2013红河中考数学试题(解析版)
139[一键打印]【解析版】2013年黑龙江省齐齐哈尔、黑河、大兴安岭中考数学试卷及答案
黑龙江省齐齐哈尔、黑河、大兴安岭2013年中考数学试卷一、单项选择题(每题3分,满分30分)1.(3分)(2013•齐齐哈尔)下列数字中既是轴对称图形又是中心对称图形的有几个()=±3 ﹣=3(﹣3.(3分)(2013•齐齐哈尔)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x 表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()BAB,使AB⊥CD,垂足为E,若4.(3分)(2013•齐齐哈尔)CD是⊙O的一条弦,作直径CD=OC=5.(3分)(2013•齐齐哈尔)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=25,导游6.(3分)(2013•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间7.(3分)(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b22a+b+=0=,所以﹣<﹣>=0,即=<﹣﹣9.(3分)(2013•齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是()y=的交点在第一象限,10.(3分)(2013•齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线④∠EAM=∠ABC,其中正确结论的个数是(),二、填空题(每题3分,满分30分)11.(3分)(2013•齐齐哈尔)某种病毒近似于球体,它的半径约为0.00000000495米,用科学记数法表示为 4.95×10﹣9米.12.(3分)(2013•齐齐哈尔)小明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是.小明能获得奖品的概率是故答案为:.13.(3分)(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x的取值范围是x≥0且x≠3且x≠2.14.(3分)(2013•齐齐哈尔)圆锥的母线长为6cm,底面周长为5πcm,则圆锥的侧面积为15πcm2.•=15.(3分)(2013•齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD(填一个即可)16.(3分)(2013•齐齐哈尔)若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.x=∴﹣且.a且a17.(3分)(2013•齐齐哈尔)如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图.则这个几何体可能是由6或7或8个正方体搭成的.18.(3分)(2013•齐齐哈尔)请运用你喜欢的方法求tan75°=2+.CD=2+CD=2+19.(3分)(2013•齐齐哈尔)正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为或..)F=F=,DK=,∴AC=AH+CH=3AH=AC=AN=AH=,∴,即或故答案为:.20.(3分)(2013•齐齐哈尔)如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是k=(n=3,4,6)或k=2+(n=3,4,6)(写出n的取值范围),再代入=360.==2+((三、解答题(满分60分)21.(5分)(2013•齐齐哈尔)先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.÷﹣÷•,﹣=0,=2+22.(6分)(2013•齐齐哈尔)如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)=,=23.(6分)(2013•齐齐哈尔)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)(1)求此二次函数的解析式;(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l 的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.得:24.(7分)(2013•齐齐哈尔)齐齐哈尔市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成)被抽查的学生为45人.(2)请补全频数分布直方图.(3)若全市参加考试的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)(4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5分之间的人数最多有多少人?.25.(8分)(2013•齐齐哈尔)甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶.(1 )A、B两地的距离560千米;乙车速度是100km/h;a表示.(2)乙出发多长时间后两车相距330千米?120=×=,+3=,()代入得,26.(8分)(2013•齐齐哈尔)已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=BE(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)MF=MN=ADMN=FN=BE MF=BEADBEBEADBEBE27.(10分)(2013•齐齐哈尔)在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?依题意得,,×,,28.(10分)(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B 两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.﹣(+1x+)=OB=,.S=2﹣t2。
2013红河州中考数学
112013年红河州自治州初中学业水平考试数学试题一、选择题 1.12-的倒数是 (A )A .2-B .2C .12-D .122.右图是某个几何体的三视图,该几何体是 (B )A .正方体B .圆柱C .圆锥D .球3.下列运算正确的是(D )A .2a a a +=B .632a a a ÷= C .0( 3.14)0π-= D .2333=4.不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为(C )AB CD主视图俯视图左视图115.计算的结果是(B )A .3-B .3C .9-D .96.如图,AB ∥CD ,∠D =∠E =35°,则∠B 的度数为(C )A .60°B .65°C .70°D .75°7.在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是(C )A .(-1,2)B .(1,-2)C .(1,2)D .(2,1)8.如图,AB 是⊙O 的直径,点BABA C DE11C 在⊙O 上,弦BD 平分ABC∠,则下列结论错.误.的是 (D )A .AD DC =B .AD DC = C .ADB ACB ∠=∠D .DAB CBA ∠=∠ 二、填空题9.红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为64.510⨯.10.分解因式:29ax a -=()()33a x x +-.11.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 100 . 12.在函数11y x =-中,自变量x 的取值范围是1x ≠. 13.已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 10 πcm (结果保11BACFD E留π).14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 42 个实心圆.三、解答题(本大题共9个小题,满分58分)15.(本小题5分)解方程212xx x +=+. 解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=.22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分 16.(本小题5分)如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF .证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,…(1(2(11,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分 17.(本小题6分)一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分 0.820200x =+. 0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分18.(本小题7分)今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).植树数量2015105频数(人)植树数 量(棵)频数(人)频率 3 5 0.1 4 20 0.4 511(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量. 解:(1)统计表和条形统计图补充如下:…………………………………………………………植树数量113分(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分 19.(本小题7分)今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 解:(1)列表法表示如下:123 41(1,2)(1,3) (1,4)2(2,1)(2,3)(2,4) 第第111或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种,所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.(本小题6分)如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号). 解:由题意可知,△ACD 与△BCD 都是直角三角形.在Rt △BCD 中,1234211133224443开11xBAOy2∵∠BDC = 45°,∴BC = CD = 100. ………………2分 在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan 60ACCD=, 即3100AC∴1003AC = …………………………4分 ∴AB AC BC =-100(31)=. …………………………5分 答:手机信号中转塔的高度为100(31)米. …………………………6分 21.(本小题6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围.解:(1)设A 点的坐标为(m ,2),代入1y x =得: 2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. 解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2).BACD604511BACDE由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(本小题7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E . (1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分 解得142x =,242x =-(不符合题意,舍去).∴282()BE x cm ==. ………………………………7分 23.(本小题9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.11当0x =时,即04y =+,解得4y =. 所以点A 、B 、C 的坐标依次是A (-2,0)、B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠), 则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩. 所以直线BC 的解析式为24y x =-+. (3)分(2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). (5)分(3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下:设点P 的坐标为2(, 4)x x -+,02x <<.因为△OAC 与△OPD 都是直角三角形,分两种情况:①当△PDO ∽△COA 时,PD OD CO AO=, 2442x x -+=, 解得151x =-,251x =--(不符合题意,舍去). x BA O y C P DE11当1x =时,21)42y =-+=.此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x,4x =(不符合题意,舍去).当x =时,24y =-+此时,点P的坐标为11(48--. 综上可得,满足条件的点P 有两个:12)P,2P . ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
2013年中考数学试题及答案
2013年中考数学试题及答案Ⅰ.选择题(本题共20小题,每小题2分,共40分)从下列各题所给的选项中选择一个正确答案。
1. 设a = log2 64 + log3 81, 则a = ()。
A. 9B. 10C. 15D. 182. 解方程: 4(5 – 3x) + 2(3x - 1) + 3(2x + 1) = 0, 其解x的值为()。
A. -1B. -2/5C. 1/7D. 3/83. 如图,矩形ABCD,边长AB = 2,E为BC的中点,三角形AFC,三角形DEC都为等腰直角三角形,且四边形ADEF为平行四边形,求阴影部分的面积。
(图略)A. 3B. 3/2C. 2D. 9/44. 欲装满一个半径为R,高为H的圆柱形容器,顶部有一个半径为r,高为h的圆锥形容器,将一个半径为r,高为h的圆柱形铅块放入圆柱形容器,正好将圆柱形容器装满。
则圆柱形铅块的体积为()。
A. 1/3 πr²hB. 1/2 πr²hC. 2/3πr²hD. 3/4 πr²h5. 如图,甲乙在以等速v1行驶的汽车内,在相距200m处通过一辆以等速v2行驶的汽车,甲乙往返相遇三次,当乙往甲反方向行驶10m 时,两车又正好相遇。
设v1 = 54km/h 则V2 =()。
(图略)A. 36km/hB. 45km/hC. 48km/hD. 60km/h...Ⅱ.填空题1. 两个源于同一直线上的交角所对应的弧相等,则这两个角是。
2. 孔子的鼻祖是在36年后复活的,如果复活之后是公元2004年,那么孔子的出生年是年。
3. 在一个D字形街区上,如果所走的距离为x,向南走的时间为y,向东走的时间为z,则由x,y, z组成的有序三元组(x, y, z)有几种?4. 把乘积为123的两个数用正小数表示时所得数的和的最小值是。
5. 出生被称作“自救”的。
答:昆虫,鸟类以及爬行动物。
...Ⅲ.解答题1. 甲、乙两人合抱一根杆,甲用左手按住杆的上端,乙用右手按住杆的下端,夹持的点在杆的中点上。
2013年云南省中考数学试卷
-------------------- ( )
D.□ ABCD 是轴对称图形
本试卷满分 100 分,考试时间 120 分钟.
2.考试结束时,请将试题卷、答题卷(答题卡)一并交回。 39x
卷 一、选择题(本大题共 8 小题,每小题只有一个正确选项,每小题 3 分,满分 24 分) A.9 B. 3 C. 3 D.3
7.要使分式 的值为 0,你认为 x 可取的数是 ( )
x
考生号 1
________________ ________________ --------------------
Байду номын сангаас
ab
6.已知 O1 的半径是 3 c m , O2 的半径是 2 c m , OO12 6 c m ,则两圆的位置关系是
-------------
------------- 绝密★启用前 5.如图,平行四边形 ABCD 的对角线 ACBD、 相交于点O ,下列结论正确的是 ( )
卡)相应的位置上,在试题卷、草稿纸上作答无效。
x2 9
-------------------- B. ACBD
数 学 C. ACBD
1. 6 的绝对值是 ( ) 8.若 ab>0 ,则一次函数 yaxb与反比例函数 y 在同一坐标系中的大致图像可
A. SSABCDAOB 4 △
在 云南省 2013 年初中学业水平考试
1.本卷为试题卷。考生解题答题必须在答题卷(答题卡)上,答案书写在答题卷(答题
A.相离 B.外切 C.相交 D.内切
(完整版)初中数学中考先化简再求值
一.解答题(共30小题)先化简再求值1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010?红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006?巴中)化简求值:,其中a=.12.(2010?临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010?綦江县)先化简,再求值,,其中x=+1.16.(2009?随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002?曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.23.先化简,再求值:(﹣1)÷,其中x?.24.先化简代数式再求值,其中a=﹣2.25.(2011?新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011?南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011?武汉)先化简,再求值:÷(x﹣),其中x=3.30.化简并求值:?,其中x=22013年6月朱鹏的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.化简求值:,选择一个你喜欢且有意义的数代入求值.考点:分式的化简求值.专题:开放型.分析:首先对小括号内的运算进行运算,然后把除法转化为乘法后进行乘法运算,最后,把喜欢的有意义的数代入求值即可.解答:解:原式==x﹣1,当x=2时,原式=x﹣1=2﹣1=1.点评:本题主要考查分式的加减法运算、乘除法运算,因式分解,关键在于正确的对分式进行化简,认真的计算,注意x的取值不能是分式的分母为零.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.考点:分式的化简求值.专题:开放型.分析:先计算括号里的减法运算,再计算除法.最后选一个有意义的值代入,即分母不为0的值.解答:解:原式=(2分)=(3分)=(5分)=x+4(6分)当x=0时,原式=4.(8分)(注x可取不等1,4的任何数)点评:本题主要考查分式的化简求值,把分式化到最简是解答的关键,通分、因式分解和约分是基本环节.注意做此题时,选值时一定要使原式有意义,即分母不能为0.3.先化简再求值:选一个使原代数式有意义的数代入中求值.考点:分式的化简求值.专题:开放型.分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:,=﹣,=﹣;又为使分式有意义,则a≠﹣3、﹣2、2;令a=1,原式=﹣=﹣1.点评:本题考查了分式的四则运算,在计算时,要弄清楚运算顺序,先进行分式的乘除,加减运算.再代值计算,注意化简后,代入的数不能使分母的值为0.4.先化简,再求值:,请选择一个你喜欢的数代入求值.考点:分式的化简求值.专题:开放型.分析:将括号里通分,除法化为乘法,约分,再代值计算,注意a的取值不能使原式的分母、除式为0.解答:解:原式=?=,当a=﹣1时,原式==.点评:本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.5.(2010?红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.考点:分式的化简求值.专题:开放型.分析:先根据分式的运算法则把原式化简,再选一个使原代数式有意义的数代入求值即可.解答:解:原式==,=,=.当a=1时,(a的取值不唯一,只要a≠±2、﹣3即可)原式=.点评:此题答案不唯一,只需使分式有意义即可.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.考点:分式的化简求值.专题:开放型.分析:把括号中通分后,利用同分母分式的减法法则计算,同时将除式的分子分解因式后,再利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后得到最简结果,然后选择一个x的值代入化简后的式子中,即可求出原式的值.解答:解:(1﹣)÷=?=?=,当x=2时,原式=1.(答案不唯一,x不能取﹣2,±1)点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找出最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,化简求值题要将原式化为最简后再代值,本题中由分母不为0,得到x不能取﹣2,1及﹣1,故注意这几个数不要取.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.考点:分式的化简求值.专题:计算题.分析:原式被除数括号中两项通分并利用同分母分式的减法法则计算,除数分子利用平方差公式分解因式,分母利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=÷=﹣?=﹣,当x=1时,原式=﹣=4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.考点:分式的化简求值.专题:计算题.分析:将原式括号中两项通分并利用同分母分式的减法法则计算,整理后再利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,最后将a=2或a=3(a 不能为0和1)代入化简后的式子中计算,即可得到原式的值.解答:解:原式=÷=÷=?=,当a=2时,(a的取值不唯一,只要a≠0、1)原式==1;当a=3时,(a的取值不唯一,只要a≠0、1)原式==.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.考点:分式的化简求值.分析:(1)将原式的分子、分母因式分解,约分,再给x取值,代值计算,注意:x的取值要使原式的分母有意义;(2)将(m+1)与前面的括号相乘,运用分配律计算.解答:解:(1)原式=?=,取x=2,原式==1;(2)原式=m+1﹣?(m+1)=m+1﹣1=m,当m=5时,原式=5.点评:本题考查了分式的化简求值.分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:(1)先算除法,再算同分母加法,然后将x=3代入即可求得分式的值;(2)首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,再把数代入,不能选2,±3,会使原式无意义.(3)先将括号内的部分通分,再将除法转化为乘法,然后将x=2代入即可求得分式的值;(4)先约分化简,再计算同分母加法,然后将x=﹣1代入即可求得分式的值.解答:解:(1)=?+=,把x=3代入,原式=.(2)=?=,把x=1代入,原式=.(3)=?=,把x=2代入,原式=1.(4)=+=,把x=﹣1代入,原式=﹣1.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.注意(2)化简后,代入的数不能使分母的值为0.11.(2006?巴中)化简求值:,其中a=.考点:分式的化简求值;分母有理化.专题:计算题.分析:先通过分解因式、约分找到最简公分母,再通分,得最简形式,最后把a=代入求值.解答:解:原式===﹣;当a=时,原式=﹣=1﹣.点评:考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.12.(2010?临沂)先化简,再求值:()÷,其中a=2.考点:分式的化简求值.专题:计算题.分析:先对通分,再对a2﹣1分解因式,进行化简.解答:解:原式===﹣=.∵a=2,∴原式=﹣1.点评:本题主要考查分式的化简求值.13.先化简:,再选一个恰当的x值代入求值.考点:分式的化简求值.专题:开放型.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.需注意的是x的取值需使原分式有意义.解答:解:原式==(x+2)(x﹣1)=x2+x﹣2;当x≠﹣1,x≠1时,代入解答正确即可给分.点评:注意化简后,代入的数要使原式以及化简中的每一步都有意义.14.化简求值:(﹣1)÷,其中x=2.考点:分式的化简求值.专题:计算题.分析:先将括号内的部分通分,再将除法转化为乘法进行计算.解答:解:原式=(﹣)÷=?=﹣=,当x=2时,原式==﹣.点评:本题考查了分式的化简求值,学会因式分解是解题的关键.15.(2010?綦江县)先化简,再求值,,其中x=+1.考点:分式的化简求值.专题:计算题.分析:本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.解答:解:原式=,把x=+1,代入得:原式=.点评:本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.尤其要注意的是含有无理数的时候最后结果要分母有理化.16.(2009?随州)先化简,再求值:,其中x=+1.考点:分式的化简求值;分母有理化.专题:计算题.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,先进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式===;当x=+1时,原式==.点评:此题要特别注意符号的处理.化简和取值的结果都要求达到最简为止.17.先化简,再求值:÷,其中x=tan45°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:首先利用分式的混合运算法则计算化简,最后代入数值计算即可求解.解答:解:÷=x﹣2,∵x=tan45°=1,∴原式=x﹣2=﹣1.点评:此题主要考查了分式的化简求值,其中化简的关键是分式的乘法法则和约分.18.(2002?曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.考点:分式的化简求值.专题:计算题.分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.解答:解:原式=(x+2)×=当x=﹣1时,原式==﹣2.点评:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.19.先化简,再求值:(1+)÷,其中x=﹣3.考点:分式的化简求值.专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法法则:分母不变,只把分子相加减,计算出结果,同时把除数中的分母利用平方差公式分解因式后,利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分即可得到最简结果,然后把x的值代入即可求出原式的值.解答:解:原式=(+)?=?=,当x=﹣3时,原式==﹣1.点评:此题考查了分式的化简求值,解答此类题要先把原式化为最简,然后再代值,用到的方法有分式的加减法及乘除法,分式的加减法的关键是通分,通分的关键是找出各分母的最简公分母,分式乘除法的关键是约分,约分的关键是找出公因式,在约分时遇到多项式,应先将多项式分解因式再约分.20.先化简,再求值:,其中a=2.考点:分式的化简求值.专题:计算题.分析:先同分母化简分式,再代入a值求得.解答:解:原式=代入a=2解得原式=.点评:本题考查了分式的化简求值,先同分母化简分式,代入a值求得.21.先化简,再求值÷(x﹣),其中x=2.考点:分式的化简求值.专题:计算题.分析:先把分式化简,再将未知数的值代入求解.解答:解:原式===;当x=2时,原式=.点评:本题考查了分式的混合运算以及多项式的因式分解.22.先化简,再求值:,其中.考点:分式的化简求值.专题:计算题.分析:先化简,再把x的值代入计算即可.解答:解:原式=×=x﹣1,∵,∴原式=x﹣1=+1﹣1=.点评:本题考查了分式的化简求值,化简此分式是解题的关键.23.先化简,再求值:(﹣1)÷,其中x?.考点:分式的化简求值.专题:计算题.分析:先把括号里式子通分,再把除法转化为乘法,约分化为最简,最后代值计算.解答:解:方法一:原式=÷(1分)=?(2分)=?(3分)=.(4分)当x?时,=.(5分)方法二:原式=÷﹣1÷=?﹣(2分)=?﹣(3分)=﹣==.(4分)当x?时,=.(5分)点评:分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.24.先化简代数式再求值,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:先对括号里的减法运算进行通分,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为最简形式,再把a的值代入求解.解答:解:原式===1﹣a(4分)当a=﹣2时,原式=1﹣(﹣2)=3.(5分)点评:分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.25.(2011?新疆)先化简,再求值:(+1)÷,其中x=2.考点:分式的化简求值.专题:计算题.分析:先对括号里的分式通分,计算出来后,再把除法转化为乘法,最后把x的值代入计算即可.解答:解:原式=?=x+1.当x=2时,x+1=3.点评:本题考查了分式的化简求值.解题的关键是对分式的分子、分母要进行因式分解.26.先化简,再求值:,其中x=2.考点:分式的化简求值.专题:计算题.分析:先把括号内通分得到原式=,再把除法运算转化为乘法运算,然后把分母分解因式得到原式=?,再进行约分得原式=,然后把x=2代入计算即可.解答:解:原式==?=,当x=2时,原式==.点评:本题考查了分式的化简求值:先把各分式的分子或分母分解因式,若有括号,先把括号内通分,然后约分,得到最简分式或整式,再把满足条件的字母的值代入计算得到对应的分式的值.27.(2011?南充)先化简,再求值:(﹣2),其中x=2.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再利用乘法进行约分计算,最后把x的值代入计算即可.解答:解:原式==×=,当x=2时,原式=﹣=﹣1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解.28.先化简,再求值:,其中a=﹣2.考点:分式的化简求值.专题:计算题.分析:先通分,然后进行四则运算,最后将x=﹣2代入.解答:解:原式=×=,∵a=﹣2,∴原式===﹣.点评:本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.29.(2011?武汉)先化简,再求值:÷(x﹣),其中x=3.考点:分式的化简求值.分析:首先将分式的分子与分母进行因式分解,再去括号,约分最后代入求值.解答:解:原式=÷(),=×,=,x=3时,原式=.点评:此题主要考查了分式的化简求值问题,正确的因式分解再约分是解决问题的关键.30.化简并求值:?,其中x=2考点:分式的化简求值.专题:计算题.分析:先把分式?化为最简分式,然后把x=2代入求值即可.解答:解:?==,把x=2代入得:原式==.点评:本题考查了分式的化简求值,属于基础题,关键是把所求分式化为最简分式再代入求值.。
2013年云南省中考数学试卷及答案
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前云南省2013年初中学业水平考试数学 .................................................................................. 1 云南省2013年初中学业水平考试数学答案解析 (4)云南省2013年初中学业水平考试数学本试卷满分100分,考试时间120分钟.注意事项:1.本卷为试题卷。
考生解题答题必须在答题卷(答题卡)上,答案书写在答题卷(答题卡)相应的位置上,在试题卷、草稿纸上作答无效。
2.考试结束时,请将试题卷、答题卷(答题卡)一并交回。
一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分) 1.6-的绝对值是( ) A .6-B .6±C .6D .16-2.下列运算,结果正确的是( )A .632m m m ÷=B .223333mn m n m n =C .222()m n m n +=+D .22235mn mn m n +=3.下图是某个几何体的三视图,则该几何体是( )4.2012年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( )A .91.50510⨯元B .101.50510⨯元C .110.150510⨯元D .915.0510⨯元5.如图,平行四边形ABCD 的对角线AC BD 、相交于点O ,下列结论正确的是 ( )A .4ABCDAOB SS =△B .AC BD =C .AC BD ⊥D .□ABCD 是轴对称图形6.已知1O 的半径是3cm ,2O 的半径是2cm ,126cm O O =,则两圆的位置关系是( )A .相离B .外切C .相交D .内切 7.要使分式2939x x -+的值为0,你认为x 可取的数是( )A .9B .3±C .3-D .3 8.若0ab >,则一次函数y ax b =+与反比例函数aby x =在同一坐标系中的大致图像可能是( )ABCD二、填空题(本大题共6小题,每小题3分,满分18分) 9.25的算术平方根是 .10.分解因式:34x x -= .11.在函数1x y x+=中,自变量x 的取值范围是 .12.已知扇形的面积为2π,半径为3,则该扇形的弧长为 (结果保留π).13.如图,已知,,68AB CD AB AC ABC ==∥∠,则ACD =∠ .ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)14.下面是按一定规律排列的一列数:14,37,512,719,……那么第n 个数是 .三、解答题(本大题共9小题,满分58分)15.(本小题4分)计算:0211(2)sin3()0122-+-+.16.(本小题5分)如图,点B 在AE 上,点D 在AC 上,AB AD =.请你添加一个适当的条件,使ABC ADE △≌△(只能添加一个).(1)你添加的条件是 ; (2)添加条件后,请说明ABC ADE △≌△的理由.17.(本小题6分)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形; (2)写出A 、B 、C 三点平移后的对应点A '、B '、C '的坐标.18.(本小题7分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不得少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计(1)求出本次被调查的学生数; (2)请求出统计表中a 的值; (3)求各组人数的众数;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)19.(本小题7分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1,2,3三个数字.小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转). (1)请你用画树状图或列表的方法表示出每次游戏可能出现的所有结果; (2)求每次游戏结束得到的一组数恰好是方程2320x x +=-的解的概率.20.(本小题6分)如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30方向.请问船继续航行多少海里与钓鱼岛A 的距离最近?21.(本小题7分)已知在ABC △中,5,6,AB AC BC AD ===是BC 边上的中线,四边形ADBE 是平行四边形. (1)求证:四边形ADBE 是矩形; (2)求矩形ADBE 的面积.22.(本小题7分)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元. (1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍.请你算一算,该校本次购买榕树和香樟树共有哪几种方案.23.(本小题9分)如图,四边形ABCD 是等腰梯形,下底AB 在x 轴上,点D 在y 轴上,直线AC 与y 轴交于点()0,1E ,点C 的坐标为(2,3). (1)求A 、D 两点的坐标;(2)求经过A 、D 、C 三点的抛物线的函数关系式;(3)在y 轴上是否存在点P ,使ACP △是等腰三角形?若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
7[一键打印]【解析版】2013年云南省红河州中考数学试卷及答案
云南省红河州2013年中考数学试卷一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分)1.(3分)(2013•红河州)﹣的倒数是()的倒数为﹣2.(3分)(2013•红河州)如图是某个几何体的三视图,该几何体是()﹣,本选项正确,4.(3分)(2013•红河州)不等式组的解集在数轴上表示为()....的解集在数轴上表示5.(3分)(2013•红河州)计算的结果是()6.(3分)(2013•红河州)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()7.(3分)(2013•红河州)在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P8.(3分)(2013•红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是(),∴=∵>二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•红河州)红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4500000用科学记数法表示为 4.5×106.10.(3分)(2013•红河州)分解因式:ax2﹣9a=a(x+3)(x﹣3).11.(3分)(2013•红河州)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是100.12.(3分)(2013•红河州)函数中,自变量x的取值范围是x≠1.13.(3分)(2013•红河州)已知扇形的半径是30cm,圆心角是60°,则该扇形的弧长为10πcm(结果保留π).l=,代入就可以求出弧长.该扇形的弧长是:14.(3分)(2013•红河州)下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有42个实心圆.三、解答题(本大题共9个小题,满分58分)15.(5分)(2013•红河州)解方程:.16.(5分)(2013•红河州)如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.17.(6分)(2013•红河州)一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:)18.(7分)(2013•红河州)今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整;(2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量.名学生植树的平均数是:(棵)19.(7分)(2013•红河州)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.=20.(6分)(2013•红河州)如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,点D距塔AB的距离DC为100米,求手机信号中转塔AB的高度(结果保留根号).AC=100,然后由ADC=,即∴BC=答:手机信号中转塔的高度为21.(6分)(2013•红河州)如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.=x=22.(7分)(2013•红河州)如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8cm,求线段BE的长.正方形的边长等于对角线的BD=8=4+4cm23.(9分)(2013•红河州)如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C 点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.(1)求点A、B、C的坐标和直线BC的解析式;(2)求△ODE面积的最大值及相应的点E的坐标;(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.时,由时,由,解得.时,,,.的坐标为时,,,=的坐标为.有两个:,。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
2013年中考数学分类自定义之圆周角定理
2013年中考数学分类汇编之圆周角定理一.选择题9.(2013舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.(2013莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:连接OC,利用圆周角定理即可求得∠BOC的度数,然后利用等腰三角形的性质即可求得.解答:解:连接OC.则∠BOC=2∠A=100°,∵OB=OC,∴∠OBC=∠OCB==40°.故选A.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.6.(2013南平)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B考点:圆周角定理;垂径定理.分析:根据垂径定理得出弧AD=弧BD,弧AC=弧BC,根据以上结论判断即可.解答:解:A.根据垂径定理不能推出AD=AB,故本选项错误;B.∵直径CD⊥弦AB,∴弧BC=弧AC,∵弧AC对的圆周角是∠ADC,弧BC对的圆心角是∠BOC,∴∠BOC=2∠ADC,故本选项正确;C.根据已知推出∠BOC=2∠ADC,不能推出3∠ADC=90°,故本选项错误;D.根据已知不能推出∠DAB=∠BOC,不能推出∠D=∠B,故本选项错误;故选B.点评:本题考查了垂径定理的应用,主要考查学生的推理能力和辨析能力.6.(2013龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2 C.2D.4考点:圆周角定理;等腰直角三角形.分析:由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.解答:解:∵A、B、P是半径为2的⊙O上的三点,∠APB=45°,∴∠AOB=2∠APB=90°,∴△OAB是等腰直角三角形,∴AB=OA=2.故选C.点评:此题考查了圆周角定理以及等腰直角三角形性质.此题难度不大,注意掌握数形结合思想的应用.5.(2013昭通)如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=()A.28°B.42°C.56°D.84°考点:圆周角定理.分析:根据等腰三角形性质求出∠OCB的度数,根据圆周角定理得出∠BAD=∠OCB,代入求出即可.解答:解:∵OB=OC,∠ABC=28°,∴∠OCB=∠ABC=28°,∵弧AC对的圆周角是∠BAD和∠OCB,∴∠BAD=∠OCB=28°,故选A.点评:本题考查了等腰三角形性质和圆周角定理的应用,关键是求出∠OCB的度数和得出∠BAD=∠OCB.8.(2013红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA考点:圆周角定理;圆心角、弧、弦的关系;探究型.分析:根据圆周角定理,圆心角、弧、弦的关系对各选项进行逐一分析即可.解答:解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴=,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵>,∴∠DAB>∠CBA,故D错误.故选D.点评:本题考查的是圆周角定理及圆心角、弧、弦的关系,熟知直径所对的圆周角是直角是解答此题的关键.8.(2013百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是()A.25°B.30°C.40°D.50°考点:圆周角定理;垂径定理.分析:由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C=50°;则在直角△BOE中,利用“直角三角形的两个锐角互余”的性质解题.解答:解:如图,∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.∴∠ABO=90°﹣∠DOB=40°.故选C.点评:本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(2013自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A.3 B.4 C.5 D.8考点:圆周角定理;坐标与图形性质;勾股定理.专题:计算题.分析:连接BC,由90度的圆周角所对的弦为直径,得到BC为圆A的直径,在直角三角形BOC中,由OB与OC的长,利用勾股定理求出BC的长,即可确定出圆A的半径.解答:解:连接BC,∵∠BOC=90°,∴BC为圆A的直径,即BC过圆心A,在Rt△BOC中,OB=8,OC=6,根据勾股定理得:BC=10,则圆A的半径为5.故选C点评:此题考查了圆周角定理,坐标与图形性质,以及勾股定理,熟练掌握圆周角定理是解本题的关键.10.(2013安徽省)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30° D.当∠ACP=30°时,△BPC是直角三角形考点:三角形的外接圆与外心;等边三角形的性质;垂径定理;圆周角定理.分析:根据直角是圆中最长的弦,可知当弦PB最长时,PB为⊙O的直径,由圆周角定理得出∠BAP=90°,再根据等边三角形的性质及圆周角定理得出AP=CP,则△APC是等腰三角形,判断A正确;当△APC是等腰三角形时,分三种情况:①PA=PC;②AP=AC;③CP=CA;确定点P的位置后,根据等边三角形的性质即可得出PO⊥AC,判断B正确;当PO⊥AC时,由垂径定理得出PO是AC的垂直平分线,点P或者在图1中的位置,或者与点B重合.如果点P在图1中的位置,∠ACP=30°;如果点P在B点的位置,∠ACP=60°;判断C错误;当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置.如果点P在P1的位置,易求∠BCP1=90°,△BP1C是直角三角形;如果点P在P2的位置,易求∠CBP2=90°,△BP2C是直角三角形;判断D正确.解答:解:A.如图1,当弦PB最长时,PB为⊙O的直径,则∠BAP=90°.∵△ABC是等边三角形,∴∠BAC=∠ABC=60°,AB=BC=CA,∵点P是等边三角形ABC外接圆⊙O上的点,∴BP⊥AC,∴∠ABP=∠CBP=∠ABC=30°,∴AP=CP,∴△APC是等腰三角形,故本选项正确,不符合题意;B.当△APC是等腰三角形时,分三种情况:①如果PA=PC,那么点P在AC的垂直平分线上,则点P或者在图1中的位置,或者与点B重合(如图2),所以PO⊥AC,正确;②如果AP=AC,那么点P与点B重合,所以PO⊥AC,正确;③如果CP=CA,那么点P与点B重合,所以PO⊥AC,正确;故本选项正确,不符合题意;C.当PO⊥AC时,PO平分AC,则PO是AC的垂直平分线,点P或者在图1中的位置,或者与点B重合.如果点P在图1中的位置,∠ACP=30°;如果点P在B点的位置,∠ACP=60°;故本选项错误,符合题意;D.当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置,如图3.如果点P在P1的位置,∠BCP1=∠BCA+∠ACP1=60°+30°=90°,△BP1C是直角三角形;如果点P在P2的位置,∵∠ACP2=30°,∴∠ABP2=∠ACP2=30°,∴∠CBP2=∠ABC+∠ABP2=60°+30°=90°,△BP2C是直角三角形;故本选项正确,不符合题意.故选C.点评:本题考查了等边三角形的性质,三角形的外接圆与外心,圆周角定理,垂径定理,难度适中,利用数形结合、分类讨论是解题的关键.10.(2013雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E 的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.12.(2013内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm考点:圆心角、弧、弦的关系;全等三角形的判定与性质;勾股定理;圆周角定理.分析:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.解答:解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=3cm,在Rt△DOE中,DE==4cm,在Rt△ADE中,AD==4cm.故选A.点评:本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.9.(2013嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.(2013德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB 的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5 B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质;最值问题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.5.(2013德阳)如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.10°B.20°C.40°D.80°考点:圆周角定理;垂径定理.分析:根据垂径定理得出弧DF=弧DE,求出弧DE的度数,即可求出答案.解答:解:∵⊙O的直径CD过弦EF的中点G,∠DCF=20°,∴弧DF=弧DE,且弧的度数是40°,∴∠DOE=40°,故选C.点评:本题考查了圆周角定理,垂径定理的应用,注意:圆心角的度数等于它所对的弧的度数.10.(2013成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.解答:解:由题意得,∠BOC=2∠A=100°.故选D.点评:本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.8.(2013巴中)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°考点:圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.点评:此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.13.(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.专题:计算题.分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.解答:解:A.∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵=,∴BC=CE,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D.AC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.9.(2013泰安)如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°考点:圆周角定理.分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.解答:解:过A作⊙O的直径,交⊙O于D;△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D点评:本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出∠COD及∠BOD的度数.10.(2013日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB•AEC.△ADE是等腰三角形D.BC=2AD考点:圆周角定理;等腰三角形的判定;相似三角形的判定与性质.分析:利用圆周角定理可得A正确;证明△ADE∽△ABC,可得出B正确;由B选项的证明,即可得出C正确;利用排除法可得D不一定正确.解答:解:∵BC是直径,∴∠BDC=90°,∴BD⊥AC,故A正确;∵BD平分∠ABC,BD⊥AC,∴△ABC是等腰三角形,AD=CD,∵∠AED=∠ACB,∴△ADE∽△ABC,∴△ADE是等腰三角形,∴AD=DE=CD,∴===,∴AC2=2AB•AE,故B正确;由B的证明过程,可得C选项正确.故选D.点评:本题考查了相似三角形的判定与性质、圆周角定理及圆内接四边形的性质,综合考察的知识点较多,解答本题的关键在于判断△ABC和△ADE是等腰三角形.12.(2013临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°考点:圆周角定理.分析:首先连接OC,由OB=OC=OA,∠CBO=45°,∠CAO=15°,根据等边对等角的性质,可求得∠OCB 与∠OCA的度数,即可求得∠ACB的度数,又由圆周角定理,求得∠AOB的度数.解答:解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故选B.点评:此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9.(2013莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°考点:圆周角定理.分析:首先利用等腰三角形的性质求得∠AOB的度数,然后利用圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBC=22.5°,∴∠AOB=180°﹣22.5°﹣22.5°=135°.∴∠C=(360°﹣135°)=112.5°.故选D.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.10.(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B. C.6 D.考点:切线的性质;等边三角形的性质;含30度角的直角三角形;勾股定理;圆周角定理.专题:计算题.分析:连接OD,由DF为圆的切线,利用切线的性质得到OD垂直于DF,根据三角形ABC为等边三角形,利用等边三角形的性质得到三条边相等,三内角相等,都为60°,由OD=OC,得到三角形OCD为等边三角形,进而得到OD平行与AB,由O为BC的中点,得到D为AC的中点,在直角三角形ADF中,利用30°所对的直角边等于斜边的一半求出AD的长,进而求出AC的长,即为AB的长,由AB﹣AF求出FB的长,在直角三角形FBG中,利用30°所对的直角边等于斜边的一半求出BG的长,再利用勾股定理即可求出FG的长.解答:解:连接OD,∵DF为圆O的切线,∴OD⊥DF,∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵OD=OC,∴△OCD为等边三角形,∴OD∥AB,又O为BC的中点,∴D为AC的中点,即OD为△ABC的中位线,∴OD∥AB,∴DF⊥AB,在Rt△AFD中,∠ADF=30°,AF=2,∴AD=4,即AC=8,∴FB=AB﹣AF=8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选B点评:此题考查了切线的性质,等边三角形的性质,含30°直角三角形的性质,勾股定理,熟练掌握切线的性质是解本题的关键.4.(2013滨州)如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°考点:圆周角定理.专题:计算题.分析:观察图形可知,已知的圆心角和圆周角所对的弧是一条弧,根据同弧所对的圆心角等于圆周角的2倍,由圆心角∠BOC的度数即可求出圆周角∠BAC的度数.解答:解:∵圆心角∠BOC和圆周角∠BAC所对的弧为,∴∠BAC=∠BOC=×78°=39°.故选C点评:此题要求学生掌握圆周角定理,考查学生分析问题、解决问题的能力,是一道基础题.5.(2013鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2013无锡)如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°考点:圆周角定理.分析:由A、B、C是⊙O上的三点,且∠ABC=70°,利用圆周角定理,即可求得答案.解答:解:∵A、B、C是⊙O上的三点,且∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°.故选B.点评:此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2013苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°考点:圆周角定理;圆心角、弧、弦的关系.分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB 的度数.解答:解:连结BD,如图,∵点D是AC弧的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.点评:本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.10.(2013南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4 B.3.5 C.3 D.2.8考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.分析:利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.解答:解:连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=4,∴AF=BF=2,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=4,AC=3,∴BC=5,∴DO=2.5,∴DF=2.5﹣1.5=1,∵AC∥DO,∴△DEF∽△CEA,∴=,∴==3.故选C.点评:此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.8.(2013淮安)如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.解答:解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=∠BOC=40°.故选A.点评:此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.(2013长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.6.(2013衡阳)如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°考点:圆周角定理.分析:因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°.解答:解:∵∠ABC=50°,∴∠AOC=2∠ABC=100°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2013宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°考点:垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案.解答:解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A.=,正确,故本选项错误;B.AF=BF,正确,故本选项错误;C.OF=CF,不能得出,错误,故本选项错误;D.∠DBC=90°,正确,故本选项错误;故选C.点评:本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般.6.(2013孝感)下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A.平分弦(不是直径)的直径垂直于弦,故本选项错误;B.半圆或直径所对的圆周角是直角,故本选项正确;C.同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D.两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.10.(2013武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.考点:弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.分析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.解答:解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y+90°=360°,解得:∠B=180°﹣2y.∴的长度是:=.故选B.点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y.11.(2013荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B. C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.18.(2013绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4 B.5 C.6 D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.17.(2013龙东)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为()A.3 B.2C.3D.2考点:圆周角定理;含30度角的直角三角形;圆心角、弧、弦的关系.分析:首先根据AB=BC,∠ABC=120°,求出∠C的度数,然后根据圆周角定理可知:∠D=∠C,又直径AD=6,易求得AB的长度.解答:解:∵AB=BC,∴∠BAC=∠C,∵∠ABC=120°,∴∠BAC=∠C=30°,∵AD为直径,AD=6,∴∠ABD=90°,∵∠D=30°,∴AB=AD=3.故选A.点评:本题考查了圆周角定理,难度一般,关键是掌握圆周角定理:同弧所对的圆周角相等.6.(2013黔西南州)如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50°B.40°C.60°D.70°考点:切线的性质;圆周角定理.分析:连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.解答:解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对弧BC,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选A.点评:此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.10.(2013安顺)如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A.100°B.80°C.50°D.40°考点:圆周角定理.分析:由圆周角定理知,∠ACB=∠AOB=40°.解答:解:∵∠AOB=80°∴∠ACB=∠AOB=40°.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2013河南省)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC考点:切线的性质;垂径定理;圆周角定理.分析:根据切线的性质,垂径定理即可作出判断.解答:解:A.∵CD是⊙O的直径,弦AB⊥CD于点G,∴AG=BG,故正确;B.∵直线EF与⊙O相切于点D,∴CD⊥EF,又∵AB⊥CD,∴AB∥EF,故正确;C.只有当弧AC=弧AD时,AD∥BC,当两个互不等时,则不平行,故选项错误;D.根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC.故选项正确.故选C.点评:本题考查了切线的性质定理、圆周角定理以及垂径定理,理解定理是关键.14.(2013河北省)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=2.则S阴影=()A.πB.2πC. D.π考点:扇形面积的计算;垂径定理;圆周角定理.分析:根据垂径定理求得CE=ED=;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S扇形OAD﹣S△OED+S△ACE.解答:解:∵CD⊥AB,CD=2∴CE=DE=CD=,在Rt△ACE中,∠C=30°,则AE=CEtan30°=1,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=1,S阴影=S扇形OAD﹣S△OED+S△ACE=﹣×1×﹣×1×=.故选D.点评:本题考查了垂径定理、扇形面积的计算.求得阴影部分的面积时,采用了“分割法”,关键是求出相关线段的长度.12.(2013海南省)如图,在⊙O中,弦BC=1.点A是圆上一点,且∠BAC=30°,则⊙O的半径是()A.1 B.2 C.D.考点:圆周角定理;等边三角形的判定与性质.分析:连接OB,OC,先由圆周角定理求出∠BOC的度数,再OB=OC判断出△BOC的形状,故可得出结论.解答:解:连接OB,OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,∵OB=OC,∴△BOC是等边三角形,∴OB=BC=1.故选A.。
2013学年云南省中考数学年试题
()
效
6.设首项为
1,公比为
2 3
的等比数列 {an }
的前
n
项和为
Sn
,则
A. Sn 2an 1
B. Sn 3an 2
数学试卷 第 1 页(共 6 页)
()
C. Sn 4 3an
D. Sn 3 2an
7.执行如图的程序框图,如果输入的 t [1,3] ,则输
出的 s 属于 A.[3, 4]
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
18.(本小题满分 12 分) 为了比较两种治疗失眠症的药(分别称为 A 药, B 药)的疗效,随机地选取 20 位患者服 用 A 药,20 位患者服用 B 药,这 40 位患者服用一段时间后,记录他们日平均增加的睡 眠时间(单位: h ).试验的观测结果如下: 服用 A 药的 20 位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用 B 药的 20 位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
15.已知 H 是球 O 的直径 AB 上一点, AH : HB 1: 2 , AB⊥平面 , H 为垂足, 截球 O
所得截面的面积为 π ,则球 O 的表面积为________.
云南红河州中考《数学》试题及答案中考.doc
2013云南红河州中考《数学》试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2013年云南省中考数学试卷-答案
云南省2013年初中学业水平考试数学答案解析 一、选择题1.【答案】B【解析】根据绝对值的性质,|66|-=.故选B .【提示】根据绝对值的性质,当a 是负有理数时,a 的绝对值是它的相反数a -,解答即可.【考点】绝对值2.【答案】B【解析】A .633m m m ÷=,选项错误;B .正确;C .222()2m n m mn n +=++,选项错误;D .235mn mn mn +=,选项错误.故选B .【提示】依据同底数的幂的除法、单项式的乘法以及完全平方公式,合并同类项法则即可判断.【考点】单项式乘单项式,合并同类项,同底数幂的除法,完全平方公式3.【答案】D【解析】由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体. 故选D .【提示】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【考点】由三视图判断几何体4.【答案】B【解析】将150.5亿元用科学记数法表示101.50510⨯元.故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.【考点】科学记数法—表示较大的数5.【答案】A【解析】A .行四边形ABCD 的对角线AC ,BD 相交于点O ,AO CO ∴=,DO BO =,ABCD S =,故此选项错误;.ABCD 是中心对称图形,故此选项错误.【提示】根据平行四边形的性质分别判断得出答案即可.【考点】平行四边形的性质【解析】1O 与2O 的半径分别为又325+=>两圆的位置关系是相交..由1O 与2O 的半径分别为R ,r 的数量关系间的联系即可得出两圆位置关系.【考点】圆与圆的位置关系,估算无理数的大小D【解析】2525=,【提示】根据算术平方根的定义即可求出结果.【考点】算术平方根【解析】AB AC =,AB CD ∥【提示】根据等腰三角形两底角相等求出,再根据两直线平行,内错角相等解答.【考点】等腰三角形的性质,平行线的性质【解析】分子分别为,431-==3n +=)AB AD∠=∠可以添加的条件为C∠.E17.【答案】(1)如图所示:50CB =⨯12CD ∴=故船继续航行50海里与钓鱼岛A的距离最近.=)AB AC,是平行四边形,=)AB AC△中,在直角ACDBD AD=⨯34)利用勾股定理求得BD,a只能取正整数,香樟树91棵;方案三:四边形OA OE =1FEP ∴∠=(1,0)A -,,22F ∴ ⎝点【提示】(1)利用待定系数法求出直线EC的解析式,确定点A的坐标;然后利用等腰梯形的性质,确定点D的坐标;(2)利用待定系数法求出抛物线的解析式;(3)满足条件的点P存在,且有多个,需要分类讨论:①作线段AC的垂直平分线,与y轴的交点,即为所求;②以点A为圆心,线段AC长为半径画弧,与y轴的两个交点,即为所求;②以点C为圆心,线段CA长为半径画弧,与y轴的两个交点,即为所求.【考点】二次函数综合题。
云南中考数学 第一部分 教材知识梳理 第四章 第一节 线段、角、相交线与平行线-人教版初中九年级全册
三角形第一节线段、角、相交线与平行线命题点1 利用相交线性质求角度(某某考查1次)1. (’13德宏5题3分)如图,三条直线相交于点O,若CO⊥AB,∠1=56°,则∠2等于( )A. 30°B. 34°C. 45°D. 56°第1题图第2题图2. (’13某某11题3分)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=________.命题点2 利用平行线性质求角度(省卷考查2次,某某考查2次,某某考查1次)1. (’13红河6题3分)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为( )A. 60°B. 65°C. 70°D. 75°第1题图第2题图2. (’13某某3题3分)如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数为( )A. 40°B. 50°C. 60° D.140°3. (’14某某10题3分)如图,直线a∥b,直线a、b被直线c所截,∠1=37°,则∠2=________.第3题图第4题图4. (’15某某11题3分)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=________.【答案】命题点1 利用相交线性质求角度1. B 【解析】本题考查平角和垂直的定义.∵CO⊥AB,∴∠AOC=90°,∴∠2=180°-∠AOC-∠1=180°-90°-56°=34°.2. 40°【解析】∵∠BOD=40°,∴∠AOC=∠BOD=40°.∵OA平分∠EOC,∴∠AOE=∠AOC=40°.第1题解图命题点2 利用平行线性质求角度1. C【解析】如解图,设CD与BE交于点F,根据三角形外角的性质得∠CFE=∠D+∠E =70°,再由平行线的性质得∠B=∠CFE=70°.2. A【解析】解决此题的关键在于熟练掌握平行线的性质:两直线平行,同位角相等,以及三角形内角和定理.∵AB∥CD,∴∠1=∠BCD,又∵∠BCD+∠2+∠BCD=180°,∴∠1+∠2+90°=180°,∴∠1=180°-50°-90°=40°.第3题解图3. 143°【解析】本题考查了平行线的性质,根据两直线平行,同位角相等可得∠3=∠1,再根据邻补角的性质,求得∠2.如解图,∵a∥b,∴∠3=∠1=37°,∵∠3+∠2=180°,∴∠2=180°-∠3=180°-37°=143°.4. 64°【解析】本题考查根据平行线性质求角度. 如解图,∵l1∥l2,第4题解图word∴∠EAC=∠ACD,∵∠ACD=∠α+∠ACB,∴∠α=∠ACD-∠ACB=∠EAC-∠ACB=120°-56°=64°.。
云南省红河州2013年中考数学模拟试卷(解析版) 新人教版
解:将21万用科学记数法表示为2.1×105.
故选B.
点评:
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(3分)(2013•红河州模拟)下列图形中,既是轴对称图形又是中心对称图形的共有( )
A.
4.(3分)(2013•红河州模拟)如图,几何体左视图是( )
A.
B.
C.
D.
考点:
简单组合体的三视图.
分析:
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.
解答:
解:从左面看易得第一层有2个正方形,第二层左边有一个正方形.
故选A.
点评:
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
分析:
分别在Rt△ABD和Rt△ABC中,用AB表示出BC、BD的长,进而由CD=BC﹣BD=50求出AB的长.
解答:
解:在Rt△ABC中,由∠C=45°,得AB=BC,
在Rt△ABD中,tan60°= ,得BD= = = AB,
又因为CD=50,即BC﹣BD=50,得
AB﹣ AB=50,
解得:AB≈118.
解答:
解:设教育经费的年平均增长率为x,
则2009的教育经费为:3000×(1+x)
2010的教育经费为:3000×(1+x)2.
那么可得方程:3000×(1+x)2=5000
故选A.
点评:
本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.
17.(6分)(2013•红河州模拟)某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50米至D处,测得最高点A的仰角为60°.则该兴趣小组测得的摩天轮的高度AB约是多少米?(结果精确到1米)
2013年云南红河州中考数学试卷及答案(word解析版)
第 1 页 共 11 页2013年红河州哈尼族彝族自治州初中学业水平考试数学试题一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分) 1.(2013云南红河州,1,3分)12-的倒数是(A )A .2-B .2C .12-D .12【答案】A2.(2013云南红河州,2,3分)右图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球【答案】B3.(2013云南红河州,3,3分)下列运算正确的是(D ) A .2a a a += B .632a a a ÷= C .0( 3.14)0π-= D.=【答案】D4.(2013云南红河州,4,3分)不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为(C )ABC D主视图俯视图左视图第 2 页 共 11 页【答案】C5.(2013云南红河州,5,3的结果是(B ) A .3- B .3C .9-C .9【答案】B6.(2013云南红河州,6,3分)如图,AB ∥CD ,∠D =∠E =35°,则∠B 的度数为 (C ) A .60° B .65° C .70° D .75° 【答案】C7.(2013云南红河州,7,3分)在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是(C ) A .(-1,2) B .(1,-2) C .(1,2) D .(2,1)【答案】C8.(2013云南红河州,8,3分)如图,AB 是⊙O 的直径,点C 在⊙O 上,弦BD 平分ABC ∠, 则下列结论错误的是(D )BA CDE第 3 页 共 11 页A .AD DC =B .AD DC = C .ADB ACB ∠=∠D .DAB CBA ∠=∠ 【答案】D二、填空题(本大题共6个小题,每小题3分,满分18分)9.(2013云南红河州,9,3分)红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为 . 【答案】64.510⨯10.(2013云南红河州,10,3分)分解因式:29ax a -= . 【答案】()()33a x x +-11.(2013云南红河州,11,3分)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 . 【答案】 10012.(2013云南红河州,12,3分)在函数11y x =-中,自变量x 的取值范围是 . 【答案】1x ≠13.(2013云南红河州,13,3分)已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 cm (结果保留π). 【答案】 10 π14.(2013云南红河州,14,3分)下列图形是由一些小正方形和实心圆按一定规律排列而A第 4 页 共 11 页BACD E成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.【答案】 42三、解答题(本大题共9个小题,满分58分) 15.(2013云南红河州,15,5分)解方程212xx x +=+. 【答案】解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=.22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分16.(2013云南红河州,16,5分)如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF . 【答案】证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩……(1) (2) (3)第 5 页 共 11 页∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分17.(2013云南红河州,17,6分)一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)【答案】解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分0.820200x =+. 0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分 18.(2013云南红河州,18,7分)今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量.植树数量(棵)第 6 页 共 11 页【答案】解:(1)统计表和条形统计图补充如下:…………………………………………………………3分(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分19.(2013云南红河州,19,7分)今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖. (1)请你用树形图或列表法表示出抽奖所有可能出现的结果;植树数量(棵)第 7 页 共 11 页(2)求抽奖人员获奖的概率. 【答案】解:(1)列表法表示如下:或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.(2013云南红河州,20,6分)如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).【答案】解:由题意可知,△ACD 与△BCD 都是直角三角形.1234211133224443开 始第 8 页 共 11 页在Rt △BCD 中, ∵∠BDC = 45°,∴BC = CD = 100.在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan 60ACCD=, 即100AC= ∴AC = …………………………4分 ∴AB AC BC =-1)=. …………………………5分 答:手机信号中转塔的高度为1)米. …………………………6分21.(2013云南红河州,21,6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围. 【答案】解:(1)设A 点的坐标为(m ,2)2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. D6045第 9 页 共 11 页BACDE解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2). 由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(2013云南红河州,22,7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E .(1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.【答案】解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分解得1x =2x =-(不符合题意,舍去).∴2)BE x cm ==. ………………………………7分23.(2013云南红河州,23,9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为第 10 页 共 11 页D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.当0x =时,即04y =+,解得4y =. 所以点A 、B 、C 的坐标依次是A (-2,0)、 B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠),则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩.所以直线BC 的解析式为24y x =-+. ………………………………3分 (2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). …………………5分 (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为2(, 4)x x -+,02x <<.第 11 页 共 11 页因为△OAC 与△OPD 都是直角三角形,分两种情况:①当△PDO ∽△COA 时,PD OD CO AO=, 2442x x -+=,解得11x =,21x =(不符合题意,舍去).当1x =时,21)42y =-+=.此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x =,4x (不符合题意,舍去).当14x -+=时,21(44y -=-+=18-+. 此时,点P的坐标为. 综上可得,满足条件的点P 有两个:12)P,211(48P --. ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
红河州解析
云南省红河州2013年中考数学试卷一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分)1.(3分)(2013•红河州)﹣的倒数是()A.﹣2 B.2C.D.﹣考点:倒数.专题:计算题.分析:乘积是1的两数互为倒数,由此可得出答案.解答:解:﹣的倒数为﹣2.故选A.点评:此题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数.2.(3分)(2013•红河州)如图是某个几何体的三视图,该几何体是()A.正方体B.圆柱C.圆锥D.球考点:由三视图判断几何体.分析:首先根据俯视图将正方体淘汰掉,然后跟主视图和左视图将圆锥和球淘汰;解答:解:∵俯视图是圆,∴排除A,∵主视图与左视图均是长方形,∴排除C、D故选B.点评:此题主要考查了简单几何体的三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3.(3分)(2013•红河州)下列运算正确的是()A.a+a=a2B.a6÷a3=a2C.(π﹣3.14)0=0 D.考点:二次根式的加减法;合并同类项;同底数幂的除法;零指数幂.专题:计算题.分析:A、合并同类项得到结果,即可作出判断;B、利用同底数幂的除法法则计算得到结果,即可作出判断;C、利用零指数幂法则计算得到结果,即可作出判断;D、合并同类二次根式得到结果,即可作出判断.解答:解:A、a+a=2a,本选项错误;B、a6÷a3=a3,本选项错误;C、(π﹣3.14)0=1,本选项错误;D、2﹣=,本选项正确,故选D点评:此题考查了二次根式的加减法,合并同类项,同底数幂的除法,以及零指数幂,熟练掌握运算法则是解本题的关键.4.(3分)(2013•红河州)不等式组的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集.把不等式组中每一个不等式的解集,表示在数轴上即可分析:[来源:]解答:解:不等式组的解集在数轴上表示.故选C.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2013•红河州)计算的结果是()A.﹣3 B.3C.﹣9 D.9考点:二次根式的性质与化简专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|﹣3|=3.故选B点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.6.(3分)(2013•红河州)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°考点:平行线的性质;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等解答.解答:解:∵∠D=∠E=35°,∴∠1=∠D+∠E=35°+35°=70°,∵AB∥CD,∴∠B=∠1=70°.故选C.点评:本题考查了平行线的性质,三角形的外角性质,熟记各性质并准确识图是解题的关键.7.(3分)(2013•红河州)在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P 关于原点对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(2,1)考点:关于原点对称的点的坐标.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),据此即可求得点P关于原点的对称点的坐标.解答:解:∵点P关于x轴的对称点坐标为(﹣1,﹣2),∴点P关于原点的对称点的坐标是(1,2).故选:C.点评:此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.8.(3分)(2013•红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.A D=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA考点:圆周角定理;圆心角、弧、弦的关系.专题:探究型.分析:根据圆周角定理,圆心角、弧、弦的关系对各选项进行逐一分析即可.解答:解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴=,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵>,∴∠DAB>∠CBA,故D错误.故选D.点评:本题考查的是圆周角定理及圆心角、弧、弦的关系,熟知直径所对的圆周角是直角是解答此题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2013•红河州)红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4500000用科学记数法表示为 4.5×106.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4 500 000=4.5×106,故答案为:4.5×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2013•红河州)分解因式:ax2﹣9a=a(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ax2﹣9a=a(x2﹣9),=a(x+3)(x﹣3).故答案为:a(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(3分)(2013•红河州)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是100.考点:总体、个体、样本、样本容量.分析:找到样本,根据样本容量的定义解答.解答:解:样本是在全校范围内随机抽取的100名学生的运动服尺码,故样本容量为100.故答案为100.点评:样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量.12.(3分)(2013•红河州)函数中,自变量x的取值范围是x≠1.考点:函数自变量的取值范围;分式有意义的条件.分析:分式的意义可知分母:就可以求出x的范围.解答:解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.点评:主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2013•红河州)已知扇形的半径是30cm,圆心角是60°,则该扇形的弧长为10πcm(结果保留π).考点:弧长的计算.分析:根据弧长公式是l=,代入就可以求出弧长.解答:解:∵扇形的半径是30cm,圆心角是60°,∴该扇形的弧长是:=10π(cm).故答案为:10π.点评:本题考查的是扇形的弧长公式的运用,正确记忆弧长公式是解题的关键.14.(3分)(2013•红河州)下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有42个实心圆.考点:规律型:图形的变化类分析:根据图形中实心圆的数量变化,得出变化规律,进而求出即可.解答:解:∵第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,…[来源:]∴第n个图形中有2(n+1)个实心圆,∴第20个图形中有2×(20+1)=42个实心圆.故答案为:42.[来源:]点评:此题主要考查了图形的变化类,根据已知得出图形中的实心圆变化是解题关键.三、解答题(本大题共9个小题,满分58分)15.(5分)(2013•红河州)解方程:.考点:解分式方程专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:方程两边同时乘以x(x+2)得:2(x+2)+x(x+2)=x2,去括号得:2x+4+x2+2x=x2,解得:x=﹣1,检验:把x=﹣1代入x(x+2)≠0,故x=﹣1是原方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.(5分)(2013•红河州)如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线性质得出∠1=∠F,∠2=∠A,求出AE=EC,根据AAS证△ADE≌△CFE,根据全等三角形的性质推出即可.解答:证明:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中∴△ADE≌△CFE(AAS),∴AD=CF.点评:本题考查了全等三角形的性质和判定,平行线的性质,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.17.(6分)(2013•红河州)一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:)考点:一元一次方程的应用分析:设这件外衣的标价为x元,就可以表示出售价为0.8x元,根据利润的售价﹣进价=进价×利润率建立方程求出其解即可.解答:解:设这件外衣的标价为x元,依题意得0.8x﹣200=200×10%.0.8x=20+200.0.8x=220.x=275.答:这件外衣的标价为275元.点评:本题考查了销售问题在实际生活中的运用,列一元一次方程解实际问题的运用,根据)建立方程是解答本题的关键.18.(7分)(2013•红河州)今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整;(2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.专题:图表型.分析:(1)用总人数减去其他小组的人数即可求得植树棵树为5的小组的频数,除以总人数即可得到该组的频率;(2)用加权平均数计算植树量的平均数即可;(3)用样本的平均数估计总体的平均数即可.解答:解:(1)统计表和条形统计图补充如下:植树量为5棵的人数为:50﹣5﹣20﹣10=15,频率为:15÷50=0.3,,(2)抽样的50名学生植树的平均数是:(棵).(3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵.于是4.6×800=3 680(棵),∴估计该校800名学生植树约为3 680棵.点评:本题考查的是加权平均数的求法、频数分布直方图、用样本估计总体等知识.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.19.(7分)(2013•红河州)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.考点:列表法与树状图法.[来源:]专题:图表型.分析:(1)根据列表法与画树状图的方法画出即可;(2)根据概率公式列式计算即可得解.解答:解:(1)列表法表示如下:第1次第2次1[来源:]2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)或树状图:(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种,所以抽奖人员的获奖概率为P==.点评:本题考查了列表法与树状图法,概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2013•红河州)如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,点D距塔AB的距离DC为100米,求手机信号中转塔AB的高度(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:先在Rt△BCD中,根据∠BDC=45°,得出BC=CD=100;再在Rt△ACD中,根据正切函数的定义,求出AC=100,然后由AB=AC﹣BC即可求解.解答:解:由题意可知,△ACD与△BCD都是直角三角形.在Rt△BCD中,∵∠BDC=45°,∴BC=CD=100.在Rt△ACD中,∵∠ADC=60°,CD=100,∴tan∠ADC=,即,∴,∴AB=AC﹣BC=.答:手机信号中转塔的高度为米.点评:本题考查了解直角三角形的应用﹣仰角俯角问题,难度适中,解答本题的关键是借助仰角构造直角三角形并解直角三角形.21.(6分)(2013•红河州)如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.[来源:](1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)设A(m,2),将A纵坐标代入正比例解析式求出m的值,确定出A坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;(2)联立两函数解析式求出B的坐标,由A与B横坐标,利用图象即可求出当y1>y2时,自变量x的取值范围.解答:解:(1)设A点的坐标为(m,2),代入y1=x得:m=2,∴点A的坐标为(2,2),∴k=2×2=4,∴反比例函数的解析式为y2=;(2)当y1=y2时,x=,解得:x=±2,∴点B的坐标为(﹣2,﹣2),则由图象可知,当y1>y2时,自变量x的取值范围是:﹣2<x<0或x>2.点评:此题考查了反比例函数与一次函数的交点问题,利用数形结合的思想,熟练掌握数形结合思想是解本题的关键.22.(7分)(2013•红河州)如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.(1)判断四边形ACED的形状,并说明理由;(2)若BD=8cm,求线段BE的长.考点:正方形的性质;勾股定理;平行四边形的判定.分析:(1)根据正方形的对边互相平行可得AD∥BC,即为AD∥CE,然后根据两组对边互相平行的四边形是平行四边形解答;(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE,再根据正方形的边长等于对角线的倍求出BC,然后求出BE即可.解答:解:(1)四边形ACED是平行四边形.理由如下:∵四边形ABCD是正方形,∴AD∥BC,即AD∥CE,∵DE∥AC,∴四边形ACED是平行四边形;(2)由(1)知,BC=AD=CE=CD,∵BD=8cm,∴BC=BD=×8=4cm,∴BE=BC+CE=4+4=8cm.点评:本题考查了正方形的性质,平行四边形的判定与性质,比较简单,熟练掌握各图形的性质是解题的关键.23.(9分)(2013•红河州)如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C 点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.(1)求点A、B、C的坐标和直线BC的解析式;(2)求△ODE面积的最大值及相应的点E的坐标;(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.考点:二次函数综合题分析:(1)在抛物线解析式y=﹣x2+4中,令y=0,解方程可求得点A、点B的坐标;令x=0,可求得顶点C的坐标.已知点B、C的坐标,利用待定系数法求出直线BC的解析式;(2)求出△ODE面积的表达式,利用二次函数的性质求出最大值,并确定点E的坐标;(3)本问为存在型问题.因为△OAC与△OPD都是直角三角形,需要分类讨论:①当△PDO∽△COA时,由得PD=2OD,列方程求出点P的坐标;②当△PDO∽△AOC时,由得OD=2PD,列方程求出点P的坐标.解答:解:(1)在y=﹣x2+4中,当y=0时,即﹣x2+4=0,解得x=±2.当x=0时,即y=0+4,解得y=4.所以点A、B、C的坐标依次是A(﹣2,0)、B(2,0)、C(0,4).设直线BC的解析式为y=kx+b(k≠0),则,解得.所以直线BC的解析式为y=﹣2x+4.…3分(2)∵点E在直线BC上,∴设点E的坐标为(x,﹣2x+4),则△ODE的面积S可表示为:.∴当x=1时,△ODE的面积有最大值1.此时,﹣2x+4=﹣2×1+4=2,∴点E的坐标为(1,2).…5分(3)存在以点P、O、D为顶点的三角形与△OAC相似,理由如下:设点P的坐标为(x,﹣x2+4),0<x<2.因为△OAC与△OPD都是直角三角形,分两种情况:①当△PDO∽△COA时,,,解得,(不符合题意,舍去).当时,.[来源:]此时,点P的坐标为.②当△PDO∽△AOC时,,,解得,(不符合题意,舍去).当时,=.此时,点P的坐标为.综上可得,满足条件的点P有两个:,.…9分.点评:本题是二次函数压轴题,考查了二次函数的图象与性质、待定系数法、二次函数的最值、相似三角形、解方程等知识点,难度不大.第(3)问是存在型问题,可能存在两种符合条件的情况,需要分类讨论,避免漏解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省红河州2013年中考数学试卷
一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分)
1.(3分)(2013•红河州)﹣的倒数是()
的倒数为﹣
2.(3分)(2013•红河州)如图是某个几何体的三视图,该几何体是()
﹣,本选项正确,
4.(3分)(2013•红河州)不等式组的解集在数轴上表示为()....
的解集在数轴上表示
5.(3分)(2013•红河州)计算的结果是()
6.(3分)(2013•红河州)如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()
7.(3分)(2013•红河州)在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P
8.(3分)(2013•红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()
,∴=
∵>
二、填空题(本大题共6个小题,每小题3分,满分18分)
9.(3分)(2013•红河州)红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4500000用科学记数法表示为 4.5×106.
10.(3分)(2013•红河州)分解因式:ax2﹣9a=a(x+3)(x﹣3).
11.(3分)(2013•红河州)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是100.
12.(3分)(2013•红河州)函数中,自变量x的取值范围是x≠1.
13.(3分)(2013•红河州)已知扇形的半径是30cm,圆心角是60°,则该扇形的弧长为10πcm(结果保留π).
l=,代入就可以求出弧长.
该扇形的弧长是:
14.(3分)(2013•红河州)下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有42个实心圆.
三、解答题(本大题共9个小题,满分58分)
15.(5分)(2013•红河州)解方程:.
16.(5分)(2013•红河州)如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.
17.(6分)(2013•红河州)一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:)
18.(7分)(2013•红河州)今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).
(1)将统计表和条形统计图补充完整;
(2)求抽样的50名学生植树数量的平均数;
(3)根据抽样数据,估计该校800名学生的植树数量.
名学生植树的平均数是:(棵)
19.(7分)(2013•红河州)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.
(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;
(2)求抽奖人员获奖的概率.
=
20.(6分)(2013•红河州)如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,点D距塔AB的距离DC为100米,求手机信号中转塔AB的高度(结果保留根号).
AC=100,然后由
ADC=,即
∴
BC=
答:手机信号中转塔的高度为
21.(6分)(2013•红河州)如图,正比例函数y1=x的图象与反比例函数(k≠0)的图
象相交于A、B两点,点A的纵坐标为2.
(1)求反比例函数的解析式;
(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.
=
x=
22.(7分)(2013•红河州)如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.
(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
正方形的边长等于对角线的
BD=8=4
+4cm
23.(9分)(2013•红河州)如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C 点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.
(1)求点A、B、C的坐标和直线BC的解析式;
(2)求△ODE面积的最大值及相应的点E的坐标;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.
时,由
时,由
,解得.
时,,
,
.
的坐标为
时,,
,
=
的坐标为.
有两个:,。