零件参数设计matlab程序(数学建模)
Matlab中的数学建模方法
Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。
Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。
本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。
一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。
在Matlab中,可以使用regress函数来拟合线性回归模型。
例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。
首先,我们需要收集一组已知的身高和体重数据作为训练集。
然后,可以使用regress函数来计算回归模型的参数,并进行预测。
最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。
二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。
在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。
在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。
例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。
首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。
然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。
最后,可以使用拟合后的模型来进行预测和分析。
三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。
在Matlab中,可以使用fmincon函数来求解最优化问题。
例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。
可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。
通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。
四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。
matlab数学建模程序代码
matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。
通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。
在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。
二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。
2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。
3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。
4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。
5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。
6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。
三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。
2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。
3.优化问题:使用`optimize`函数求解优化问题。
4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。
5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。
数学建模MATLAB教案
数学建模MATLAB教案第一章:MATLAB简介1.1 MATLAB概述介绍MATLAB的发展历程和特点解释MATLAB的缩写和全称1.2 MATLAB界面介绍MATLAB的工作空间熟悉MATLAB的菜单栏和工具栏1.3 MATLAB基本操作学习MATLAB的变量类型和赋值方式掌握MATLAB的运算符和矩阵运算1.4 MATLAB的帮助系统学习如何使用MATLAB的帮助系统熟悉MATLAB的文档和教程第二章:MATLAB编程2.1 MATLAB脚本编程学习编写MATLAB脚本文件掌握MATLAB脚本的基本结构2.2 MATLAB函数编程学习编写MATLAB函数文件掌握MATLAB函数的输入输出参数2.3 MATLAB编程技巧学习MATLAB的条件语句和循环语句掌握MATLAB的文件操作和数据读取2.4 MATLAB编程实例举例讲解MATLAB编程的实际应用分析并解决实际问题第三章:数学建模基础3.1 数学建模概述介绍数学建模的定义和发展历程解释数学建模的重要性和应用领域3.2 数学建模方法学习数学建模的基本方法和步骤掌握数学建模的常见技巧和策略3.3 数学建模实例举例讲解数学建模的实际应用分析并解决实际问题3.4 MATLAB在数学建模中的应用介绍MATLAB在数学建模中的优势熟悉MATLAB的数学建模工具和函数第四章:MATLAB在微积分中的应用4.1 微积分基本概念复习微积分的极限、导数和积分等基本概念4.2 MATLAB求解微积分问题学习使用MATLAB求解微分和积分问题掌握MATLAB的微积分函数和工具4.3 MATLAB在微积分建模中的应用举例讲解MATLAB在微积分建模中的实际应用分析并解决实际问题4.4 微积分建模实例举例讲解微积分建模的实际应用分析并解决实际问题教案继续:第六章:MATLAB在线性代数中的应用6.1 线性代数基本概念复习线性代数的相关概念,如矩阵、向量、线性方程组等6.2 MATLAB求解线性代数问题学习使用MATLAB求解矩阵运算、线性方程组、特征值等问题掌握MATLAB线性代数相关的函数和工具6.3 MATLAB在线性代数建模中的应用举例讲解MATLAB在线性代数建模中的实际应用分析并解决实际问题6.4 线性代数建模实例举例讲解线性代数建模的实际应用分析并解决实际问题第七章:MATLAB在概率论与数理统计中的应用7.1 概率论与数理统计基本概念复习概率论与数理统计的基本概念,如随机变量、概率分布、统计量等7.2 MATLAB求解概率论与数理统计问题学习使用MATLAB进行概率计算、统计量计算、假设检验等掌握MATLAB概率论与数理统计相关的函数和工具7.3 MATLAB在概率论与数理统计建模中的应用举例讲解MATLAB在概率论与数理统计建模中的实际应用分析并解决实际问题7.4 概率论与数理统计建模实例举例讲解概率论与数理统计建模的实际应用分析并解决实际问题第八章:MATLAB在differential equations中的应用8.1 常微分方程基本概念复习常微分方程的定义、分类和解法8.2 MATLAB求解常微分方程学习使用MATLAB求解常微分方程,包括初值问题和边界值问题掌握MATLAB常微分方程相关的函数和工具8.3 MATLAB在常微分方程建模中的应用举例讲解MATLAB在常微分方程建模中的实际应用分析并解决实际问题8.4 常微分方程建模实例举例讲解常微分方程建模的实际应用分析并解决实际问题第九章:MATLAB在优化问题中的应用9.1 优化问题基本概念复习优化问题的定义、目标和常见方法9.2 MATLAB求解优化问题学习使用MATLAB求解无约束和有约束的优化问题掌握MATLAB优化相关的函数和工具9.3 MATLAB在优化建模中的应用举例讲解MATLAB在优化建模中的实际应用分析并解决实际问题9.4 优化建模实例举例讲解优化建模的实际应用分析并解决实际问题第十章:MATLAB在数据分析和可视化中的应用10.1 数据分析基本概念复习数据分析的定义、目的和常用方法10.2 MATLAB进行数据分析学习使用MATLAB进行数据预处理、统计分析和数据可视化掌握MATLAB数据分析相关的函数和工具10.3 MATLAB在数据分析建模中的应用举例讲解MATLAB在数据分析建模中的实际应用分析并解决实际问题10.4 数据分析建模实例举例讲解数据分析建模的实际应用分析并解决实际问题教案继续:第十一章:MATLAB在信号处理中的应用11.1 信号处理基本概念复习信号处理的基本概念,如信号、系统、傅里叶变换等11.2 MATLAB进行信号处理学习使用MATLAB进行信号的、分析和处理掌握MATLAB信号处理相关的函数和工具11.3 MATLAB在信号处理建模中的应用举例讲解MATLAB在信号处理建模中的实际应用分析并解决实际问题11.4 信号处理建模实例举例讲解信号处理建模的实际应用分析并解决实际问题第十二章:MATLAB在图像处理中的应用12.1 图像处理基本概念复习图像处理的基本概念,如图像、像素、滤波等12.2 MATLAB进行图像处理学习使用MATLAB进行图像的读取、处理和显示掌握MATLAB图像处理相关的函数和工具12.3 MATLAB在图像处理建模中的应用举例讲解MATLAB在图像处理建模中的实际应用分析并解决实际问题12.4 图像处理建模实例举例讲解图像处理建模的实际应用分析并解决实际问题第十三章:MATLAB在控制系统中的应用13.1 控制系统基本概念复习控制系统的基本概念,如系统、稳定性、传递函数等13.2 MATLAB进行控制系统分析学习使用MATLAB进行控制系统的建模、分析和仿真掌握MATLAB控制系统相关的函数和工具13.3 MATLAB在控制系统建模中的应用举例讲解MATLAB在控制系统建模中的实际应用分析并解决实际问题13.4 控制系统建模实例举例讲解控制系统建模的实际应用分析并解决实际问题第十四章:MATLAB在机器学习中的应用14.1 机器学习基本概念复习机器学习的基本概念,如监督学习、非监督学习、神经网络等14.2 MATLAB进行机器学习学习使用MATLAB进行机器学习模型的构建、训练和预测掌握MATLAB机器学习相关的函数和工具14.3 MATLAB在机器学习建模中的应用举例讲解MATLAB在机器学习建模中的实际应用分析并解决实际问题14.4 机器学习建模实例举例讲解机器学习建模的实际应用分析并解决实际问题第十五章:MATLAB在数学建模竞赛中的应用15.1 数学建模竞赛基本概念介绍数学建模竞赛的背景、规则和重要性15.2 MATLAB在数学建模竞赛中的策略学习如何利用MATLAB解决数学建模竞赛中的实际问题掌握MATLAB在数学建模竞赛中的优势和技巧15.3 数学建模竞赛实例分析分析数学建模竞赛中的实际案例讲解如何利用MATLAB提高竞赛成绩15.4 数学建模竞赛训练和指导提供数学建模竞赛的训练方法和指导建议帮助学生提高数学建模竞赛的能力和水平重点和难点解析1. MATLAB的基本操作和编程:理解MATLAB的工作空间,熟悉菜单栏和工具栏,掌握变量类型和赋值方式,以及矩阵运算。
使用Matlab技术进行建模和仿真的步骤
使用Matlab技术进行建模和仿真的步骤引言:Matlab是一种功能强大的数学计算软件,被广泛应用于各个领域的科学研究和工程技术中。
其中,建模和仿真是Matlab应用的重要方面,它可以帮助工程师和研究人员分析和预测各种系统的行为。
本文将介绍使用Matlab技术进行建模和仿真的步骤,包括建立模型、定义参数、进行仿真和分析结果等。
一、确定建模目标在开始建模之前,首先需要明确建模的目标和需求。
例如,我们可以通过建模来分析电路、机械系统或者物理过程等。
只有明确了建模目标,才能选择合适的建模方法和工具。
二、选择合适的建模方法建模方法可以根据系统的特点和需求进行选择。
常用的建模方法包括物理建模、统计建模、数据驱动建模等。
物理建模是基于系统的物理原理和方程进行建模,统计建模是通过统计分析来描述系统的行为,数据驱动建模则是利用已有的数据来建立模型。
根据不同的情况,选择合适的建模方法至关重要。
三、建立模型在Matlab中,建立模型可以使用Simulink或者编程的方式。
Simulink是一种基于图形化界面的建模工具,可以通过拖拽组件和连接线来搭建模型。
编程的方式则可以使用Matlab脚本语言来描述系统的数学模型。
根据系统的特点和个人的喜好,选择适合自己的建模方式。
四、定义参数和初始条件在建立模型之后,需要定义参数和初始条件。
参数是影响系统行为的变量,可以通过Matlab的变量赋值来定义。
初始条件是模型在仿真开始之前系统的状态,也需要进行设定。
对于一些复杂的系统,可能需要对模型进行调优和参数敏感性分析等,以获取更加准确的结果。
五、进行仿真在模型建立并定义好参数和初始条件之后,就可以进行仿真了。
仿真是通过运行模型,模拟系统在不同条件下的行为。
Matlab提供了强大的仿真功能,可以灵活地设置仿真时间步长和仿真条件,进行数据记录和后续分析。
六、分析结果仿真完成后,需要对仿真结果进行分析。
Matlab提供了各种分析工具和函数,可以方便地对仿真数据进行处理和可视化。
如何使用MATLAB进行数学建模与分析
如何使用MATLAB进行数学建模与分析第一章 MATLAB简介与安装MATLAB是一款强大的数值计算软件,广泛应用于科学计算、工程建模、数据处理和可视化等领域。
本章将介绍MATLAB的基本特点、主要功能以及安装方法。
首先,MATLAB具有灵活的编程语言,可以进行复杂的数学运算和算法实现。
其次,MATLAB集成了丰富的数学函数库,包括线性代数、优化、常微分方程等方面的函数,方便用户进行数学建模和分析。
最后,MATLAB提供了直观友好的图形界面,使得数据处理和结果展示更加便捷。
为了使用MATLAB进行数学建模与分析,首先需要安装MATLAB软件。
用户可以从MathWorks官网上下载最新版本的MATLAB安装程序,并按照提示进行安装。
安装完成后,用户需要根据自己的需要选择合适的许可证类型,并激活MATLAB软件。
激活成功后,用户将可以使用MATLAB的全部功能。
第二章 MATLAB基本操作与语法在开始进行数学建模与分析之前,用户需要了解MATLAB的基本操作和语法。
本章将介绍MATLAB的变量定义与赋值、矩阵运算、函数调用等基本操作。
首先,MATLAB使用变量来存储数据,并可以根据需要对变量进行重新赋值。
变量名可以包含字母、数字和下划线,但不允许以数字开头。
其次,MATLAB支持矩阵运算,可以方便地进行矩阵的加减乘除、转置和求逆等操作。
用户只需要输入相应的矩阵运算符和矩阵变量即可。
然后,MATLAB提供了丰富的数学函数,用户可以直接调用这些函数进行数学运算。
最后,用户可以根据需要编写自定义函数,实现更复杂的算法和数学模型。
第三章数学建模与优化数学建模是利用数学方法和技巧,对实际问题进行描述、分析和求解的过程。
本章将介绍如何使用MATLAB进行数学建模与优化。
首先,数学建模的第一步是问题描述和模型构建。
用户需要明确问题的目标、约束条件和决策变量,并将其转化为数学模型。
其次,用户可以使用MATLAB提供的优化函数,对数学模型进行求解。
数学建模MATLAB程序设计专题ppt课件
全局变量
全局变量(Global Variables)是可以在不同的函数工作空间和MATALB工作空间中共享使用的变量。 用 global定义, 而且每个要共享全局变量的函数和工作空间,都必须逐个定义, 先定义后使用. 注意:由于全局变量在任何定义过的函数中都可以修改,因此不提倡使用全局变量;使用时应十分小心,建议把全局变量的定义放在函数体的开始,全局变量用大写字符命名。
M函数文件的基本格式
函数声明行
function [输出变量列表] = 函数名(输入变量列表)
H1行(用%开头的注释行) 在线帮助文本 (用%开头) 编写和修改记录(用%开头)
函数体
创建M函数文件并调用的步骤
编写函数代码 将函数文件保存为“函数名.m”。 在命令窗口输入命令调用程序
利用泛函命令求极小值
2. fminsearch函数 :求多变量无约束非线性最小值。 x=fminsearch(h_fun,x0) x=fminsearch(‘funname’,x0) x0是最小值点的初始猜测值。
其它泛函命令
3 .fzero函数:求一维函数的零点,即求f(x)=0的根。 x=fzero(h_fun, x0, tol, trace) x=fzero(‘funname’, x0, tol, trace) x0有两个作用:预定待搜索零点的大致位置和搜索起始点;tol用来控制结果的相对精度,默认值为eps;trace指定迭代信息是否在运算中显示。
其它泛函命令
4. 数值积分:quad和quad8是基于数学上的正方形概念来计算函数的面积。 5. 微分方程的数值解:MATLAB提供ode23、ode45和ode113等多个函数求解微分方程的数值解。
泛函命令
在MATLAB中,所有以函数为输入变量的命令,都称为泛函命令。
数学建模零件参数的优化设计
数学建模零件参数的优化设计Company number【1089WT-1898YT-1W8CB-9UUT-92108】零件参数的优化设计摘要本文建立了一个非线性多变量优化模型。
已知粒子分离器的参数y由零件参数)72,1(=ixi 决定,参数ix的容差等级决定了产品的成本。
总费用就包括y偏离y造成的损失和零件成本。
问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。
我们将问题的解决分成了两个步骤:1.预先给定容差等级组合,在确定容差等级的情况下,寻找最佳标定值。
2.采用穷举法遍历所有容差等级组合,寻找最佳组合,使得在某个标定值下,总费用最小。
在第二步中,由于容差等级组合固定为108种,所以只要在第一步的基础上,遍历所有容差等级组合即可。
但是,这就要求,在第一步的求解中,需要一个最佳的模型使得求解效率尽可能的要高,只有这样才能尽量节省计算时间。
经过对模型以及matlab代码的综合优化,最终程序运行时间仅为秒。
最终计算出的各个零件的标定值为:ix={,,,,,,},等级为:BBCCBBBd,,,,,,=一台粒子分离器的总费用为:元与原结果相比较,总费用由(元/个)降低到(元/个),降幅为%,结果是令人满意的。
为了检验结果的正确性,我们用计算机产生随机数的方式对模型的最优解进行模拟检验,模拟结果与模型求解的结果基本吻合。
最后,我们还对模型进行了误差分析,给出了改进方向,使得模型更容易推广。
关键字:零件参数 非线性规划 期望 方差一、问题重述一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
零件参数包括标定值和容差两部分。
进行成批生产时,标定值表示一批零件该参数的平均值,容差则给出了参数偏离其标定值的容许范围。
若将零件参数视为随机变量,则标定值代表期望值,在生产部门无特殊要求时,容差通常规定为均方差的3倍。
进行零件参数设计,就是要确定其标定值和容差。
这时要考虑两方面因素:一是当各零件组装成产品时,如果产品参数偏离预先设定的目标值,就会造成质量损失,偏离越大,损失越大;二是零件容差的大小决定了其制造成本,容差设计得越小,成本越高。
数学建模MATLAB教案
数学建模MATLAB教案第一章:MATLAB简介1.1 课程目标了解MATLAB的发展历程和应用领域熟悉MATLAB的工作环境掌握MATLAB的基本命令和操作1.2 教学内容MATLAB的历史和发展MATLAB的应用领域MATLAB的工作环境MATLAB的基本命令和操作1.3 教学方法讲解和示范相结合学生上机实践1.4 教学资源MATLAB软件PPT课件1.5 教学评估课后作业上机实践第二章:MATLAB基本操作2.1 课程目标掌握MATLAB的变量和数据类型熟悉MATLAB的运算符和表达式学会在MATLAB中进行矩阵操作2.2 教学内容MATLAB的变量和数据类型MATLAB的运算符和表达式矩阵的创建和操作矩阵的运算2.3 教学方法讲解和示范相结合学生上机实践2.4 教学资源MATLAB软件PPT课件2.5 教学评估课后作业上机实践第三章:MATLAB函数3.1 课程目标了解MATLAB内置函数的分类和用法学会自定义函数掌握MATLAB脚本文件的编写和运行MATLAB内置函数的分类和用法自定义函数的创建和调用MATLAB脚本文件的编写和运行3.3 教学方法讲解和示范相结合学生上机实践3.4 教学资源MATLAB软件PPT课件3.5 教学评估课后作业上机实践第四章:MATLAB绘图4.1 课程目标熟悉MATLAB绘图的基本命令掌握MATLAB绘图的格式和技巧学会使用MATLAB绘制各种图形4.2 教学内容MATLAB绘图的基本命令MATLAB绘图的格式和技巧绘制各种图形的函数和方法讲解和示范相结合学生上机实践4.4 教学资源MATLAB软件PPT课件4.5 教学评估课后作业上机实践第五章:数学建模基本方法5.1 课程目标了解数学建模的基本概念和方法学会使用MATLAB进行数学建模掌握数学建模的常用算法和技巧5.2 教学内容数学建模的基本概念和方法使用MATLAB进行数学建模的步骤和技巧数学建模的常用算法和实例5.3 教学方法讲解和示范相结合学生上机实践5.4 教学资源MATLAB软件PPT课件5.5 教学评估课后作业上机实践第六章:线性方程组求解6.1 课程目标理解线性方程组的数学理论学会使用MATLAB解线性方程组掌握MATLAB中求解线性方程组的多种方法6.2 教学内容线性方程组的数学描述MATLAB中的线性方程组求解函数(如`解方程组`函数)稀疏矩阵在线性方程组求解中的应用使用`linsolve`函数求解线性方程组使用`guess`函数进行参数估计6.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习6.4 教学资源MATLAB软件线性方程组求解实例6.5 教学评估课后练习题上机练习第七章:最优化问题求解7.1 课程目标理解最优化问题的数学模型学会使用MATLAB解决最优化问题掌握最优化问题的常见求解算法7.2 教学内容最优化问题的数学基础MATLAB中的最优化工具箱概述使用`fmincon`函数求解约束最优化问题使用`fminunc`函数求解无约束最优化问题了解其他最优化函数和算法7.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习7.4 教学资源MATLAB软件最优化问题求解实例7.5 教学评估课后练习题上机练习第八章:微分方程求解8.1 课程目标理解微分方程的基本概念学会使用MATLAB求解微分方程掌握MATLAB中微分方程求解工具的使用8.2 教学内容微分方程的分类和基本概念MATLAB中的微分方程求解函数(如`ode45`)边界值问题的求解(如`bvp4c`)参数估计和敏感性分析8.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习8.4 教学资源MATLAB软件PPT课件微分方程求解实例8.5 教学评估课后练习题上机练习第九章:概率论与数理统计9.1 课程目标掌握概率论和数理统计的基本概念学会使用MATLAB进行概率论和数理统计分析能够运用概率论和数理统计方法解决实际问题9.2 教学内容概率论基本概念和公式数理统计基本方法MATLAB中的概率论和数理统计函数随机数和概率分布函数的绘制假设检验和置信区间的计算9.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习9.4 教学资源MATLAB软件PPT课件概率论和数理统计实例9.5 教学评估课后练习题上机练习第十章:综合案例分析10.1 课程目标能够综合运用所学的数学建模和MATLAB知识解决实际问题学会分析问题、建立模型、选择合适的算法和工具求解10.2 教学内容综合案例的选择和分析建立数学模型的方法MATLAB在模型求解中的应用数学建模报告的结构和要求10.3 教学方法案例分析与讨论学生分组实践10.4 教学资源MATLAB软件PPT课件综合案例数据和背景资料10.5 教学评估数学建模报告评分学生口头报告和讨论第十一章:非线性方程和方程组的求解11.1 课程目标理解非线性方程和方程组的概念学会使用MATLAB求解非线性方程和方程组掌握MATLAB中非线性求解的多种方法11.2 教学内容非线性方程和方程组的数学描述MATLAB中的非线性方程求解函数(如`fsolve`)非线性方程组的求解方法(如`ode45`)图像法求解非线性方程和方程组初始参数的选择和影响11.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习11.4 教学资源MATLAB软件PPT课件非线性方程和方程组求解实例11.5 教学评估课后练习题第十二章:插值与拟合12.1 课程目标理解插值和拟合的概念学会使用MATLAB进行插值和拟合掌握MATLAB中插值和拟合的多种方法12.2 教学内容插值和拟合的基本概念MATLAB中的插值函数(如`interp1`)MATLAB中的拟合函数(如`fit`)插值和拟合的误差分析插值和拟合在数学建模中的应用12.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习12.4 教学资源MATLAB软件PPT课件插值和拟合实例12.5 教学评估课后练习题第十三章:数值分析13.1 课程目标理解数值分析的基本概念学会使用MATLAB进行数值分析掌握MATLAB中数值分析的多种方法13.2 教学内容数值分析的基本概念MATLAB中的数值分析函数误差和稳定性分析数值分析在数学建模中的应用常见数值方法的比较和选择13.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习13.4 教学资源MATLAB软件PPT课件数值分析实例13.5 教学评估课后练习题第十四章:MATLAB在信号处理中的应用14.1 课程目标理解信号处理的基本概念学会使用MATLAB进行信号处理掌握MATLAB中信号处理的基本方法14.2 教学内容信号处理的基本概念MATLAB中的信号处理函数信号的时域和频域分析信号处理在实际应用中的例子MATLAB在信号处理中的优势和局限性14.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习14.4 教学资源MATLAB软件PPT课件信号处理实例14.5 教学评估课后练习题第十五章:MATLAB在图像处理中的应用15.1 课程目标理解图像处理的基本概念学会使用MATLAB进行图像处理掌握MATLAB中图像处理的基本方法15.2 教学内容图像处理的基本概念MATLAB中的图像处理函数图像的增强、滤波和边缘检测图像处理在实际应用中的例子MATLAB在图像处理中的优势和局限性15.3 教学方法理论讲解与实际操作相结合示例演示学生上机练习15.4 教学资源MATLAB软件PPT课件图像处理实例15.5 教学评估课后练习题重点和难点解析重点:1. MATLAB的工作环境及基本命令和操作。
如何用MATLAB进行数学建模
如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。
通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。
本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。
一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。
在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。
2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。
3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。
4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。
二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。
下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。
2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。
3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。
4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。
5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。
三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。
利用Matlab构建数学模型及求解方法详解
利用Matlab构建数学模型及求解方法详解引言数学模型在现代科学研究和实际应用中起着重要的作用。
利用数学模型,我们可以准确地描述问题,分析问题,并提供解决问题的方法。
而Matlab作为一种强大的数学软件,能够帮助我们构建数学模型并求解问题。
本文将详细介绍利用Matlab构建数学模型的方法和求解模型的技巧。
一、数学模型的基本概念数学模型是对真实世界问题的简化和抽象,以数学语言和符号进行表达。
一个好的数学模型应当能够准确地描述问题的本质,并能够提供解决问题的方法。
构建数学模型的基本步骤如下:1. 确定问题的目标和限制条件:首先,我们需要明确问题的目标是什么,以及有哪些限制条件需要考虑。
这些目标和限制条件将在后续的模型构建中起到重要的作用。
2. 建立假设:在构建数学模型时,我们通常需要做一些合理的假设。
这些假设可以简化问题,使得模型更易于建立和求解。
3. 确定数学表达式:根据问题的具体情况,我们需要选择适当的数学表达式来描述问题。
这些数学表达式可以是代数方程、微分方程、最优化问题等。
4. 参数估计:数学模型中通常会涉及到一些未知参数,我们需要通过实验数据或者其他手段来估计这些参数的值。
参数的准确估计对于模型的求解和结果的可靠性至关重要。
二、利用Matlab构建数学模型的方法在利用Matlab构建数学模型时,我们通常可以使用以下方法:1. 利用符号计算工具箱:Matlab中提供了丰富的符号计算工具箱,可以帮助我们处理复杂的代数方程和符号表达式。
通过符号计算工具箱,我们可以方便地推导出数学模型的方程式。
2. 利用数值计算工具箱:Matlab中提供了强大的数值计算工具箱,可以帮助我们求解各种数学问题。
例如,求解微分方程的常用方法有欧拉法、龙格-库塔法等,都可以在Matlab中轻松实现。
3. 利用优化工具箱:在一些优化问题中,我们需要求解最优解。
Matlab的优化工具箱提供了多种求解最优化问题的算法,如线性规划、非线性规划等。
matlab数学建模程序代码
matlab数学建模程序代码摘要:1.MATLAB 简介2.MATLAB 数学建模应用领域3.MATLAB 数学建模程序代码实例4.总结正文:一、MATLAB 简介MATLAB(Matrix Laboratory)是一款广泛应用于科学计算、数据分析和可视化的软件,尤其擅长矩阵运算。
自1984 年问世以来,MATLAB 已经成为了全球数百万工程师、科学家和研究人员的得力工具。
MATLAB 具有丰富的函数库和强大的编程能力,为用户提供了从数据获取、数据处理、数据分析到结果可视化等一站式解决方案。
二、MATLAB 数学建模应用领域MATLAB 在数学建模领域的应用非常广泛,涵盖了诸如优化、控制、信号处理、图像处理、概率论和统计等众多学科。
以下是一些典型的应用场景:1.优化问题求解:线性规划、整数规划、非线性规划等。
2.控制系统设计:线性时不变系统、线性时变系统、非线性系统等。
3.信号处理:滤波、信号生成、频域分析等。
4.图像处理:图像增强、图像分割、特征提取等。
5.概率论与统计:概率分布计算、假设检验、回归分析等。
三、MATLAB 数学建模程序代码实例下面以一个简单的线性规划问题为例,展示如何使用MATLAB 进行数学建模。
问题描述:给定如下线性规划问题:```maximize: c" * xsubject to: A * x <= b and x >= 0```其中,c"表示目标函数的系数向量,A 表示不等式约束矩阵,b 表示不等式约束向量,x 表示决策变量向量。
MATLAB 代码如下:```matlab% 定义参数c = [1, 2, 3]; % 目标函数系数向量A = [1, 0; 0, 2; 0, 1]; % 不等式约束矩阵b = [2; 4; 1]; % 不等式约束向量x = linprog(c, [], [], A, b); % 求解线性规划问题disp(x); % 输出最优解```运行上述代码,可以得到最优解x = [1.5; 2.5; 1]。
MATLAB——数学建模基础教程
MATLAB——数学建模基础教程数学建模是通过数学方法研究和描述实际问题的过程。
它是将数学工具应用于现实世界中的问题,通过数学模型和算法来预测和优化系统的行为和性能。
数学建模是科学研究和工程设计过程中的重要组成部分,它有助于深入理解问题的本质和潜在解决方法。
在MATLAB中进行数学建模,首先需要构建数学模型。
数学模型是一个描述问题的数学表达式或算法,它可以是线性或非线性、离散或连续的。
构建数学模型的关键是理解问题的基本原理和变量之间的关系。
MATLAB提供了一系列的数值计算函数和工具箱,用于求解各种数学问题。
这些函数和工具箱涵盖了各种数学领域,如线性代数、微积分、常微分方程、优化等。
通过调用这些函数,可以在MATLAB中进行数学计算和分析。
例如,在线性代数中,可以使用MATLAB的矩阵运算函数来解决线性方程组、求解矩阵的特征值和特征向量、计算矩阵的行列式等。
MATLAB还提供了丰富的图形函数,可以用来绘制二维和三维图形,以便对数据进行可视化和分析。
此外,MATLAB还具有强大的符号计算功能,可以用来进行符号计算和代数运算。
通过使用符号表达式和符号变量,可以进行符号求导、符号积分、符号化简等操作。
这对于解析解和符号推导的问题非常有用。
在数学建模中,优化是一个重要的问题。
MATLAB提供了多种优化算法和方法,可以用于最小化或最大化函数、寻找函数的全局极值或局部极值。
优化算法的选择和应用是数学建模中的一个关键步骤,MATLAB提供了丰富的文档和示例来帮助用户理解和使用这些算法。
最后,MATLAB还具有强大的数据处理和统计分析功能。
它可以用来处理和分析实验数据、生成随机数、拟合曲线和表面、进行统计假设检验等。
这些功能在实际问题的数据分析和建模中非常有用。
总之,MATLAB是一个强大的数学建模工具,可以帮助用户理解和解决各种数学问题。
通过使用MATLAB的数值计算、符号计算、优化和统计分析等功能,可以在数学建模中提供精确、高效和可靠的解决方案。
matlab简单的数学模型及程序
matlab简单的数学模型及程序一、背景介绍Matlab是一款广泛应用于科学计算、工程分析等领域的软件,其强大的数学计算和绘图功能深受研究者和工程师的喜爱。
在实际的应用中,我们常常需要通过建立数学模型来解决一些复杂的问题。
本文将介绍matlab中的简单数学模型及其程序实现。
二、线性方程组线性方程组是数学中比较基础的概念,其求解方法也比较简单。
在matlab中,我们可以通过“mldivide”函数来求解线性方程组。
例如,对于下列线性方程组:-3x + 2y = 14x + y = 8我们可以通过以下代码来求解:A = [-3 2;4 1];b = [1; 8];x = A\b;disp(x);三、微分方程微分方程在工程学和物理学中有着广泛的应用,研究微分方程的解析方法和数值方法是许多科学计算和工程应用中的关键。
在matlab中,我们可以通过ode函数在一定精度条件下计算微分方程。
例如,对于一个一阶线性微分方程y′+2y=10sin(3x),我们可以通过以下代码来求解:f = @(x, y) -2*y + 10*sin(3*x);[x, y] = ode45(f, [0, 3*pi], 0);plot(x, y);四、优化问题优化问题在工程、科学计算和商业决策等领域都有着广泛的应用,matlab提供了许多优化算法来求解各种优化问题。
一个典型的优化问题如下:求解f(x)=x^2+2x+1在区间[0,5]内的最小值。
我们可以通过以下代码来求解:f = @(x) x^2 + 2*x + 1;[x_min, f_min] = fminbnd(f, 0, 5);disp(['x_min=', num2str(x_min), ', f_min=', num2str(f_min)]);五、常微分方程组常微分方程组是微积分的一个分支,应用广泛。
在matlab中,我们可以通过ode45函数计算常微分方程组。
matlab数学建模程序代码
matlab数学建模程序代码摘要:1.引言2.Matlab数学建模简介3.Matlab数学建模程序代码实例a.线性规划模型b.非线性规划模型c.动态规划模型d.排队论模型e.图论模型f.神经网络模型4.结论正文:Matlab是一种广泛应用于科学计算和数据分析的编程语言。
在数学建模领域,Matlab也发挥着重要的作用。
本文将介绍Matlab数学建模的基本知识,并通过实例代码展示不同类型的数学建模问题的解决方法。
首先,我们需要了解Matlab数学建模的基本概念。
Matlab提供了一系列用于解决各种数学建模问题的工具箱和函数。
例如,线性规划(LP)、非线性规划(NLP)、动态规划(DP)、排队论(QT)、图论(GT)和神经网络(NN)等。
这些工具箱和函数可以帮助我们快速地构建和求解数学模型。
接下来,我们将通过实例代码展示如何使用Matlab解决不同类型的数学建模问题。
1.线性规划模型线性规划是一种常见的优化问题,它的基本形式可以表示为:$minimize quad c^Tx$$subject quad to:$$Ax leq b$$x geq 0$在Matlab中,我们可以使用intlinprog函数求解线性规划问题。
下面是一个实例:```matlabf = [-1, 1, 1; -1, 2, 1; -1, 1, 2]; % 目标函数系数向量A = [1, 1, 1; 1, 1, 1; 1, 1, 1]; % 约束条件系数矩阵b = [3, 3, 3]; % 约束条件右端向量lb = [0, 0, 0]; % 变量下限[x, fval] = intlinprog(f, [], [], A, b, lb);disp(x);disp(fval);```2.非线性规划模型非线性规划问题的一般形式为:$minimize quad g(x)$$subject quad to:$$h_i(x) leq 0, i = 1, ..., m$$x in X$在Matlab中,我们可以使用fmincon函数求解非线性规划问题。
数学建模竞赛培训之编程MATLAB实用教程
数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。
如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。
接下来,让我们一起开启 MATLAB 编程的实用教程之旅。
一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。
当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。
变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。
例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。
MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。
二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。
可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。
矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。
例如,两个矩阵相加可以直接使用`A + B` 。
三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。
比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。
我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。
MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。
以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。
五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。
使用Matlab进行数学建模的基本流程
使用Matlab进行数学建模的基本流程引言数学建模作为一门交叉学科,旨在将实际问题转化为数学模型,并通过数学方法求解问题。
而Matlab作为一种常见且强大的数学软件,为数学建模提供了便捷的工具和平台。
本文将介绍使用Matlab进行数学建模的基本流程,包括问题提出、模型建立、求解分析等方面。
一、问题提出在进行数学建模之前,首先需要明确问题的提出。
问题可以来源于实际生活、工程技术、自然科学等领域。
在提出问题时,需要明确问题的背景、目标和约束条件。
以一个实际问题为例,假设我们需要优化某个生产过程的生产能力,而该过程中不同工序的生产速度会受到各种因素的影响。
我们的目标是最大化总产量,同时要满足资源约束和质量要求。
二、模型建立在问题提出的基础上,开始建立数学模型。
数学模型是问题实质的抽象和化简,它可以通过数学语言和符号来描述问题。
在建立模型时,需要关注以下几个方面:1. 变量的选择:根据问题的特点和目标,确定需要考虑的变量。
例如,在我们的生产过程优化问题中,可以考虑生产速度、资源利用率等变量。
2. 建立关系:通过分析问题,确定变量之间的关系。
关系可以是线性的、非线性的,也可以是概率性的。
在我们的例子中,我们可以根据生产速度和资源利用率的关系建立数学表达式。
3. 假设和简化:在建立模型时,为了简化问题,可以进行一些假设和简化。
但是需要保证这些假设和简化对问题求解的结果不会产生重大影响。
基于以上步骤,我们可以建立一个数学模型,例如使用线性规划模型来最大化总产量,并满足资源和质量约束。
三、求解分析模型建立完毕后,需要使用Matlab进行求解分析。
Matlab提供了丰富的函数和工具箱,可以方便地进行数学计算、模拟仿真、优化求解等操作。
在求解分析阶段,我们可以进行以下几个步骤:1. 数据处理:将实际问题中获取的数据导入Matlab,并进行必要的预处理和清洗。
例如,我们可以将生产速度和资源利用率的数据导入Matlab,进行统计分析和数据可视化。
使用MATLAB进行数学建模和仿真的步骤和注意事项
使用MATLAB进行数学建模和仿真的步骤和注意事项随着科技的发展,数学建模和仿真在工程、科学、经济等领域中扮演着至关重要的角色。
MATLAB作为一种强大的数学建模和仿真工具,在各种研究领域都广泛应用。
本文将介绍使用MATLAB进行数学建模和仿真的步骤和注意事项,帮助读者更好地进行数学模型的开发和仿真实验。
一、数学建模的步骤1. 确定问题和目标:首先明确所要解决的问题和需要达到的目标。
这一步是建立数学模型的基础,为后续的步骤提供方向。
2. 收集数据和背景信息:收集与问题相关的数据和背景信息,包括实验数据、文献资料等。
这些信息将作为建模的依据和参考,有助于更好地理解问题和找到解决方案。
3. 建立数学模型:选择合适的数学方法和工具,将问题转化为数学表达式。
根据问题的特点和需求,可以选择不同的数学模型,如代数方程、微分方程、优化模型等。
4. 参数估计和模型验证:根据已有的数据和背景信息,对模型的参数进行估计,并通过实验数据验证模型的准确性和适用性。
如果需要对模型进行修改和改进,可以返回第三步进行调整。
5. 模型求解和分析:使用MATLAB进行模型求解和分析。
根据建立的数学模型,利用数学工具和算法,得到问题的解或结果。
可以使用MATLAB各种内置函数和工具箱,例如符号计算工具箱、优化工具箱等。
6. 结果评估和应用:对模型的结果进行评估和分析,判断模型的有效性和可行性。
根据实际问题的需求,将模型结果应用于实际情况中,提供决策和解决方案。
二、MATLAB数学建模和仿真的注意事项1. 确定合适的数学工具:MATLAB提供了丰富的数学工具和函数,可以满足不同问题的需求。
在建模过程中,需要根据具体的问题特点和要求,选择合适的数学工具和函数。
同时,要善于利用MATLAB的帮助文档和在线资源,充分了解和掌握所使用的函数和工具的功能和使用方法。
2. 数据准备和预处理:良好的数据质量对于建模的准确性和仿真的可靠性至关重要。
零件参数设计的数学模型含matlab程序,DOC
零件的参数设计的模型分析摘要本文以产品的成本和产品期望损失之和为目标函数,以标定值和容差为变量建立非线性优化模型。
'y 3.4 512y,x2=0.225,x3=0.075,x4=0.075,x5=1.125,x6=18.0974,x7=0.8479。
7个零件选取的容差等级依次为BBBCCBB。
关键词:零件参数正态分布迭代法穷举法一、问题提出一件产品由多个零件组成,标志产品性能的参数取决于这些零件的参数。
每个零件的参数是独立的,零件的参数是标定值和容差。
假设每个零件不存在容差,则这件产品的参数是一个定值,但是这个假设不符合实际情况。
实际生产过程中,零件的参数总是出现在一个区间而不是一个点,即实际值总是偏离标定值的。
当这些零件组装成产品时,产品的参数就不是一个定值,也将成为一个取值区间。
如果产品的参数偏离原先设计值y Array偏离大,12y为1.50,当y偏离y0±0.1时,产品为次品,质量损3、假设3:零件参数的目标值失为1000元;当y偏离y0±0.3时,产品为废品,损失为9000元。
x、2x、3x、4x、5x、6x、7x决定。
4、假设4:产品的参数y只由七个零件标定值1三、符号说明2四、模型的分析建立与求解4.1模型的数据分析,表一并得到了y值分布的直方图(如图1)图1根据直方图,我们不妨猜测y的随机分布函数服从正态分布。
4μ=x -=1.7160,σ=S=0.1013。
采用分布拟合检验的2χ检验法,根据如下的定理:定理:若n 充分大(n>50),0H :总体x 的分布函数为()F x ,则当0H 为真时(无论0H 中的分布属何种分布),统计量总是近似地服从自由度为k-r-1的2χ分布;其中,r 是被估计的参数个数。
于是,若在假设0H 下算得有求'y =24.58961x -5.99112x +14.66753x -4.02814x -1.15045x -0.05396x -1.15047x+3.45124.1.3原设计的总费用在原设计中,7个零件参数的标定值分别为:x1=0.1,x2=0.3,x3=0.1,x4=0.1,6x5=1.5,x6=16,x7=0.75;容差均取最便宜的等级。
数学建模零件的参数设计
零件的参数设计摘要本文主要论述了关于零件参数设计的问题,运用到有关概率论与数理统计的方法以及用泰勒公式将问题简单化,最终构造了一个求设计零件所需费用最低的优化模型,运用MATLAB软件进行数值计算。
已知粒子分离器的参数y由零件参数)72,1(=ixi 决定,参数ix的容差等级决定了产品的成本。
总费用就包括y偏离y0造成的损失和零件成本。
问题是要寻找零件的标定值和容差等级的最佳搭配,使得批量生产中总费用最小。
我们的思路是假定随机变量y属于正态分布,经过一定的转化,找到y的均方差yσ与y,而均方差yσ与零件参数的标定值与容差有关,得出二者的联系,从而可用零件参数的标定值与容差表示yσ,进而得出y的分布函数,积分后就可得到完整的非线性规划方程表达。
问题就成功的转化为了非线性规划问题。
求解的时候分两步走:1.预先给定容差等级组合,在在确定容差等级的情况下,寻找最佳标定值,使y为y=1.5。
2.在第一步的基础上采用穷举法遍历所有108种容差等级组合,找出最小费用。
最终计算出来的标定值为ix={0.0750,0.3750,0.1250,0.1200,1.2919,15.9904,0.5625},等级为:BBCCBBBd,,,,,,=一台粒子分离器的总费用为:421.7878元。
与原结果比较,总费用由3074.8元降低到421.7878元,降幅为2653.02元,比较明显。
最后我们对所建模型进行了分析,讨论了他的优缺点,并对模型进行了推广。
关键字:零件参数方差非线性规划1.问题提出1.1问题背景当今社会发展日新月异,市场需求不断变化,而且要求是越来越高,各种各样的新产品层出不穷,竞争的压力越来越大,对人才的需求也越来越大。
无论设计什么样的产品,作为产品的研发设计人员,时刻要保持强烈的创新愿望和冲动,充分考虑到所设计产品的各项指标,尤其要着重考虑产品的各个组装零件,分析它们的参数指标,再通过加强学习和锻炼,提高创造力,设计开发出符合现代设计需要的、具有竞争实力的优良产品,且能实现最大的经济效益,才能使自己在诺大的社会上立于不败之地。
零件参数设计matlab程序(数学建模)
Min=90000;global H A C %全局变量H=[10000,25,10000;20,50,10000;20,50,200;50,100,500;50,10000,10000;10,25,100;10000,25,100 ]; %成本矩阵A=[0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01]; %容差矩阵C=zeros(7,3); 把容差选择矩阵元素全部赋值为0for z=1:1:3for x=1:1:3for c=1:1:3for v=1:1:3for g=1:1:3for n=1:1:3for m=1:1:3D=[z x c v g n m];C=zeros(7,3);for i=1:1:7C(i,D(i))=1;end %产生7 3列矩阵,该矩阵特点是每一行只有一个1 ,其它两个数为0。
本矩阵是为了对零件容差等级进行选择lb=[0.075 0.225 0.075 0.075 1.125 12 0.5625];ub=[0.125 0.375 0.125 0.125 1.875 20 0.935];X0=[0.075 0.225 0.075 0.075 1.125 12 0.5625];[xopt fopt]=fmincon(@mubiao,X0,[],[],[],[],lb,ub,[]);if fopt<MinMin=fopt;XOPT=xopt;Q=C;endendendendendendendendfunction f=junzhi(X)f=3.4512+[24.5896,-5.9911,14.6675,-4.0281,-1.1504,-0.0539,-1.1504]*X'; %把一组X取值带入经验公式的简化式,得到期望值μfunction f=junzhi2(X)f=([24.5896,-5.9911,14.6675,-4.0281,-1.1504,-0.0539,-1.1504].*X)/3; %得到一个行向量,为计算均方差σ做准备function f=mubiao(X)global C A H %全局变量B=C.*A;E=(sum(B,2));G= junzhi2(X);F=(G'.*E).^2;b=(sum(F(:)))^0.5; %求解产品参数的均方差,b即是均方差a= junzhi(X); %求解产品参数的期望值p0=normcdf(1.6,a,b)-normcdf(1.4,a,b); %产品为合格品的概率p1=normcdf(1.8,a,b)-normcdf(1.6,a,b)+normcdf(1.4,a,b)-normcdf(1.2,a,b ); %产品为次品的概率p2=1-p0-p1; %产品为废品的概率sunshi=1000*p1+9000*p2; %产品的损失费用I=C.*H; %用容差选择矩阵选择容差等级chengben=sum(I(:)); %零件的总成本f=chengben+sunshi; %目标函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Min=90000;
global H A C %全局变量
H=[10000,25,10000;20,50,10000;20,50,200;50,100,500;50,10000,10000;10,25,100;10000,25,100 ]; %成本矩阵
A=[0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01;0.1 0.05 0.01]; %容差矩阵
C=zeros(7,3); 把容差选择矩阵元素全部赋值为0
for z=1:1:3
for x=1:1:3
for c=1:1:3
for v=1:1:3
for g=1:1:3
for n=1:1:3
for m=1:1:3
D=[z x c v g n m];
C=zeros(7,3);
for i=1:1:7
C(i,D(i))=1;
end %产生7 3列矩阵,该矩阵特点是每一行只有一个
1 ,其它两个数为0。
本矩阵是为了对零件容差等级
进行选择
lb=[0.075 0.225 0.075 0.075 1.125 12 0.5625];
ub=[0.125 0.375 0.125 0.125 1.875 20 0.935];
X0=[0.075 0.225 0.075 0.075 1.125 12 0.5625];
[xopt fopt]=fmincon(@mubiao,X0,[],[],[],[],lb,ub,[]);
if fopt<Min
Min=fopt;
XOPT=xopt;
Q=C;
end
end
end
end
end
end
end
end
function f=junzhi(X)
f=3.4512+[24.5896,-5.9911,14.6675,-4.0281,-1.1504,-0.0539,-1.1504]*X'
; %把一组X取值带入经验公式的简化式,得到期望值μ
function f=junzhi2(X)
f=([24.5896,-5.9911,14.6675,-4.0281,-1.1504,-0.0539,-1.1504].*X)/3; %得到一个行向量,为计算均方差σ做准备
function f=mubiao(X)
global C A H %全局变量
B=C.*A;
E=(sum(B,2));
G= junzhi2(X);
F=(G'.*E).^2;
b=(sum(F(:)))^0.5; %求解产品参数的均方差,b即是均方差
a= junzhi(X); %求解产品参数的期望值
p0=normcdf(1.6,a,b)-normcdf(1.4,a,b); %产品为合格品的概率
p1=normcdf(1.8,a,b)-normcdf(1.6,a,b)+normcdf(1.4,a,b)-normcdf(1.2,a,b ); %产品为次品的概率
p2=1-p0-p1; %产品为废品的概率
sunshi=1000*p1+9000*p2; %产品的损失费用
I=C.*H; %用容差选择矩阵选择容差等级
chengben=sum(I(:)); %零件的总成本
f=chengben+sunshi; %目标函数。