基于多尺度小波算子的图象边缘检测
基于小波变换的多尺度图像边缘检测算法
D esign and I mp lem entation of an VB-based D ynam icM atrix Cryptograph ic Syste m
YANG X iao -p ing, L I De- lu , BAO L i hong ( College o f Physics and In for m at io n Sc ie nce , T ianshu i Norm al Un iv ersity, T ianshui G ansu 741001 , Ch in a) K ey w ord s : dynam ic passwo rd ; net w ork security ; VB Abstract : T his article summ arized gainn ing m ethod of the comm on passw ord fo r the present accoun t passw ord pil fer prob le m, and designed t w o level o f cryptosystem structure th at is the conventional passw ord + dynam ic m atrix passw ord , expect ing to enhance the passw ord security through the passw ord structure , then rea lized th e dynam ic cryptograph ic system w ith VB1
收稿日期 : 2008 -11-13
1 2
第 3期
王玮钊 , 等 : 基于小波变换的多尺度图像边缘检测算法
基于小波变换的多尺度图像边缘检测
第24卷第2期 阜阳师范学院学报(自然科学版) V o l.24,N o.2 2007年6月 Journal of Fuyang T eachers Co llege(N atural Science) Jun.2007基于小波变换的多尺度图像边缘检测郦丹芸1,2,陶 亮1,詹小四2(1.安徽大学计算机科学与技术学院,安徽合肥 230039;2.阜阳师范学院计算机系,安徽阜阳 236041)摘 要:边缘作为图像的最主要特征,成为图像信息获取的重要内容.而小波变换具有检测局域突变的能力,而且可以结合多尺度信息进行检测,因此成为图像信息边缘检测的优良工具.文章首先构造了高斯多尺度边界检测算子,然后根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.实验结果说明这种特征提取方法不仅有效地降低了噪声,而且融合的边界比较完整,定位准确.关键词:图像处理;边缘检测;多尺度小波分析;小波中图分类号:T P391 文献标识码:A 文章编号:100424329(2007)022******* 在图像中,边缘是指其周围像素灰度有阶跃变化或屋顶变化的像素的集合.边缘是图像的基本特征之一,.因此,边缘提取与检测在图像处理中占有很重要的地位.传统的边缘检测方法基于空间运算,借助空域微分算子进行,通过将算子模板与图像进行卷积合成,根据模板的大小和元素值的不同有不同的微分算子,如Robert算子、Sobel算子、P rew itt算子、LO G 算子、Canny算子等,这些算子虽然易于实现、具有较好的实时性,但由于边缘检测问题固有的复杂性,使这些方法在抗噪性能和边缘定位方面往往得不到满意的效果,这主要是因为边缘和噪声都是高频信号,很难在噪声和边缘中作取舍[1].1983年W itk in提出尺度空间的思想,对边缘检测中的多尺度多分辨的思想进行了深入、直接的研究.1992年M allat提出小波变换多尺度边缘检测方法,并将小波边缘检测方法与LO G算子及Canny 最优检测算子在小波意义下统一起来,更加明确地表达了多尺度的思想在边缘检测中的重要意义[2].然而,边缘检测的不确定性指出边缘检测算子的抑噪能力和定位精度是一对矛盾,小尺度算子有利于边缘定位,但对噪声极为敏感;大尺度算子抑噪能力强,但边缘定位精度差,甚至会丢失某些局部细节.因此,固定尺度的边缘检测算子难以兼顾良好的边界定位,噪声抑制和弱边界检测等性能指标. M arr[3]从神经生理学和心理物理学出发,指出人的视觉前期处理中有多个分辨率的边缘算子在对图像作卷积,各边缘检测算子输出的组合能提高定位精度,减少噪声干扰.由于小波变换具有良好的时频局域化特性及多尺度分析能力,本文根据多尺度分析构造多尺度边缘检测算子,通过多尺度边缘融合,实现图像边缘的检测.1 多尺度图像边缘提取算法在文献[4]中,Young R.A从人类视觉的生理特性和数学形式上分析,指出一个高斯平滑函数叠加一个高斯函数的二阶导数能够更加精确的模拟人类的视觉特性,即能更好地强化边缘并准确定位.1.1 设计多尺度离散掩模算子高斯函数的一阶导数满足允许小波函数的定义[5],利用高斯函数构造小波边缘检测算子.设Η(x, y)为均值为0,方差Ρ2的高斯函数,Ηs(x,y)= 1s2Η(xs,ys)为Η(x,y)的尺度变换函数,s为伸缩因子,则71s(x,y)=s5Ηs5x,72s(x,y)=s5Ηs5y为尺度上s收稿日期:2007204208基金项目:安徽省高校青年教师“资助计划”项目(2007jql145)作者简介:郦丹芸(1976-),女,硕士研究生,讲师.研究方向:图像处理.的小波函数.在尺度s上,函数f(x,y)∈L2(R2)的W T(小波变换)定义为W1s f(x,y) W2s f(x,y)≡f371s(x,y)f372s(x,y)=s (f3Ηs)(x,y)(1)因此,f(x,y)关于71和72的W T的两个分量为f(x,y)的竖直和水平边缘增强图,记为n1(x,y)和n2(x,y).令I(x,y)=n21+n22,A(x,y)= arctg(n2 n1)分别为边缘幅度图和梯度方向图.在实际应用中,由于图像都为离散化的,因此需要对71s和72s进行采样,获得多尺度离散掩模算子. f(x,y)的W T的离散化形式为:W1s f(x,y)=6x+(L-1) 2m=x-(L-1) 26x+(L-1) 2 n=y-(L-1) 2 f(m,n)71s(x-m,y-n)(2)W2s f(x,y)=6x+(L-1) 2m=x-(L-1) 26x+(L-1) 2 n=y-(L-1) 2 f(m,n)72s(x-m,y-n)(3)其中L为掩模算子的宽度.在实际情况下L不可能为无限长,由于71s,72s具有负指数的衰减形式,因此可以取其波峰和波谷之间距离的两倍作为的长度.可得71s和71s的宽度均为 L=(in t)4sΡ(4)若L为偶数,则L=L+1.若已知L及s,则可通过Ρ=L (in t)4s求出标准差Ρ的值.令最小尺度为s= 1,该尺度对应的掩模算子宽度L=3,可以求出Ρ=0.75.同理可以求出s为任何整数时的掩模算子.1.2 基于多尺度小波算子的边缘检测方法1.2.1 检测边缘候选点对图像进行有限尺度的小波分解,形成噪声逐渐减少的多尺度边缘增强图像.在选定的最大尺度和最小尺度之间设定尺度的跨度,产生一系列尺度空间.首先,两个空间的尺度越相近,则两个尺度下检测出的边缘位置也越相近,两个空间的尺度跨度较大,那么检测出的边缘的位置也会有较大的差异.尺度越小,检测的边缘越接近真实边缘,如果在最小尺度下的噪声边缘淹没了图像边缘,则认为该尺度为无效尺度,重新选择;在最大尺度空间,噪声得到抑制,图像边缘信息在局部模极大值中占主导地位,但要防止边缘失真,如果边缘严重失真,这样的大尺度也视为无效.因此,边缘关联应该在相近的尺度范围内进行,而不应该跨越较大尺度范围,否则边缘信息在相邻尺度空间的相关性将降低.本文选择个相邻的整数尺度,把s=m,m+1,…,m+n-1,m∈Z+作为分解尺度,分别得到各尺度的掩模算子.图像与掩模算子进行卷积,局部模极大值点即为检测出的图像的候选边缘.为边缘幅度设定阈值T s,幅度大于T s的候选点作为边缘点.还为每个边缘的长度设定阈值L s,将连续长度小于阈值L s的边缘删去,使得检测出来的边缘可信度较高,L s一般取20.最小尺度m和最大尺度m+n-1根据具体情况选定,要保证最小尺度下边缘信息比较准确,没有被噪声边缘淹没;最大尺度空间边缘失真较小.对于不同的尺度空间,选择不同的阈值,在最大尺度空间,选择的阈值较高,以减少噪声的影响;而在其他尺度空间,阈值比较小,使得边缘信息尽量完整.因此在最大尺度空间,边缘可能是不完整的.1.2.2 图像的多尺度融合多尺度边缘的融合并不等于将不同尺度下的边缘简单相加,因为不同尺度的边缘检测算子对同一边缘的响应并不相同,因此在不同尺度的边缘增强图像中的位置也不相同,边缘相加必然会造成边缘冗余,同时噪声也没有得到抑制.本文利用多尺度边缘在位置、强度和方向上的联系,提出边缘传递、继承和生长3种处理方法来实现多尺度边缘的融合.尺度s+1上的3×3邻域中的像素是尺度s上局部模极大值点(i,j)的关联域,定义为F s,s+1(i,j).通过下面的判断式来确定尺度s上点(i,j)是否与尺度s+1关联.定义尺度s上局部模极大值点的集合为M,用C s,s+1(i,j)来表示s空间点(i,j)与s+1空间的相关性.则C s,s+1(i,j)=1 ϖ(m,n)∈F s,s+1(i,j)&(m,n)∈M s+1,st. Υs(i,j)-Υs+1(m,n) ≤Αo r Υs(i,j)-Υs+1(m,n)≥360°-Α0 else(5)其中Υs(i,j)和Υs+1(i,j)为尺度s,s+1上极大值点(i,j)的梯度方向,Α是为方向差设定的阈值.如果C s,s+1(i,j)=1,则说明尺度s上极大值点(i,j)是与尺度s+1上极大值点相关联的,否则不关联.(a)边缘传递如果尺度s上的极值点(i,j)不与尺度s+1关联,说明尺度s+1上的边缘信息传递不到(i,j).如果尺度s上的极值点(i,j)与尺度s+1关联,则认为尺度s上的极值点(i,j)是由尺度s+1中的某个边缘点(m,n)传递而来,在不同尺度空间反映图像中的同一边缘.经边缘传递后边缘点集合为B1s,s+1,其组成为 B1s,s+1={(i,j)∈M s C s,s+1(i,j)=1}(6)75第2期 郦丹芸等:基于小波变换的多尺度图像边缘检测(b)边缘继承尺度空间s+1上存在某些边缘点不与尺度上的任何边缘点关联,尺度s+1上这部分边缘信息需要保留,用B2s,s+1表示,其组成为B2s,s+1={(m,n)∈M s+1 Π(i,j)∈ M s,C s,s+1(i,j,m,n)=0} (7)其中C s,s+1(i,j,m,n)表示尺度s上点(i,j)与尺度s +1上点(m,n)的相关性.B1s,s+1表示从尺度s+1传递到尺度s的边缘,而B2s,s+1表示从尺度s+1空间继承下的边缘.引入I s,s+1和Υs,s+1来分别代表合成边缘模值和合成梯度方向,它们表示跨尺度融合后的边缘增强图和梯度方向图. I s,s+1(i,j)=I s+1(i,j),(i,j)∈B2s,s+1I s(i,j), else(8) Υs,s+1(i,j)=Υs+1(i,j),(i,j)∈B2s,s+1Υs(i,j), else(9)(c)边缘生长为了获得完整的边缘,不仅需要边缘的传递、继承,还需要边缘生长.在大尺度空间,为边缘选取较高的阈值T s,以减少噪声的干扰,这也导致了检测出的边缘的不完整性.在小尺度空间,降低阈值T s,虽然噪声的影响较大,但图像的边缘比大尺度空间完整,因此小尺度空间包含了比大尺度空间更多的边缘信息,也包含了更多的噪声边界.由于前面介绍的边缘传递仅在3×3的小窗口内进行,使得边缘信息无法传递到较远的地方.可以增大窗口的尺寸,但是在这种情况下相邻尺度有相关性的局部模极大值可能并不对应于同一边缘.因此本文利用小窗口迭代来实现边缘生长.将从尺度s+1和尺度s通过传递和继承获得的局部模极大值点集合B s,s+1另记为B0s,s+1,Υs,s+1另记为Υ0s,s+1,以此为基础,使得B0s,s+1在M s中迭代扩展.设第k次迭代之后的边缘点集合为B k s,s+1,k≥1.将M s中的像素(i,j)与B k-1s,s+1中的像素的相关性用D k-1s (i,j)表示.如果D k-1s(i,j)=1,表示M s中的像素(i,j)与B k-1s,s+1中的像素相关联;否则不关联.如果点(i,j)在B0s,s+1中是一个边缘的端点,而在M s中位于某个边缘的中间,B k s,s+1通过上述迭代,就会扩展到整个的边缘,完成边缘生长.多尺度边缘融合从最大尺度开始,先进行边缘传递;无法传递的大尺度边缘得到保留;然后在小尺度空间进行边缘的生长扩展.由于扩展只是在像素的8邻域范围内逐步进行,并且有方向的限制,因此可以克服噪声边缘的干扰.以上步骤逐层向下进行,最后得到多尺度融合的边缘.2 实验结果分析下图1中(a)是一幅SA R图像,对图像进行小波变换,图1(b)2(f)是经过5级小波变换后获得的高于给定门限局部模极大值点位置图,即各尺度下的边缘图,尺度分别为s=2,3,4,5,6.从边缘图可以看出,随着尺度的增大,噪声逐渐减少,边缘逐渐平滑.在尺度2时,噪声的影响非常大,边界比较破碎;尺度s=6为最大尺度,提取的边缘体现了原图中的主要边缘,基本不受噪声的影响,但是边缘失真比较严重,且提取的边缘不完整,对于某些连续的边缘,只检测出其中的一段,但是在小尺度空间可以较完整地检测出来.因此需要利用最大尺度空间提供的位置信息,融合各尺度的信息,合成精确的边缘.运用本文提出的多尺度融合算法,结果如图1(g)2(j)所示.通过逐层融合,原来断裂的边缘连接起来,而且边缘位置越来越贴近实际边缘位置.对于本文所选取的小波函数,各尺度下的极值点检测相当于图像的Canny边缘检测.与尺度2、3、4、5下的边界相比,多尺度融合获得的边界有效地抑制了噪声干扰;与尺度6下的边界相比,多尺度融图1 各尺度下边缘检测结果85 阜阳师范学院学报(自然科学版) 第24卷图2 传统的边缘检测算子检测结果合获得的边界定位更准确,边界更完整.图2中(l )为Canny 算子,(m )Sobel 算子,(n )为LO G 算子检测出的边界,通过比较可以看出:对于受强烈噪声污染的SA R 图像,用Canny 算子检测出的边缘较模糊,去噪效果差,在定位精度、精确检测等方面都不如本文采用的方法.与其他边缘检测算子的比较可以获得相似结果.参考文献[8、9]给出了其他基于小波变换的图像边缘检测方法.文献[8]利用多尺度分解获得LL 空间的细节图,然后对细节图进行中值滤波抑制噪声的干扰,对滤波后图像二值化后利用Sobel 算子检测边缘.该方法实际仅利用某一尺度下的细节图进行边缘检测,没有考虑到不同尺度边缘的关联.文献[9]在对相邻尺度的边缘进行信息融合时,仅对链的端点进行处理,没有考虑到不同尺度下,提取的边缘定位的不同.仅利用端点进行融合减少计算量,但是获得的融合边缘定位会有误差,并且这种方法边缘的补充有限.本文方法通过边缘生长可以充分实现不同尺度的边缘互补.因此从机理上说,本文的方法更优越.3 结论本文根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.(1)由于小波变换有多尺度的特点,可以利用多尺度特性,通过细节和粗节进行逼近,强于其他经典算法.(2)在边缘和噪声的取舍中,由于二者均为高频信号,很难用频带划分.使用小波变换的方法,使得可在大尺度下抑制噪声,小尺度下,得到边缘的真实位置;而传统的和经典的边缘检测算法则在此问题上不能提供有效的解决办法.不论选用怎样的小波函数,都可以利用上述算法进行多尺度边缘融合.实验表明该方法可以有效抑制噪声的干扰,同时保证融合边界的完整性和定位的准确性.参考文献[1] 刘贵忠,邸双亮.小波分析及其应用[M ].西安:西安电子科技大学出版社,1995:1742289.[2] 王 涛.模糊多尺度边缘检测算法的研究[J ].微计算机信息,2006,22(1023):3042306.[3] M arr .视觉计算理论[M ].姚国正,刘 磊,汪云九,译.北京:科学出版社,1988:2562260.[4] Young R A .Si m ulati on of H um an R etinal Functi on w ith the Gaussian D erivative M odel [J ].IEEE the Computer SocietyConference on Computer V isi on and Pattern R ecogniti on .M ich igan U SA ,1988,8(6):5642569.[5] 程正兴.小波分析算法与应用[M ].西安:西安交通大学出版社,1998:1682257.[6] 陈 虹.基于小波变换的多尺度图像边缘检测[J ].首都师范大学学报(自然科学版),2004,25(12):326.[7] 施成湘.扩展的多尺度模糊边缘检测计算机工程与应用2006,7:65268[8] 赵志钦,王建国.SA R 图像的边沿检测方法研究电子科技大学学报,2000,29(3):2252228.[9] 刘宏兵,杨万海.图像小波边缘提取中阈值选取的一种自适应方法[J ].西安电子科技大学学报,2000,27(3):2942296.I mage Edge D etection Ba sed On M ultisca le W avelet Tran sformL I D an 2yun1,2,TAO L iang 1,ZHAN X iao 2si 2(1.S chool of Co m p u ter S ience ,A nhu i U niversity of Ch ina ,H ef ei A nhu i ,230039,Ch ina ;2.D ep art m ent of Co m p u ter ,F uy ang T eachers Colleg e ,F uy ang A nhu i ,236041,Ch ina )Abstract :T he edge ,as the mo st basic characteristic of i m ages ,is an i m po rtant content of obtaining info r m ati on of ap icture .T he w avelet transfo r m can detect part m utati on ,and can do it com bining m ultiscale info r m ati on ,so w avelet has be 2com e a good too l of detecting info r m ati on of edge i m ages .In th is paper ,a m ultiscale Gaussian edge detecto r is constructed .A cco rding to transfer p roperties acro ss scales of the w avelet modules of the signal edge and the no ise edge ,w e com bine the p roperties of edges in different scales and p ropo se a m ulti 2scale edge fusi on algo rithm consisting of edge transfer ,edge inherit and edge grow th .T he result of experi m ents show s that th is algo rithm can get rid of the affect of no ise and the edges fused have p recise po siti on and intact contour .Key words :i m age p rocess ;edge detecti on ;m ultiscale w avelet transfo r m ;w avelet95第2期 郦丹芸等:基于小波变换的多尺度图像边缘检测。
基于小波变换的数字图像边缘检测
基于小波变换的数字图像边缘检测数字图像边缘检测是计算机视觉领域中的一个重要问题,它在图像处理、模式识别和计算机视觉应用中有着广泛的应用。
边缘是图像中灰度值发生剧烈变化的地方,对于图像的分割和特征提取具有重要意义。
而小波变换作为一种多尺度分析工具,在数字图像边缘检测中发挥着重要作用。
小波变换是一种时频分析方法,它能够对信号在时间和频率上进行局部化分析。
对于数字图像,小波变换将图像分解为不同尺度的频域子带,每个子带都包含了图像在不同频率范围内的信息。
边缘是图像中高频分量的主要特征,因此小波变换能够提取图像中的边缘信息。
在基于小波变换的数字图像边缘检测中,首先需要对图像进行小波变换,将图像分解为多个尺度的频域子带。
然后,通过对每个子带进行阈值处理,将低频分量和高频分量分离开来。
高频分量中包含了图像中的边缘信息,因此可以通过对高频分量进行边缘检测来获取图像的边缘。
常用的小波函数有多种,如Haar小波、Daubechies小波和Morlet小波等。
不同的小波函数具有不同的频率特性和尺度特性,可以根据具体应用的需求选择合适的小波函数。
此外,还可以通过调整小波变换的尺度参数,来获取不同尺度下的边缘信息。
小波变换的边缘检测方法具有较好的性能和灵活性。
相比于传统的边缘检测方法,基于小波变换的边缘检测能够更好地提取图像中的边缘信息,并且能够对不同尺度下的边缘进行检测。
此外,小波变换还能够处理图像中的噪声,提高边缘检测的精度和稳定性。
综上所述,基于小波变换的数字图像边缘检测是一种有效的方法。
通过对图像进行小波变换,并对高频分量进行边缘检测,可以提取出图像中的边缘信息。
小波变换的边缘检测方法具有较好的性能和灵活性,可以广泛应用于图像处理、模式识别和计算机视觉等领域。
使用小波变换进行图像边缘检测的实用方法
使用小波变换进行图像边缘检测的实用方法图像边缘检测是计算机视觉和图像处理领域中的一个重要任务,它可以帮助我们理解图像的结构和形状。
小波变换是一种在信号处理中常用的工具,它具有多分辨率分析的能力,可以对图像进行细节和边缘的提取。
本文将介绍使用小波变换进行图像边缘检测的实用方法。
首先,我们需要了解小波变换的基本原理。
小波变换是一种将信号分解成不同频率的成分的方法。
它使用一组称为小波基函数的函数来表示信号,这些函数在时域和频域上都具有局部性质。
小波基函数具有时频局部化的特点,能够在时域和频域上同时提供较好的分辨率,因此适用于图像边缘检测。
在实际应用中,我们常用的小波变换方法是离散小波变换(DWT)。
离散小波变换将信号分解成不同频率的子带,每个子带都包含了信号在不同频率上的信息。
对于图像边缘检测,我们通常使用一维的小波变换方法对图像的每一行和每一列进行变换。
接下来,我们需要选择合适的小波基函数。
小波基函数的选择对于图像边缘检测的效果有很大的影响。
常用的小波基函数有Haar小波、Daubechies小波和Symlet小波等。
它们具有不同的性质,适用于不同类型的图像。
在选择小波基函数时,我们需要考虑图像的特点和需求,选择最适合的小波基函数。
然后,我们需要对图像进行小波变换。
在进行小波变换之前,我们需要将图像转换为灰度图像,并进行归一化处理。
然后,我们可以使用离散小波变换算法对图像进行变换。
变换后,我们得到了图像在不同频率上的子带系数。
这些子带系数可以表示图像的细节和边缘信息。
接下来,我们需要对小波变换后的图像进行边缘检测。
一种常用的方法是通过阈值处理来提取边缘信息。
我们可以设置一个阈值,将小于阈值的子带系数置为0,将大于阈值的子带系数保留。
这样,我们就可以得到一个二值图像,其中白色像素表示边缘,黑色像素表示背景。
然而,简单的阈值处理方法往往会导致边缘信息的丢失和噪声的引入。
为了提高边缘检测的准确性,我们可以使用基于小波变换的边缘检测算法,如Canny算子。
基于小波的多尺度图像边缘提取的实验设计
基于小波的多尺度图像边缘提取的实验设计设计了基于小波的多尺度图像边缘算法的实验。
通过此实验,在熟练掌握图像边缘提取的经典算法基础上,了解小波对于图像多层提供可实现上述方法的matlab程序代码,学生可利用相关程序对图像进行边缘提取,比较边缘提取利用不同方法获得不同特征的边缘。
在数字图像实验中首次引入小波的多尺度图像边缘算法。
标签:边缘检测;边缘算子;小波变换引言目前的边缘提取算法有传统的利用微分算子的边缘检测算法,正在迅速发展的小波多尺度边缘检测算法,另外还有基于数学形态学的边缘检测算法等。
本实验将引导学生学习传统的边缘检测算法,体会小波边缘检测算法,并利用Matlab 进行编程实验观察比较各算法的边缘检测效果。
1 经典的图像边缘检测算子的原理将图像边缘定义为灰度变化比较剧烈的地方,可以具体为其周边像素灰度有阶跃变化或屋顶变化的像素的集合。
一般边缘检测方法是考察图像的每个像素在某个邻域内灰度的变化,利用边缘一阶或二阶方向导数变化规律来检测边缘,这种方法通常称为边缘检测局部算子法。
几种经典的边缘检测算子:(1)基于一阶微分的边缘检测算子,包括Roberts算子,Sobel算子和Prewitt 算子Roberts边缘算子是一种斜向差分的梯度计算方法,梯度的大小代表边缘的强度,梯度的方向与边缘走向垂直。
其计算公式表示为:式中,f(x,y)是具有整数像素坐标的输入图像。
Roberts边缘算子定位精度,在水平和垂直方向效果较好,但对噪声敏感。
Sobel边缘算子是一组方向算子,从不同的方向检测边缘。
Sobel算子不是简单求平均再差分,而是加强了中心像素上、下、左、右四个方向像素的权重,运算结果是一副边缘图像。
该算子通常由下列计算公式表示:Prwitte边缘算子是一种边缘样板算子,利用像素点上下、左右邻点灰度差,在边缘处达到极值检测边缘,对噪声具有平滑作用。
由于边缘点像素的灰度值与其邻域点像素的灰度值有显著不同,在实际应用中通常采用微分算子和模板匹配方法检测图像边缘。
基于多尺度小波的Roberts边缘检测法
o i e e ts ae ,tc n p s in e g no mai n e a t a d i e sb e a d efc ie e g ee t n me h d f f r n c l s i a o i o d e i fr t x cl n sa f a i l n f t d e d t ci t o . df t o y, e v o Ke wo d y rs Ed e d t ci n Wa ee r n fr g ee t o v ltt s m Mu t s ae a a y i Ro e sa g r h a o l —c l n l s i s b r lo i m t t
s b i g h o g o e s g a in p r trt e t e e g ma e i o rs o d n c l , n h n le g ma e wa e i e r m h u —ma e t r u h R b r r de t e ao g t h d e i g s w t c re p n i g s ae a d t e f a d e i g s d rv d fo t e t o o h i
o o e sc o sg a i n p r tr F rwa ee — a so u — g sw t i e e t c l s s ailf s o d rd f r ni sp r r e n e c fR b a r s — r d e t e ao . o v l tt n fr s b i o r m ma e i df r n ae ,p t rt r e i e e t wa e f m d o a h h f s ai f l a o
Ab t a t s r c A l — c l d ed tc in meh d wi a ee r n f r e h n e n a r p s d b s d o h a wo k o d e d tci n mu t s ae e g ee t t o t w v lt a so m n a c me t sp o o e a e n t e f me r f g ee t i o h t w r e o
基于小波变换多尺度的图像边缘检测方法研究
总第19卷219期2017年11月大众科技Popular Science & TechnologyVol.19 No.11November 2017基于小波变换多尺度的图像边缘检测方法研究谢道平(安徽财经大学,安徽蚌埠233031 )【摘要】边缘检测在图像处理中占有很重要的地位,其算法的优劣直接影响着计算机视觉系统对客观世界的理解。
文中 介绍小波变换应用于数字图像,利用检测小波系数模极大值的方法来检测图像的突变点位置(图像边缘位置),通过仿真实验说 明,小波在图像(或噪声)边缘检测上是有效的。
【关键词】图像处理;边缘检测算子;B 样条小波【中图分类号】TP 399 【文献标识码】A 【文章编号】1008-1151(2017)11-0003-03A study of image edge detection based on multi-scale waveletAbstract:Edge detection plays an important role in image processing,and its algorithm has a direct impact on the understanding ofthe objective world by computer vision system.In this paper,the B-spline wavelet transform is applied to digital image,using the method of detecting system mathematical model of maximum wavelet to detect the abrupt change point of the image position (image edge location),through the simulation experiment shows that the B-spline wavelet on image edge detection (or noise ) is good .Key words:Image processing;edge detection ;B-spline wavelet图像边缘是图像局部特征的不连续性(灰度突变、颜色 突变等)的反映,它标志着一个区域的终结和另一个区域的 开始,通常选择求相邻像素一阶和二阶导数来检测边界,因 此图像边缘检测可以借助空域微分算子来实现,Canny 边缘检 测算子属于一阶微分算子,它具有去除噪声的功能,信噪比 和检测精度较好,但是也存在不足之处,为了得到较好的边 缘检测结果,它通常需要使用较大的尺度,这样容易丢失一 些边缘细节。
基于小波变换多尺度边缘检测分析解读
基于小波变换多尺度边缘检测分析解读小波变换是一种时频分析方法,具有多尺度分析的特点。
在图像处理领域中,小波变换被广泛应用于边缘检测。
在这篇文章中,我们将通过分析小波变换多尺度边缘检测的原理和方法,来解读其应用和优势。
首先,我们需要了解小波变换的基本原理。
小波变换可以将信号在时间域和频率域上进行分析,通过选择不同的小波函数(母小波),可以实现不同尺度的信号分析。
小波变换将信号分解成不同频率的子信号,这些子信号可以对应图像的不同特征。
在边缘检测中,我们希望能够提取出图像中明显的边缘特征。
传统的边缘检测算法,如Sobel算子、Canny边缘检测等,只能提取出单一尺度的边缘特征。
而小波变换可以通过选择不同的小波函数,实现多尺度的特征提取。
多尺度边缘检测算法的基本思想是,在不同尺度下,对图像进行小波变换,并提取出具有边缘特征的子信号。
然后将这些子信号进行重构,得到多尺度边缘图像。
具体而言,多尺度边缘检测算法包括以下几个步骤:第一步,选择合适的小波函数。
小波函数的选择会影响边缘检测的效果。
常用的小波函数有Haar小波、Daubechies小波等。
第二步,对图像进行小波变换。
通过选择不同尺度的小波函数,对图像进行小波变换,得到不同频率的子信号。
第三步,提取具有边缘特征的子信号。
根据不同尺度下的边缘特征,选择适当的阈值,将边缘信号从其他噪声信号中分离出来。
第四步,将提取出的边缘信号进行重构。
通过将不同尺度的边缘信号进行重构,得到多尺度的边缘图像。
多尺度边缘检测的优势在于它可以提取出不同尺度的边缘特征。
在实际应用中,图像中的边缘通常具有不同的宽度和强度。
传统的边缘检测算法往往只能提取出其中一特定尺度的边缘特征,而多尺度边缘检测能够提取出多个尺度的边缘特征,从而更全面地描述图像中的边缘结构。
此外,多尺度边缘检测还可以在一定程度上消除图像中的噪声。
由于不同频率的子信号对应着不同尺度的特征,对较高频率的子信号进行阈值处理,可以去除图像中的高频噪声。
基于多尺度小波与模糊方法的图像边缘检测
O 引 言
边 缘 检 测 是 图 像 分 割 中 研 究 的 一 个 重 要 环 节 , 图 像 处 是 理 中最 基 础 的 内 容 , 体 可 用其 边 界 来 表 示 , 图像 灰 度 不 连 物 由 续 点 组 成 的 基 元 图 携 带 了原 始 图 像 的 绝 大 部 分 有 用 信 息 ,由 于 边 缘 具 有 能 勾 画 区 域 的 形 状 , 被 局 部 定 义 以及 能 够 传 递 能 大 部 分 的 图像 信 息 等 许 多优 点 , 因此 , 缘 检 测 可 以 看 作 是 图 边 像 处理 的 关 键 , 泛 应 用 于 轮 廓 、 征 的提 取 、 理 分 析 等 领 广 特 纹
合, 实验 结果证 明检 测 出的边缘 与其 它传 统 边缘检 测算子 所获 结果得 到 了很 大 的改善 。
关键 词 : 多尺 度 小 波 ; 模 糊 边 缘 检 测 ; 隶 属 度 函数 ; 图 像 滤 波 ; 图 像 处 理
中图法分 类号 : P 9 .1 T31 4
文献标 识码 : A
文章 编号 :0 07 2 20 ) 027 —2 10—04(0 7 1—3 10
Re e r h o g d ed tci nb s d o l —c l v lt r n f r s a c f ma ee g ee t a e n mut s aewa ee a so m i o i t a d f z y meh d n z to s u
Ab t a t An n w g d ed t ci nme h db s d o emut-c l v lt r n f r a g r h a dt ef z y ag r h i r s n sr c : e i ma ee g ee t t o a e n t l s a e o h i wa ee a s o m l o t m n z lo t m p e e ・ t i h u i s
基于小波变换和多尺度形态学的图像边缘检测
基于小波变换和多尺度形态学的图像边缘检测徐剑锋;彭亚雄【摘要】小波变换和多尺度形态学一直是图像处理研究的热门课题,结合两者各自的优点,在融合的基础上,提出了一种具有良好抗噪性能的边缘检测算法.该算法的主要思路是,首先对图像进行小波分解,然后利用小波模极大值法对高频子图像进行边缘检测,再利用多尺度形态学对低频子图像在不同尺度下进行边缘检测.接着对不同尺度下边缘检测的低频子图像根据实体加权融合的方法进行融合.最后把高频和低频的边缘子图像融合在一起,得到了完整的图像边缘.通过实验分析,发现该边缘检测方法具有良好的抗噪性能,保留了更多细节,可以适应不同类型的图像边缘检测需求.【期刊名称】《移动通信》【年(卷),期】2017(041)024【总页数】5页(P58-61,66)【关键词】多尺度形态学;小波变换;边缘检测;图像处理【作者】徐剑锋;彭亚雄【作者单位】贵州大学大数据与信息工程学院,贵州贵阳 550025;贵州大学大数据与信息工程学院,贵州贵阳 550025【正文语种】中文【中图分类】TP391.41 引言图像的许多信息反映在边缘中,这些信息反映了图像局部特征的不连续性,主要表现形式为在图像中灰度信息发生急剧变化的位置[1]。
在图像边缘检测领域,到目前为止产生了很多经典的边缘检测算子,但这些算子处理图像得到的结果一般很难让人满意,因为通过大量实验结果发现这些算子的抗噪声干扰能力比较差,而且因为方法单一,很难提取精细的图像边缘。
这些算子有:Sobel[2]算子、Prewitt[3]算子、Roberts[4]算子、Canny[5]算子等。
为了克服文献[2]-文献[5]中提到算子的缺点,本文的算法重点不仅结合了小波变换和多尺度形态学的优点,而且在多尺度形态学的处理上采用了五个不同的结构元素,在五个尺度下分别对目标图像进行检测,最后融合了五个尺度下的检测结果。
尽管步骤比较繁琐,但此算法结合了两种方法的优点,使得在噪声干扰的条件下,依旧可以检测出准确的边缘。
小波变换在图像边缘检测中的应用
小波变换在图像边缘检测中的应用图像边缘检测是计算机视觉领域一项重要的任务,它在图像处理、目标识别和图像分割等方面发挥着关键作用。
而小波变换作为一种多尺度分析方法,具有良好的局部性和时频局部化特性,因此在图像边缘检测中得到了广泛的应用。
一、小波变换的基本原理小波变换是一种时频分析方法,它可以将信号分解成不同尺度的频率成分,从而更好地描述信号的时频特性。
其基本原理是通过将信号与一组小波基函数进行卷积运算,得到小波系数,然后根据小波系数的变化来分析信号的频率成分和局部特征。
二、1. 尺度变换小波变换具有多尺度分析的特性,可以根据不同尺度的小波基函数来提取图像的不同频率成分。
在图像边缘检测中,可以利用小波变换的尺度变换特性来检测不同尺度的边缘信息。
通过对图像进行多次小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更准确的边缘检测结果。
2. 频率分析小波变换可以将图像分解成不同频率的成分,从而可以对图像进行频率分析。
在图像边缘检测中,可以利用小波变换的频率分析特性来检测图像中的高频边缘信息。
通过对图像进行小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更精确的边缘检测结果。
3. 局部特征提取小波变换具有良好的局部性和时频局部化特性,可以更好地描述信号的局部特征。
在图像边缘检测中,可以利用小波变换的局部特征提取能力来检测图像中的边缘信息。
通过对图像进行小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更细致的边缘检测结果。
三、小波变换在图像边缘检测中的优势1. 鲁棒性强小波变换具有良好的鲁棒性,对噪声和干扰具有较好的抵抗能力。
在图像边缘检测中,由于图像常常存在噪声和干扰,因此小波变换能够更好地提取图像中的边缘信息,并减少噪声和干扰对边缘检测的影响。
2. 多尺度分析小波变换具有多尺度分析的特性,可以对不同尺度的边缘信息进行提取。
在图像边缘检测中,通过对图像进行多次小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更全面、更准确的边缘检测结果。
基于多尺度小波变换的图像边缘检测
2 0 1 3年 l O月
平顶 山学院学报
J o u r n a l o f P i n g d i n g s h a n Un i v e r s i t y
V0 1 . 2 8 No . 5
0c t . 2 01 3
基 于 多尺 度 小 波 变 换 的 图像 边 缘检 测
利用 多尺 度小 波变 换进 行边 缘检 测 , 就 是利 用
一
个平滑函数在不 同的尺度下平滑所检测的信号 ,
缘细节信息较丰富, 边缘定位精度较 高, 但 易受到
噪声的干扰. 随着尺度 的增大 , 检测结果图像变得 更加平滑 , 以高频为主的噪声受到抑制 , 结果 图像 度的加深也导致 图像 的边缘变粗 , 使得边缘的定位 精度降低. 因此 , 可采用大尺度的滤波器抑制图像 噪声 , 而用小尺度 的滤波器精确定位 图像 边缘 , 即
王军敏 , 薛亚许 , 卫亚博
( 平顶山学院 电气信息工程学院, 河南 平顶 山 4 6 7 0 9 9 )
摘 要: 图像边缘是 图像 中的重要信 息, 为 了检测 图像 中的边缘 信息 , 提 出 了一种基 于多尺度 小波变换
的 图像边缘检测 算法. 该 算法充分利用 了图像边缘在 多尺度 下的信息 , 首先 选用二次 B样 条 小波 对原始 图像 进
1 信号 的奇 异性 及 其 L i p s c h i t z 指 数 描述
用L i p s c h i t z 指数描述和小波变换来检测 图像边缘
的奇 异性 .
数学上称无 限次可导的函数是光滑的或是没 有奇异性 , 若 函数在某 处有 间断或某 阶导 数不连
2 基于多尺度小波变换的图像边缘检测
基于小波分析的图像边缘检测算法研究
基于小波分析的图像边缘检测算法研究边缘检测是图像处理领域的重要课题,小波分析是继Fourier分析、短时Fourier分析之后的新的信号分析技术。
在本文中,首先简要介绍了小波理论的发展及图像的边缘检测的定义;然后给出了一些传统的边缘检测方法,并回顾了一些经典的边缘检测算子,通过实验得出这些方法对不含噪声的图像的边缘检测效果较好,但用于含有噪声的图像则并不理想;从而引入了多尺度小波边缘检测方法,但该方法会导致边缘细节的损失且边缘位置会发生偏移,即在小尺度下存在噪声剔除不干净的情况,随着尺度的增加,在去除噪声的同时把图像的边缘细节也给去掉了,针对这种情况,提出了基于边缘方向性的小波边缘检测算法,该算法先对图像进行基于边缘方向性的平滑,在处理边缘像素时可自动搜索边缘方向进行平滑,然后再用小波变换提取边缘;通过对一系列图像进行仿真实验有力地证明了该方法的有效性;形态学边缘检测算子具有抗噪性不佳的特点,本文构造了一种新的形态学滤波器,并用该滤波器和小波方法结合起来进行边缘检测,仿真实验结果证明了该算法十分有效。
基于小波变换多尺度边缘检测分析解读
基于小波变换多尺度边缘检测分析物体边缘通常存在于目标与背景、目标与目标、区域与区域之间。
它能够勾画出物体的几何轮廓特征,能够传递多种信息,能够描述物体景象的重要特征,为人们描述或识别目标、解释图像提供有价值的、重要的特征参数。
这些信息对人们进行高层次的处理(如图像滤波、特征描述、模式识别等)有着重要的影响。
因此,图像边缘检测在图像处理中显得尤为重要和关键。
自从1965年,人们提出图像边缘检测的概念至今,世界上有很多学者为图像边缘检测这个领域做了不少贡献。
经典的边缘检测算法一般情况是基于图像像素的导数关系来进行边缘检测的,常见的经典边缘检测算法有Roberts算子、Prewitt算子、Laplacian算子、Sobel算子、Canny算子等,这些都是基于图像像素的一阶或二阶导数来检测边缘。
一般情况下,在数字图像处理中,这些算法是基于方形模板。
但这些边缘检测算子都是在一个尺度下对图像进行边缘检测,图像局部变化则不能很好的检测出来。
小波分析的多分辨分析特性为边缘检测提供了一种新的方法,用小波变换对信号进行多分辨分析非常适合于提取信号的局部特征,在提取图像边缘的同时还可以有效地抑制噪声。
因而,小波函数具有较强的去除噪声的能力,同时又具有完备边缘检测能力的多尺度边缘检测方法。
目前,多尺度边缘检测在图像处理领域是一个比较新颖的课目,吸引着众多学者为之努力。
多尺度边缘检测算法能够在不同尺度因子下对图像边缘检测,对各个尺度下的边缘检测结果进行一系列处理,根据不同的需要,综合各尺度因子的处理结果。
通过把各个尺度因子下的信息融合之后,人们能够得到更加地符合要求的图像处理结果。
本文以基于小波变换多尺度边缘检测分析为主轴,简要介绍小波变换和图像处理的基础理论;简要介绍小波变换单尺度边缘检测;接着介绍文章的重要内容:小波变换多尺度边缘检测算法。
本文利用二维图像小波分解的多层细节来创造性地构造三种边缘检测方法:第一种方法是基于小波分解细节多尺度边缘检测;第二种方法是基于小波分解细节多尺度模极大值边缘检测;第三种方法是基于小波分解细节模极大值及数据融合多尺度边缘检测。
基于小波变换的图像边缘检测
基于小波变换的图像边缘检测摘要:基于小波变换的图像边缘检测是一种新的检测图像边缘的方法,具有多分辨率,多尺度的特性。
本文采用基于小波变换的模极大值原理,利用不同尺度小波变换后的不同方向,如水平方向、垂直方向、正对角线方向等获取高频信息,并通过小波系数的模极值点与过零点,在不同尺度下传播的特性,检测出图像在四个方向上的模极大值,并记录下来,得到图像边缘的位置后,进行比较,得到该位置模的局部最大值。
研究结果表明,基于小波变换的图像边缘检测可以较好的检测图像边缘的细节特征,取得了很好的效果。
关键字:小波变换;边缘检测;多分辨率;多尺度;模极大值Image edge detection based on wavelet transformAbstract:Image edge detection based on wavelet transform is a kind of new method of image edge detection, a multi-resolution, multi-scale features. In this paper, based on the wavelet transform modulus maxima theory, using the different direction of different scale after wavelet transform, such as horizontal, vertical, diagonal direction, such as high frequency information, and through the mould extreme value of wavelet coefficient and the crossing point, the propagation characteristics of different scales to detect the image in four directions of modulus maxima, and record down, get the location of the image edge, after comparison, get the local maximum of the location model. Research results show that the image edge detection based on wavelet transform can better detect the details of the image edge features, good results have been achieved.Keywords:wavelet transform; edge detection; multiresolution; multiscale; modulus maximum1绪论1.1图像边缘检测的现状及目的众所周知,自从1946年在美国纽约第一台计算机出世以来到现在,数字图像边缘检测及方法可谓是层出不穷,与早期相比早已是不可同日而语。
基于多尺度小波变换的边缘检测算法
算子进行 比较 , 结果表明用该算法进行边缘检测是可行的. 多尺度信 号边缘检测 中, 在 考虑到信号的边缘不仅仅定义为信号奇异性的表 现, 而且也是视觉的一种反 映, 它与人
的视 觉特点 , 先验知识 紧密相关. 而信号的孤立奇异指数可以由小波变换在该点随尺度 参数 变小 时的 衰减速度 确 定. 于小波 变换 的上述 特征 , 用 小波 变换 对 图像 进 行边缘 由 采 检测非常有效. 实验结果表明, 本方法和传 统的边缘检测算法相 比具有定位精度 高, 去
t ci n i o n y t e r p e e tto f sg a i g a t u lo a v s l rfe to e to s n to l h e r s n ain o in lsn ulr y b ta s iua el ci n, i i i t s
噪 效果好 等优 点 .
关 键 词: 边缘检 测 ; 多尺 度 ; 小波 变换
中图分 类号 :P 9 T3 1
文 献标 识码 : A
The Al o ihm fEd e De e to s d ̄ n M u ts a e W a e e a f r g rt o g t c i n Ba e o lic l v l tTr nso m
基于小波变换的图像边缘检测技术研究
基于小波变换的图像边缘检测技术研究随着科技的发展,图像处理技术得到了极大的发展。
图像处理作为一种高科技,已经深入到了我们的生活中。
在人们日常生活、工业生产和医疗健康等领域,图像处理都可以提供更好的服务。
图像边缘检测技术就是关键技术之一。
在众多的图像处理技术中,边缘检测技术在实际应用中的重要性一直得到了广泛的认可。
传统的边缘检测技术主要有基于阈值法、基于梯度法、基于二阶导数等几种方法。
但是这些方法在实际应用中都存在一些问题,比如难以处理边缘模糊的情况,易受噪声干扰等。
为了解决这些问题,一些新的边缘检测技术应运而生,其中就包括基于小波变换的图像边缘检测技术。
小波变换是一种多分辨率分析方法,可以将连续信号和离散信号分解成不同尺度的小波基函数。
在小波变换中,基本的函数是小波基函数,它具有局部性和多分辨率性质。
由于小波变换有局部性和多分辨率的特点,被广泛应用于图像处理领域,尤其是图像边缘检测中。
基于小波变换的图像边缘检测技术主要分为两种,一种是基于离散小波变换(DWT)的图像边缘检测技术,另一种是基于连续小波变换(CWT)的图像边缘检测技术。
下面我们就来分别介绍这两种技术。
基于离散小波变换(DWT)的图像边缘检测技术基于离散小波变换的图像边缘检测技术主要包括以下几个步骤:(1)图像预处理为了减少噪声对边缘检测结果的影响,需要对原始图像进行预处理。
可以采用一些滤波器,如高斯滤波器或中值滤波器等,来对图像进行平滑。
(2)小波分解经过预处理的图像经离散小波分解后,可以得到图像在各个不同频率下的小波系数。
(3)小波系数的阈值处理由于小波系数在各个频率下的大小不同,因此可以根据小波系数的大小进行阈值处理。
这可以通过一个单一的全局阈值或基于局部统计特性来完成。
(4)小波系数的逆变换经过阈值处理的小波系数可以进行小波逆变换,从而得到图像的边缘。
基于连续小波变换(CWT)的图像边缘检测技术与基于离散小波变换的图像边缘检测技术不同,基于连续小波变换的图像边缘检测技术直接使用了信号的连续小波变换系数来进行边缘检测。
基于多尺度小波变换的医学图像边缘检测
基于多尺度小波变换的医学图像边缘检测
张剑;金延昊
【期刊名称】《医疗卫生装备》
【年(卷),期】2016(037)005
【摘要】目的:提出基于多尺度小波变换的边缘检测算法,能够准确有效地解决医学图像三维重构中的边缘提取问题.方法:结合小波变换理论,在经典边缘检测算法基础上采用一种多尺度小波变换法对脑部、腹部CT图像进行边缘提取,建立数学模型,并同经典边缘检测算法结果进行比较.结果:该算法检测边缘连续性好,抗噪性好,边缘定位准确.结论:该算法性能优于经典边缘检测算法的性能,可实现快速、准确的医学图像边缘检测.
【总页数】3页(P24-26)
【作者】张剑;金延昊
【作者单位】225400江苏泰兴,泰兴市人民医院总务科;225400江苏泰兴,泰兴市人民医院总务科
【正文语种】中文
【中图分类】R318;TP391.41
【相关文献】
1.基于小波变换和形态学的医学图像边缘检测 [J], 李智;张根耀;王蓓;涂银莹;周红涛
2.基于小波变换和模糊算法医学图像边缘检测算法 [J], 袁野;欧宗瑛
3.改进的基于单一尺度的医学图像边缘检测 [J], 张萌萌;杨扬;杨志辉;李夏;白慧慧
4.基于四元数小波变换的医学图像边缘检测 [J], 侯景
5.基于多结构多尺度形态学梯度的医学图像边缘检测 [J], 张利红;梁英波;支联合;李向东
因版权原因,仅展示原文概要,查看原文内容请购买。
基于小波变换的多尺度图像边缘检测matlab源代码
基于小波变换的多尺度图像边缘检测matlab源代码基于小波变换的多尺度图像边缘检测matlab源代码(在Matlab7.0下运行) clear all;load wbarb;I = ind2gray(X,map);imshow(I);I1 = imadjust(I,stretchlim(I),[0,1]);figure;imshow(I1);[N,M] = size(I);h = [0.125,0.375,0.375,0.125];g = [0.5,-0.5];delta = [1,0,0];J = 3;a(1:N,1:M,1,1:J+1) = 0;dx(1:N,1:M,1,1:J+1) = 0;dy(1:N,1:M,1,1:J+1) = 0;d(1:N,1:M,1,1:J+1) = 0;a(:,:,1,1) = conv2(h,h,I,'same');dx(:,:,1,1) = conv2(delta,g,I,'same');dy(:,:,1,1) = conv2(g,delta,I,'same');x = dx(:,:,1,1);y = dy(:,:,1,1);d(:,:,1,1) = sqrt(x.^2+y.^2);I1 = imadjust(d(:,:,1,1),stretchlim(d(:,:,1,1)),[0 1]);figure;imshow(I1);lh = length(h);lg = length(g);for j = 1:J+1lhj = 2^j*(lh-1)+1;lgj = 2^j*(lg-1)+1;hj(1:lhj)=0;gj(1:lgj)=0;for n = 1:lhhj(2^j*(n-1)+1)=h(n);endfor n = 1:lggj(2^j*(n-1)+1)=g(n);enda(:,:,1,j+1) = conv2(hj,hj,a(:,:,1,j),'same');dx(:,:,1,j+1) = conv2(delta,gj,a(:,:,1,j),'same');dy(:,:,1,j+1) = conv2(gj,delta,a(:,:,1,j),'same');x = dx(:,:,1,j+1);y = dy(:,:,1,j+1);dj(:,:,1,j+1) = sqrt(x.^2+y.^2);I1 = imadjust(dj(:,:,1,j+1),stretchlim(dj(:,:,1,j+1)),[0 1]);figure;imshow(I1); End边缘提取的简介:边缘检测一种定位二维或三维图像中的对象的边缘的系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文 章 编 号 :0 17 4 ( 0 2 0 —2 40 10—4 520 )306—4
基 于 多 尺 度 小 波 算 子 的 图 象 边 缘 检 测
夏 平 李 小 玲 罗 晓 曙。 , ,
( . 峡 大 学 电 气 信 息 学 院 , 北 宜 昌 4 3 0 ;. 西 师 范 大 学 学 报 编 辑 部 . 西 桂 林 5 10 ; 1三 湖 4 02 2广 广 4 0 4
在 对 数 字 图象 处 理 中 , 缘 代 表 着 图像 的最 基本 特 征 , 边 缘 检 测 算 法 的研 究 也 一 直 是 图像 处 理 中 边 对
探 讨 的 热 点 问题 之 一 . 们 提 出 的 各 种 边 缘 算 法 , 体 上 可分 为 两 大 类 : 是 基 于微 分 算 子 类 的 图像 边 人 总 一 缘 检 测 方 法 ; 一 类 是 基 于边 缘 拟 合 算 子 的检 测 方 法 , 先对 图像 的 小 区域 进 行 曲 面 拟 合 , 对 拟 合 出 另 即 再
维普资讯
第 2 7卷 第 3期
20 年 02 9 月
广 西 大 学 学 报 (自然 科 学 板 )
J u n lo a gቤተ መጻሕፍቲ ባይዱiUn v r i ( t S iEd) o r a fGu n x i e s t Na c y
V O1 7,N O. .2 3 Se .. 200 Dt 2
3广 西师 范大 学 物理 与 电子学 系 , 西 桂林 5 10 . 广 4 0 4)
摘 要 : 析 了传 统 的 图 像 边 缘 检 测 算 法 及 其 存 在 的 问 题 , 述 基 于 多 尺 度 的 小 波 分 析 进 行 边 缘 检 测 的 算 法 , 分 论 并 以实例说 明基于 小 波分析 得 图像 边缘 检测 算 子效果 更优 . 关 键 词 : 尺 度 小 波 分 析 ; 缘 检 测 ; 子 远 多 边 算 中图分 类号 : TN9 1 7 1. 3 文 献标 识码 : A
的 曲 面 使 用 如 微 分 算 子 方 法 进 行 边 缘 检 测 . 一 类 方 法 中 的 大 部 分 算 法 使 用 的 是 滤 波 器 模 板 , 让 所 处 第 即 理 的像 素 与 模 板 的 中心 重 合 , 板 系 数 与相 对 应 像 素 值 加 权 后 相 加 , 结 果 作 为 该 像 素 点 的 梯 度 值 , 模 其 在 整 幅 数 字 图 像 矩 阵 中 移 动 滤 波 器 模 板 , 可 得 到 一 幅 梯 度 图 . 方 法 的 结 果 反 映 了 数 字 图 像 中 像 素 灰 度 就 此 变 化 的 梯 度 , 据 梯 度 图 中 梯 度 的 变 化 情 况 检 测 出 图 像 的 边 缘 . 典 型 的 有 Ro e t 根 最 b rs算 子 、 o e 算 子 、 Sbl I pa in算 子 、 ar算 子 等 . 图 像 的 边 缘 检 测 中 , 按 检 测 的 算 子 分 , 分 为 梯 度 算 子 、 向 模 板 算 . lca a M r 在 若 可 方 子 两 大 类 : 这 些 算 子 的 基 础 上 , 过 不 断 的 改 进 , 而 获 取 较 优 的 边 像 提 取 效 果 . pa in算 子 作 为 在 通 从 I lca a 二 阶 算 子 , 质 为 高 通 滤 波 器 , 取 了 图 像 的 高 频 信 息 , 化 了 图 像 的 边 缘 . 些 以 微 分 为 基 础 的 检 测 算 实 提 锐 这 子 , 边 缘 检 测 中 存 在 以 下 几 方 面 的 问 题 :1 在 ( )检 测 效 果 不 是 十 分 理 想 , 值 问 题 是 一 个 重 要 原 因 ; 2 阈 ()
( ,, 一 j) ( j )一 z, ,
则: I
( yd 一 0 I , ) ̄ r
¨ ( yd , )y= 0 即 : ,
有 些 算 子 , I pa in算 子 对 点 的 响 应 比对 线 和 边 缘 的 响 应 更 强 烈 , 于 这 些 算 子 , 旦 图像 含 有 噪 如 lc a a 对 一 声 , 理 的 效 果 更 不 理 想 , 般 采 取 的 方 法 是 先 平 滑 再 锐 化 , 在 平 滑 时 易 丢 失 高 频 的 图像 信 息 ; 且 , 处 一 但 并 I pa in算 子 有 时 得 到 的 边 缘 并 非 真 正 的 边 缘 , 别 是 在 图像 的 灰 度 变 化 比较 平 缓 的 区 域 , 为 这 时 lca a 特 因
对 边 缘 的 定 位 也 不 够 准 确 . 于 多 尺 度小 波 分 析 的 图像 边 缘 检 测 方 法 , 用 小 波 变换 具 有 检 测 局 部 突 变 基 利
的 能 力 , 取 图 像 的边 缘 效 果 较好 . 获
1 多 只 度 小 波 算 子
定义 1 设 ( j 是二维平滑函数, , ) , 满足 l ( ,). y≠ 0且 l Ozj 一 0定义: l zydd O r , i m ( ,) . ,