高一数学教学反思与总结【优秀7篇】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学教学反思与总结【优秀7篇】
高一数学必修四教案篇一
《平面向量的实际背景及基本概念》教案
教学准备
教学目标
o 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
o 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
o 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
教学重难点
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。
教学难点:平行向量、相等向量和共线向量的区别和联系。
教学过程
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结
1、描述向量的两个指标:模和方向。
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高一数学必修四教案篇二
教学类型:探究研究型
设计思路:通过一系列的猜想得出德。摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩
根律进行简单的应用,因此我们制作了本微课。
教学过程:
一、片头
(20秒以内)
内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的'数学规律(第二讲)》。
第1 张PPT
12秒以内
二、正文讲解
(4分20秒左右)
1、引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
第2 张PPT
28秒以内
2、规律的验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用第3 张PPT
2分10 秒以内
3、抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
第4 张PPT
30秒以内
4、例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
第5 张PPT
1分20秒以内
三、结尾
(20秒以内)
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
第6 张PPT
10秒以内
教学反思(自我评价)
学生在学习集合时会接触到很多的集合运算,往往学生觉得
这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好。
高一数学必修4教案篇三
《任意角的三角函数》教案
教学准备
教学目标
1、知识与技能
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。
2、过程与方法
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号。最后主要是借助有向线段进一步认识三角函数。讲解例题,总结方法,巩固练习。
3、情态与价值
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点。过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解
本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系。
教学重难点
重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解。
教学工具
投影仪
教学过程