数学七年级上册 代数式同步单元检测(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)
1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)
(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).
(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.
(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.
【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,
可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.
故答案为:x+100;﹣2x+300
(2)解:设获得的总利润为w元,
根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000
(3)解:∵k=﹣140<0,
∴w值随x值的增大而减小,
又∵20≤x≤25,
∴当x=20时,w取最大值,最大值为43200,
∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.
【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.
(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.
(3)利用一次函数的性质求出最大利润及购买方案即可.
2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;
(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类
整式”,若,则称该整式为“QR类整式”;
(2)说明整式x2﹣5x+5为“PQ类整式;
(3)x2+x+1是哪一类整式?说明理由.
【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
故答案是:a=b=0,c≠0;a=0,b≠0,c≠0
(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)
=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.
即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”
(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),
∴该整式为PQR类整式.
【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.
(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.
3.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.
(1)若AB=6千米,老王开车从A到D共需多少时间?
(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)
【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:
=2.4(小时)
(2)解:从A到D所需时间不变,(答案正确不回答不扣分)
设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,
t=
=
=2.4(小时)
【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;
(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;
4.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!
某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:
________元;
(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);
(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890
(2)54x;45x+1200
(3)解:当x=170时,
54x=54×170=9180,
45x+1200=45×170+1200=8850,
因为9180>8850,所以他选择在B家批发更优惠
【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。

( 2 )A:60×90%x=54x,
B:50×60×95%+100×60×85%+(x-150)×60×75%=45x+1200.
【分析】(1)根据A、B两家的优惠办法分别列式求出在两家批发需要的费用。

(2)根据题意列式分别表示出在A、B两家批发x千克太湖蟹(150<x<200)所需的费用。

(3)将x=170分别代入(2)种表示的在A、B两家批发所需费用的两个式子计算,然后再比较大小即可。

5.从2开始,连续的偶数相加时,它们的和的情况如下表:
S和n之间有什么关系?用公式表示出来,并计算以下两题:
(1)2a+4a+6a+…+100a;
(2)126a+128a+130a+…+300a.
【答案】(1)解:依题可得:S=n(n+1).
2a+4a+6a+…+100a,
=a×(2+4+6+…+100),
=a×50×51,
=2550a.
(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,
=a×(2+4+6+…+300),
=a×150×151,
=22650a.
又∵2a+4a+6a+…+124a,
=a×(2+4+6+…+124),
=a×62×63,
=3906a,
∴126a+128a+130a+…+300a,
=22650a-3906a,
=18744a.
【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.
(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,
6.某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于
零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:
(1)甲车开出7小时时的位置为________km,流动加油车出发位置为________km;
(2)当两车同时开出x小时时,甲车位置为________km,流动加油车位置为________km (用x的代数式表示);
(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.
【答案】(1)-90;-80
(2)190﹣40x;﹣80+50x
(3)解:当x=3时,甲车开出的位置是:190﹣40x=70(km),
流动加油车的位置是:﹣80+50x=70(km),
则甲车能立刻获得流动加油车的帮助
【解析】【解答】解:(1)根据题意得:
甲车开出7小时时的位置为:190﹣7×(200÷5)=﹣90(km),
流动加油车出发位置为:270﹣(270﹣170)÷2×7=﹣80(km);
故答案为:﹣90,﹣80;
⑵根据题意得:
当两车同时开出x小时时,甲车位置为:190﹣40x,
流动加油车位置为:﹣80+50x;
【分析】(1)根据题意可知甲车开出5小时时的位置为-10,得到甲车的速度是(190+10)÷5,求出甲车开出7小时时的位置;根据流动加油车出发5小时的位置是170和出发7小时的位置是270,得到流动加油车的速度是(270-170)÷2;求出流动加油车出发的位置;(2)根据题意当两车同时开出x小时时,甲车位置是190﹣40x,流动加油车位置是﹣80+50x;(3)根据题意当x=3时,甲车开出的位置是70km,流动加油车的位置是70km,得到甲车能立刻获得流动加油车的帮助.
7.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).
(1)用a、b的代数式表示△ADE的面积.
(2)用a、b的代数式表示△DCG的面积.
(3)用a、b的代数式表示阴影部分的面积.
【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,
∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,
∴S△ADE= AD·AE=
(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,
∴AB=DC=BC=a,∠C=90°,BG=BE=b,
∴CG=BC-BG=a-b,
∴S △DCG= DC·CG=
(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,
∴S正方形ABCD+S正方形BEFG= .
又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,
∴S阴影= -S△ADE-S△GEF-S△CDG
=
= .
【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;
(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;
(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.
8.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。

(1)填空:用含a、b、h的代数式表示以下面积:
甲的面积________;乙的面积________;丙的面积________.
(2)当h=20cm时,若甲的面积比丙的面积大200cm2,乙的面积为1400cm2,求a和b 的值;
(3)现将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。

左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型(如图②),且这样的圆柱体模型的高刚好与木箱的高相等。

问:一个上述长方体木箱中最多可以放________个这样的圆柱体模型。

【答案】(1)ab+ah;ah+bh;ab+bh
(2)解:,
化简得,
解得: .
(3)8
【解析】【解答】(1)甲的面积= ab+ah,乙的面积= ah +bh;丙的面积 =ab+bh;
(3)设圆的直径为d,
∵将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。

左侧部分刚好分割成两个最大的等圆,和右侧剩下部分刚好做成一个圆柱体模型,
∴b=2d,a-d=πd,
∴a=(π+1)d
∵圆柱体模型的高刚好与木箱的高相等,
∴只有比较木箱的上表面有几个正方形ACDF即可,

∴可以放两层,
∴b=2r+πr

∴一个上述长方体木箱中最多可以放8个这样的圆柱体模型.
故答案为:8.
【分析】(1)根据矩形的面积公式,分别求出甲,乙,丙的面积即可;
(2)根据甲的面积-丙的面积=200cm2,乙的面积为1400cm2,列出方程组,将h=20cm代入并解出方程组,即可求出a,b的值;
(3)设圆的直径为d,观察图像由已知可得到b=2d,a=(π+1)d,再根据圆柱体模型的高刚好与木箱的高相等,就可得到只有比较木箱的上表面有几个正方形ACDF即可,因此利用木箱的上表面的面积除以正方形ACDF的面积即可求解。

9.以下关于的各个多项式中,,,,,均为常数.
(1)根据计算结果填写下表:
二次项系数一次项系数常数项
2________2
6________-2
________
(2)若的积中不含的二次项和一次项,求
的值.
(3)多项式与多项式的乘积为,则的值为________.
【答案】(1)5;-1;
(2)解:原式
∵积中不含的二次项和一次项∴解得原式
(3)-4
【解析】【解答】解:(1)
故答案为:
( 3 )∵多项式与多项式的乘积为
∴设多项式
【分析】(1)根据多项式乘以多项式即可求解;(2)先根据多项式乘以多项式展开,合并同类项后使二次项系数和一次项系数为0即可求解;(3)根据多项式乘以多项式的结果可以设多项式M,再根据恒等式的意义求解.
10.某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表:
垃圾种类纸类塑料类金属类玻璃类
回收单价(元/吨)500800500200
A,B,C三个小区12月份产生的垃圾总量分别为100吨,100吨和m吨。

(1)已知A小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍。

设塑料类的质量为x吨,则A小区可回收垃圾有________吨,其中玻璃类垃圾有________吨(用含x的代数式表示)
(2)B小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元,求12月份该小区可回收垃圾中塑料类垃圾的质量。

(3)C小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额
为12000元,设该小区塑料类垃圾质量为a吨,求a与m的数量关系。

【答案】(1)60
;60-8x
(2)解:由题意得:塑料类和玻璃类垃圾总质量为:100×60%-35=25(吨),设塑料类垃圾为x,
则玻璃类垃圾为:25-x, 得:
800x+(25-x)×200+35×500-100×90=16500,
解得x=.
(3)解:设玻璃类垃圾质量为y,则800a=200x,
∴x=4a,
∴纸类和金属类垃圾质量之和为:m-5a,
∴(m-5a)×500+800a+200×4a=12000,
整理得:5m-9a=120.
【解析】【解答】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x,
则A小区可回收垃圾为:100×60%=60(吨),
玻璃类垃圾为:60-(x+2x+5x)=60-8x.
故答案为:60,60-8x.【分析】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x, 因为可回收垃圾占垃圾总量的60%,则A小区可回收垃圾有60吨,玻璃类垃圾为:60-(x+2x+5x),即60-8x.
(2)先求出塑料类和玻璃类垃圾总质量,设塑料类垃圾为x,则玻璃类垃圾为25-x, 然后根据12月份总收益为16500元列方程,求出x即可.
(3)根据塑料类与玻璃类垃圾的回收总额恰好相等把玻璃类垃圾质量用含a的代数式表示,则纸类和金属类垃圾质量之和也可用含a的代数式表示,再根据可回收垃圾的回收总金额为12000元列式,最后化简即可得出a与m的数量关系。

11.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)
(1)如图(1),若AD=7,AB=8,求与的值;
(2)如图(1),若长方形ABCD的面积为35,其中阴影部分的面积为20,求长方形ABCD的周长;
(3)如图(2),若AD的长度为5,AB的长度为 .
①当 =________, =________时,,的值有无数组;
②当 ________, ________时,,的值不存在.
【答案】(1)解:由图得

解得:
(2)解:由图可得:5个小长方形面积=长方形ABCD的面积-阴影部分的面积,
∴,
∴ab=3,
∵阴影部分的面积为20,
∴,
∴,
∴a+b= ,
方形ABCD的周长=2[(2a+b)+(2b+a)]=6(a+b)=6×4=24
(3)4;10;4;≠10.
【解析】【解答】解:(3)由图(2)得:

由①得a=5-2b,③
将③代入②得2(5-2b)+mb=n,
∴(m-4)b=n-10,
∴当时,a,b的解有无数组;
即m=4,n=10时,a,b的值有无数组;
当时,方程组无解,
即m=4,n≠10时,a,b的值不存在.
故答案为:①m=4,n=10;②m=4,n≠10
【分析】(1)由长方形的性质和图中的信息可得关于a、b的方程组,从而求解;
(2)由图和已知条件可列方程组:,解方程组即可求解;(3)由题意联立解方程组,当两直线重合时,有无数组解;当两直线
平行时,无解。

12.某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为4000 元/人,两家旅行社同时又对10 人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有n(n>10)人,则甲旅行社的费用为________元,乙旅行社的费用为________元;(用含 n 的代数式表示)
(2)假如这个单位现组织共30 名员工到旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.
(3)如果计划在十月份外出旅游七天,这七天的日期之和(不包含月份)为105,则他们于十月________号出发.
【答案】(1)3000n;3200(n-1)
(2)解:当n=30时:
甲: (元),
乙: (元),
因为90000<92800,所以选择甲旅行社更优惠
(3)12
【解析】【解答】解:(1)甲旅行社的费用为
乙旅行社的费用为
故答案为3000n;3200(n-1);
( 3 ) 设 x 号出发,则 x+x+1+x+2+x+3+x+4+x+5+x+6=105,
解得 x=12,所以他们于十月 12 号出发.
【分析】(1)按照两个旅行社的优惠方法,分别表示出各自的费用。

(2)将n=30分别代入(1)中的代数式求值,再比较大小即可得出结果。

(3)设 x 号出发,根据这七天的日期之和(不包含月份)为 105,建立关于x的方程,求解即可。

相关文档
最新文档