进行串行化处理,即将数据逐位拆分成一个个比特,按照一定的传输格式进行编码。
3.将编码后的数据按照一定的速率逐位地通过串行线路发送到接收端。
4.在接收端,根据发送端的传输格式,逐位地接收并解码数据。
5.接收端将解码后的数据进行处理,恢复为原始数据。
三、实验步骤和结果1.硬件连接:使用串口线将两台计算机的串行端口连接起来。
2.软件设置:在两台计算机上分别进行串口的设置,确定串口的参数(波特率、数据位、停止位等)一致。
3.发送端设计:编写发送端的程序,将待传输的数据进行串行化处理,并按照约定的传输格式进行编码。
4.接收端设计:编写接收端的程序,根据发送端的传输格式,逐位接收和解码数据,并进行恢复处理。
5.实验测试:分别在发送端和接收端运行程序,进行数据传输和通信测试。
通过观察接收端接收到的数据是否与发送端发送的数据一致来验证通讯是否成功。
实验结果显示,通过双机串行通讯设计,发送端的数据能够成功传输到接收端,并且接收端能够正确解码和恢复数据,实现了双机之间的数据传输和通信。
四、实验总结本实验通过双机串行通讯的设计,实现了两台计算机之间的数据传输和通信。
实验结果表明串行通讯的设计和实现是可行的。
串行通讯具有硬件成本低、占用空间少等优点,因此在实际应用中被广泛使用。
单片机双机通信原理
单片机双机通信原理双机通信是指通过单片机(Microcontroller,MCU)系统中的串行通信接口,在两个单片机之间进行数据传输和交换的过程。
其中一个单片机被定义为主机(Master),另一个被定义为从机(Slave)。
双机通信可以实现不同单片机之间的数据共享和协作,使得系统具备更高的可靠性、灵活性和性能。
在双机通信的原理中,主机负责发起通信和控制通信过程,从机负责接收主机发送的指令并执行相应的操作。
通信的过程一般包括以下几个步骤:1. 主机初始化:主机在通信开始前需要进行初始化设置,包括选择合适的通信波特率(Baud Rate),设置通信参数和接收/发送缓冲区等。
2. 建立连接:主机通过发送一个特定的请求信号来与从机建立通信连接。
请求信号可以是一个特定的命令码或者特定的数据帧。
3. 从机响应:从机接收到主机发送的请求信号后,通过发送一个响应信号来回复主机。
响应信号可以是一个应答码或者相应的数据帧。
4. 数据传输:一旦建立了连接并完成了响应过程,主机和从机可以开始进行数据传输。
主机通过发送数据帧给从机,从机则接收并处理这些数据。
5. 错误处理:在数据传输过程中,可能会发生数据错误或者通信错误。
主机和从机通过相应的机制(如校验和)来检测和处理这些错误,以保证通信的可靠性和准确性。
6. 断开连接:当数据传输完成后,主机和从机可以通过发送断开连接的信号来结束通信过程。
断开连接的信号可以是特定的命令码或者特定的数据帧。
总的来说,双机通信的原理是通过主机和从机之间的串行通信接口进行数据传输和交换。
通过建立连接、数据传输和断开连接等步骤,实现两个单片机之间的数据共享和协作。
这种通信方式广泛应用于各种嵌入式系统中,如智能家居系统、工业自动化系统等。
单片机双机之间的串行通信设计
单片机双机之间的串行通信设计1.引言单片机双机之间的串行通信是指两个或多个单片机之间通过串口进行数据传输和通信的过程。
串行通信是一种逐位传输数据的方式,与并行通信相比,它占用的硬件资源更少,且传输距离较远。
本文将介绍单片机双机之间串行通信的设计过程,包括硬件设计和软件编程。
2.硬件设计串行通信需要使用到两个主要的硬件部件:串口芯片和通信线路。
串口芯片负责将要发送或接收的数据转换成串行数据流,并通过通信线路进行传输。
通信线路通常包括两根传输数据的线路(TX和RX)、地线和时钟线。
2.1串口芯片的选择常用的串口芯片有MAX232、MAX485、CH340等。
选择合适的芯片需要考虑通信距离、通信速率、系统的功耗等因素。
对于较短的通信距离和较低的通信速率,可以选择MAX232芯片;而对于长距离通信和较高的通信速率,可以选择MAX485芯片。
2.2通信线路设计通信线路的设计需要考虑信号的传输质量和抗干扰能力。
通常使用双绞线或者屏蔽线路来减小信号的串扰和干扰。
对于短距离通信,双绞线即可满足需求;而对于长距离通信,需要采用屏蔽线路来减小串扰和干扰。
3.软件设计串行通信的软件设计主要包括通信协议的制定和数据包的格式规定。
3.1通信协议的选择通信协议是指数据传输的一套规则和约定,它规定了数据的格式、传输顺序、误码校验等内容。
常用的通信协议有UART、RS232、SPI、I2C等。
UART是最常用的通信协议,它一般使用异步通信方式,并具有较高的通信速率和稳定性。
3.2数据包的格式规定数据包是一组有意义的数据的集合,它包括起始位、数据位、停止位和校验位等。
起始位用于标识一个数据包的开始,通常为逻辑低电平;数据位用于存储要传输的数据;停止位用于标识数据包的结束,通常为逻辑高电平;校验位用于检测数据传输过程中是否发生错误。
校验位可以是奇校验、偶校验、无校验等。
4.实验步骤4.1连接硬件根据硬件设计部分的要求,将串口芯片和通信线路连接到单片机上。
单片机双机之间的串行通信设计
单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。
二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。
数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。
2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。
3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。
通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。
4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。
5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。
三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。
2. 实验软件:Keil C51集成开发环境。
四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写发送端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。
(4)循环发送指定的数据。
2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写接收端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。
双机串行通信的设计与实现
双机串行通信的设计与实现一、设计要求1.单机自发自收串行通信。
接收键入字符,从8251A的发送端发送,与同一个8251A的接收端接收,然后在屏幕上显示出来。
2.双机串行通信,在一台PC机键入字符,从8251A的发送端发送给另一台PC机,另一台PC机的8251A的接收端接收,然后在屏幕上显示出来。
二、所用设备IBM-PC机两台(串行通信接口8251A两片,串行发送器MC1488和串行接收器MC1489各两片,定时器/计数器8253,终端控制器8259等),串口线一根串行直连电缆用于两台台电脑通过串行口直接相连,电缆两端的插头都是9 针的母插头:三、硬件方案1.设计思想计算机传输数据有并行和串行两种模式。
在并行数据传输方式中,使用8条或更多的导线来传送数据,虽然并行传送方式的速度很快,但由于信号的衰减或失真等原因,并行传输的距离不能太长,在串行通信方式中,通信接口每次由CPU得到8位的数据,然后串行的通过一条线路,每次发送一位将该数据放送出去。
串行通信采用两种方式:同步方式和异步方式。
同步传输数据时,一次传送一个字节,而异步传输数据是一次传送一个数据块。
串口是计算机上一种非常通用设备串行通信的协议。
大多数计算机包含两个基于RS232的串口。
串口按位(bit)发送和接收字节。
尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。
典型地,串口用于ASCII码字符的传输。
通信使用3根线完成:(1)地线,(2)发送,(3)接收。
由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。
其他线用于握手,但是不是必须的。
串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。
对于两个进行通行的端口,这些参数必须匹配:RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。
可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。
串口通信模块的程序
串口通信模块的程序包含了多种操作,包括初始化、数据发送和数据接收。
1. 初始化:(1)首先,需要对串口通信模块进行初始化,包括设置波特率、数据位、停止位和校验位等参数,以确保与其他设备的通信能够正常进行。
(2)配置串口通信模块的引脚,将串口通信模块的发送引脚连接到其他设备的接收引脚,并将串口通信模块的接收引脚连接到其他设备的发送引脚。
(3)使能串口通信模块,并设置相应的寄存器以启用串口通信。
2. 数据发送:(1)当需要发送数据时,首先需要将数据写入串口通信模块的发送缓冲区中。
(2)然后,需要向串口通信模块发送一个发送中断请求,以通知串口通信模块开始发送数据。
(3)串口通信模块将从发送缓冲区中读取数据,并将数据发送到其他设备。
3. 数据接收:(1)当其他设备发送数据时,串口通信模块将从接收引脚读取数据,并将数据存储在接收缓冲区中。
(2)然后,串口通信模块将向系统发送一个接收中断请求,以通知系统有数据可供读取。
(3)系统将从接收缓冲区中读取数据,并对数据进行处理。
以下是串口通信模块程序的一个简单示例:// 串口通信模块初始化void serial_init(void){// 设置波特率、数据位、停止位和校验位// ...// 配置串口通信模块的引脚// ...// 使能串口通信模块// ...// 设置相应的寄存器以启用串口通信// ...}// 串口通信数据发送void serial_send(uint8_t *data, uint16_t length){// 将数据写入串口通信模块的发送缓冲区// ...// 向串口通信模块发送一个发送中断请求// ...}// 串口通信数据接收uint8_t serial_receive(void){// 从接收缓冲区中读取数据// ...// 返回数据// ...}以上示例仅供参考,实际的串口通信模块程序可能会有所不同。
具体实现细节取决于所使用的串口通信模块的型号和特性。
单片机双机通信(C51程序
单片机双机通信(C51程序)/*发送程序连线:两个单片机用3根线连起来,要共地,rxd,txd要交叉连接程序效果:通过主机发送,从机接收在主机中通过记下按键按下的次数,主机中显示最后按下的六个数值,并发送给从机,从机也显示这六个数值*/#include; //头文件#include; //循环移位文件#define uchar unsigned char//宏定义#define uint unsigned intsbit key1=P3^5;//位声明uchar code table[]={0X00,0x3f,0x06,0x5b,//数码管显示的数值0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};uchar table_tr[6];//暂存最后按下的六个数值uchar count,cnt;//延时子函数,用于数码管显示void delay(uchar i){uchar x,y;for(x=i;x>;0;x--)for(y=110;y>;0;y--);}//初始化子函数void init(){TMOD=0x20;//T1工作在方式2TH1=0XF4;//波特率为4.8kbit/s TL1=0XF4;TR1=1;//启动定时器1SCON=0X50;//串口工作在方式1,允许接收}//显示子函数void display(){uchar i,j;//定义局部变量j=0x7f; //赋初值for(i=0;i; //头文件#include; //循环文件#define uchar unsigned char//宏定义#define uint unsigned intuchar code table[]={0X00,0x3f,0x06,0x5b,//数码管显示的数值0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};uchar table_tr[6];//暂存最后按下的六个数值uchar count,cnt;//定义全局变量//延时子函数,用于数码管显示void delay(uchar i){uchar x,y;for(x=i;x>;0;x--)for(y=110;y>;0;y--);}//初始化子函数void init(){TMOD=0x20;//T1工作在方式2TH1=0XF4; //波特率为:4.8kbit/s,发送与接收的波特率要相等TL1=0XF4;TR1=1; //启动定时器1SCON=0X50;//串口中断工作在方式1,允许接收}//显示子函数void display(){uchar i,j;//定义局部变量j=0x7f; //赋值for(i=0;i<6;i++) //显示六个数值 {P2=j;P0=table[table_tr[i]];delay(10);j=_cror_(j,1);//循环右移一位}}//主函数void main(){uchar i;//定义局部变量init(); //调用初始化子函数while(1){while(RI) //判断是否接受完{RI=0;//接受完了,标志位清零for(i=0;i<5;i++) //把数组的数值都往前移一位,腾出table_tr【5】table_tr[i]=table_tr[i+1];table_tr[5]=SBUF;//装入接收的数值 }display();//调用显示子函数}}。