改了的北师大版七年级数学上册第二章有理数及其运算练习题及答案全套
北师大版七年级数学上册第二章有理数及其运算单元测试题含答案
北师大版七年级数学上册第二章有理数及其运算单元测试题含答案北师大版七年级数学上册第二章有理数及其运算单元测试题一、选择题(每小题3分,共30分)1.若规定向东走为正,则-8m表示()。
A。
向东走8m B。
向西走8m C。
向西走-8m D。
向北走8m2.数轴上点A,B表示的数分别为5,-3,它们之间的距离可以表示为()。
A。
-3+5 B。
-3-5 C。
|-3+5| D。
|-3-5|3.下面与-3互为倒数的数是()。
A。
-11/3 B。
-3 C。
3 D。
334.如图1,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()。
图1A。
-20g B。
-10g C。
10g D。
20g5.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为xxxxxxxx0度,将数据xxxxxxxx0用科学记数法表示为()。
A。
213×10^6 B。
21.3×10^7 C。
2.13×10^8 D。
2.13×10^76.下列说法错误的有()。
①-a一定是负数。
②若|a|=|b|,则a=b。
③一个有理数不是整数就是分数。
④一个有理数不是正数就是负数。
A。
1个 B。
2个 C。
3个 D。
4个7.如图2所示,数轴上两点A,B分别表示有理数a,b,则下列四个数中最大的是()。
图2A。
89 B。
67 C。
1/8 D。
ab8.已知x-2的相反数是3,则x的值为()。
A。
25 B。
1 C。
-1 D。
-259.把一张厚度为0.1mm的纸对折8次后的厚度接近于()。
A。
0.8mm B。
2.6cm C。
2.6mm D。
0.1mm10.在某一段时间内,计算机按如图3所示的程序工作,如果输入的数是2,那么输出的数是()。
图3A。
-54 B。
54 C。
-558 D。
558 请将选择题答案填入下表:题号答案1 C2 C3 B4 B5 C6 C7 A8 A9 B10 D总分 30二、填空题(每小题3分,共18分)11.-2的相反数是2,-0.5的倒数是-2.12.绝对值小于2的所有整数之和为-3.13.如图4所示,有理数a,b在数轴上对应的点分别为A,B,则a,-a,b,-b按由小到大的顺序排列是-|a|,|a|,-|b|,|b|。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
北师大版七年级数学上册第二章有理数及其运算练习题及答案全套精编
北师大版七年级数学上第二章有理数及其运算同步练习1.数怎么不够用了一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数 B.0既不是正数,也不是负数C.有理数是由负数和0组成 D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米 B.+50米 C.可能是+50米,也可能是-50米 D.以上都不对3.下面的说法错误的是().A.0是最小的整数 B.1是最小的正整数 C.0是最小的自然数 D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数 B.负数 C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的() A.左侧 B.右侧 C.左侧或者右侧 D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数 B.大于另一个数的相反数C.等于另一个数的相反数 D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05 (2)(3)(4)-1000 4.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?3.绝对值:一、选择题1.如果,则() A. B. C. D.2.下面说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则 B.若和都是负数,且有,则C.若,且,则 D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5 B.这一点表示的数的绝对值是5C.这一点表示的数是5 D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37, 0,,-385.7.2.把下列一组数用“>”连起来-999,,, 0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数 B.一定小于其中的一个加数C.和的大小由两个加数的符号而定 D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A. B.(-2)+(+2)=4C. D.(-71)+0=-713.如图,下列结论中错误的是()A. B. C. D.二、填空题1.两个负数相加其和为___________数. 2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元星期周一周二周三周四周五周六周日盈亏情况128.3 -25.6 -15 27 -7 36.5 98(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数 B.两个负数的差一定是负数C.正数减去负数差是正数 D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数 B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数 D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数 B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零 D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?城市名称哈尔滨长春沈阳北京大连最高温度2℃3℃3℃10℃6℃最低温度-12℃-10℃-8℃2℃-2℃5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23 B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23) D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和 B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和 D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________ ;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003.4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加月份一月二月三月四月五月六月体重变化情况/千克-2.5 +2 -3.5 -3 +1.5 -2(1)小胖1~6是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?6.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负姓名小光小月小华小刚与小明体重的差数/千克+5 -4 -1 +3(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):月份一月二月三月四月五月六月七月八月九月十月十一月销售量变化情况/+10 +5 +2 0 -3 -4 -10 -12 +5 +4 +5.8 千克(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6 B.任何数和0相乘都等于0 C.若,则 D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0 B.小于0 C.大于或等于0 D.小于或等于03.若,其a、b、c()A.都大于0 B.都小于0 C.至少有一个大于0 D.至少有一个小于0 二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________,12×(-7)-2=_________,98×(-9)+2=_________,123×(-7)-3=_________. 987×(-9)+3=_________.__________________________. __________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________. 3.4. 5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2) 2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30 (2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以() 2.( )3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算: 一、选择题1.若,,则有( ) .A.B. C. D.2.已知,当时,,当时,的值是( ) .A. B.44 C.28 D.173.如果,那么的值为( ) A.0 B.4 C.-4 D.2 4.代数式取最小值时,值为( ) .A.B.C.D.无法确定5.六个整数的积,互不相等,则 ( ) A.0 B.4 C.6 D.86.计算所得结果为( ) .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.日期 1 2 3 4 5 6水表读数(吨)15.16 15.30 15.50 15.62 15.79 15.96问:(1)这6B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()(3)表示数和的位置由下图所确定,若使,则表示数c的点的位置应在原点的右侧.()2.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系.3.分别表示数和的点在数轴上的位置如图所示.(1);(2)表示数的点在数轴上运动时,将发生怎样的变化.。
北师大版七年级数学上册第二章有理数及其运算测试题及答案
七上第二章《有理数及其运算》综合测试一、选一选(每小题3分,共30分)1.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温(单位:℃)-4.63.813.1-19.4 A.哈尔滨 B.广州 C.武汉 D.北京2.下列各数中互为相反数的是()A.12与0.2B.13与-0.33C.-2.25与124D.5与-(-5)3.对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等4.下列四个数中,在-2到0之间的数是()A.-1 B. 1 C.-3 D.3 5.下列计算错误的是()A.0.14=0.0001B.3÷9×(-19)=-3C.8÷(-14)=-32D.3×23=246.若x 是有理数,则x 2+1一定是( )A.等于1 B.大于1 C.不小于1 D.不大于17.在数轴上与-3的距离等于4的点表示的数是 ( ) A .1B .-7C .1或-7D .无数个8.两个有理数的积是负数,和也是负数,那么这两个数( )A. 都是负数B. 其中绝对值大的数是正数,另一个是负数C. 互为相反数D. 其中绝对值大的数是负数,另一个是正数9.一个有理数的绝对值等于其本身,这个数是()A 、正数B 、非负数C 、零D 、负数10.四个互不相等整数的积为9,则和为( )A .9 B .6 C .0 D .3-二、填一填(每小题3分,共30分)1.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.2.用“<”“=”或“>”号填空:-2_____098-_____109- -(+5) _____-(-|-5|)3.计算:737()()848-÷-= ;232(1)---= .4.若a 与-5互为相反数,则a =_________;若b 的绝对值是21-,则b =_________.5.如果n >0,那么nn = ,如果nn =-1,则n 0。
北师大版七年级上册数学第二章 有理数及其运算 含答案
北师大版七年级上册数学第二章有理数及其运算含答案一、单选题(共15题,共计45分)1、如果=5,,且< 0,则的值是()A.-1B.-9C.±1或±9D.-1或-92、有理数的相反数是()A. B. C.3 D.–33、若α、β为实数,且|α+β-3|+|αβ-2|=0,则下列方程中以α、β为根的一元二次方程正确的是()A.x 2+3x+2=0B.x 2-3x-2=0C.x 2+3x-2=0D.x 2-3x+2=04、从河北省政府新闻办新闻发布会上了解到,到2022年,河北省将培养1.5万名冰雪项目社会体育指导员,数据1.5万用科学记数法表示成a×104,则a的值为()A.0.15B.1.5C.15D.15 0005、已知点P(a,b)到x轴的距离是2,到y轴的距离是5,且,则P点的坐标是()A.(5,2)B.(2,−5)C.(5,2)或(5,−2)D.(2,−5)或(5,2)6、四个数中,最大数与最小数的积为()A.-4B.-9C.-36D.-17、﹣的倒数是()A.﹣B.4C.﹣4D.8、下列各数中,是准确数的是()A.小明身高大约165cmB.天安门广场约44万平方米C.天空中有8只飞鸟D.国庆长假到北京旅游的有60万人9、下列式子中,化简结果正确的是()A.﹣|﹣5|=5B.|﹣5|=5C.|﹣0.5|=﹣D.+(﹣)=10、在0,﹣2,1,5这四个数中,最小的数是()A.0B.﹣2C.1D.511、下列语句错误的是()A.相反数是它本身的数是0B.0是最小的有理数C.自然数就是0和正整数D.绝对值等于它本身的数是非负数12、尽管受到国际金融危机的影响,但湖州市经济依然保持了平稳增长.据统计,截止到今年4月底,该市金融机构存款余额约为1193亿元,用科学记数法应记为 ( )A.1.193×10 10元B.1.193×10 11元C.1.193×10 12元 D.1.193×10 13元13、①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小;⑤符号不同的两个数是互为相反数.③绝对值等于本身的数是0和1.其中正确的有()A.2个B.3个C.4个D.5个14、数 a 与数 b 在数轴上的位置如图所示,则有()A.a<bB.C.D.15、8的相反数是()A.8B.C.﹣8D.-二、填空题(共10题,共计30分)16、若a为有理数,则|a﹣3|+|a+4|的最小值是________,|a+2|﹣|a﹣1|的最大值是________.17、当a=________时,|1﹣a|+2会有最小值,且最小值是________.18、截止5月17日,检察反腐力作《人民的名义》在爱奇艺上的点播量约为6820 000 000次,请将6820 000 000用科学记数法表示为________.19、若+|b+1|+(c+1)2=0,则a+b﹣c=________.20、使等式成立的的值为________.21、将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕。
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。
北师大版七年级上册数学第二章 有理数及其运算 含答案
北师大版七年级上册数学第二章有理数及其运算含答案一、单选题(共15题,共计45分)1、下列运算正确的为()A. B. C. D.2、设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= ( )A.1B.0C.1或0D.2或03、-3的倒数等于()A. B. C.-3 D.34、如图,在不完整的数轴上有A,B两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是()A.在点A的左侧B.与线段AB的中点重合C.在点B的右侧D.与点A或点B重合5、已知|a|=a,|b|=﹣b,|a|>|b|,用数轴上的点来表示a、b,正确的是()A. B. C. D.6、4的倒数是()A.﹣4B.4C.﹣D.7、若,则的值是( )A.-1B.0C.1D.20158、下列各图中,能正确表示数轴的是()A. B. C. D.9、若4a﹣9与3a﹣5互为相反数,则a2﹣2a+1的值为()A.1B.﹣1C.2D.010、如图,某数轴的单位长度为1.5,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣2B.﹣3C.﹣4.5D.011、下列各组数中,相等的一组是()A. 和B. 和C. 和D.和12、如果y<0<x,则化简的结果为()A.0B.﹣2C.2D.113、下列说法正确的是( )A.正数和负数统称为有理数B.两个数相除,所得商一定小于被除数 C.n个数相乘,积的符号由负因数的个数决定 D.绝对值最小的数是014、今年1季度,连云港市高新技术产业产值突破110亿元,同比增长59%.数据“110亿”用科学记数可表示为()A.1.1×10 10B.11×10 10C.1.1×10 9D.11×10 915、超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差() kgA.0.2B.0.4C.25.2D.50.4二、填空题(共10题,共计30分)16、南京实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是________.17、若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为________.18、化简的结果为________.19、预计我国今年夏粮的播种面积大约为415 000 000亩, 415 000 000用科学记数法表示为 ________ .20、已知,则 y x 的值为________.21、某蓄水池的标准水位记为0m,如果用正数表示水面高于标准水位的高度,那么-0.2m表示________.22、,则________23、比较大小:________ .(填“>”、“<”或“=”)24、据有关部门统计,“清明节”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为________.25、若,互为相反数,,互为倒数,则________.三、解答题(共5题,共计25分)26、已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是最小的正整数,求|m|﹣﹣cd的值.27、计算:圆圆同学的计算过程如下:原式=-6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.28、有理数,在数轴上的位置如图所示,化简:29、画出数轴,在数轴上表示下列各数,2.5 ,-3.5,0 ,2,-2 ,-,并按从小到大的顺序用“<”把这些数连结起来.30、已知实数a,b,c在数轴上对应点如图所示,化简:|a|-|a-b|+|c-b|+|b-c|.参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、B5、C6、D7、A8、A9、A10、C11、C12、A13、D14、A15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、</div> 30、。
北师大版七年级数学上册第二章有理数及其运算练习题及答案全套
1.数怎么不够用了题精选一、选择题1.下面说法中正确的选项是〔〕.A.一个数前面加上“-〞号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成 D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,那么海平面以上50米应记作〔〕.A.-50米 B.+50米C.可能是+50米,也可能是-50米 D.以上都不对3.下面的说法错误的选项是〔〕.A.0是最小的整数 B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,那么前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,那么比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,那么顺时针旋转两周应记为______.三、判断题1.0是有理数.〔〕2.有理数可以分为正有理数和负有理数两类.〔〕3.一个有理数前面加上“+〞就是正数.〔〕4.0是最小的有理数.〔〕四、解答题1.写出5个数〔不许重复〕,同时满足下面三个条件.〔1〕其中三个数是非正数;〔2〕其中三个数是非负数;〔3〕5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;〔2〕潜艇在水下60米深.3.如果每年的12月XX岛的气温可以用正数去表示,那么这时XX的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?参考答案:一、1. B 2. B 3. A二、1.+10米 2.+1千克 3.-2周三、1.√ 2.× 3.× 4.×四、1.2,1,0,-1,-2.〔提示:0是非负数和非正数的公用数〕2.〔1〕+9630米〔2〕-60米3.〔1〕应该是负数来表示.〔提示:12月份XX已进入严冬,其温度在零下,而此时XX岛温度还在零上〕4.答:一般按习惯我们都把股票上涨记为“+〞,所以第一天应表示为-0.71%,第二天应表示为+1.25%.〔提示:正、负虽是人规定的,但在实际应用中我们应尊重多年形成的习惯〕5.不能.〔提示:我们有很多地面高度在海平面以下〕6.该生答对了4个题〔提示:如果不考虑扣分,那么答对了3个题就可以得3分,而其中另外两题的分数和是零,所以另外两题还得有一题答对,故共答对4个题〕2.数轴习题精选一、选择题1.一个数的相反数是它本身,那么这个数是〔〕A.正数 B.负数 C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,那么E点表示的数的相反数应在F点表示的数的相反数的〔〕A.左侧 B.右侧 C.左侧或者右侧 D.以上都不对3.如果一个数大于另一个数,那么这个数的相反数〔〕A.小于另一个数的相反数 B.大于另一个数的相反数C.等于另一个数的相反数 D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,那么表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.〔〕2.在数轴上离原点越远的数越大.〔〕3.数轴就是规定了原点和正方向的直线.〔〕4.表示互为相反数的两个点到原点的距离相等.〔〕四、解答题1.写出符合以下条件的数〔1〕大于而小于1的整数;〔2〕大于-4的负整数;〔3〕大于-0.5的非正整数.2.在数轴上表示以下各数,并把各数用“<〞连结起来.〔1〕7,-3.5,0,-4.5,5,-2,3.5;〔2〕-500,-250,0,300,450;〔3〕0.1,,0.9,,1,0.3.找出以下各数的相反数〔1〕-0.05 〔2〕〔3〕〔4〕-10004.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,假设点B也是数轴上的点,且AB的长是4个单位长度,那么点B表示的数是多少?参考答案:一、1.C 2. B〔提示:画出数轴,分两点在原点的同侧和两点在原点的两侧进展讨论〕 3.A二、1.右 2.点 3.两,5、-5 4.小三、1.× 2.× 3.× 4.√四、1.〔1〕-2,0,-1 〔2〕-3,-2,-1 〔3〕02.〔1〕如图〔2〕如图〔3〕如图〔提示:数轴上单位所表示的数可根据实际而定;在用“<〞连结数之前最好把这些数表示在数轴上,就一目了解了=3.〔1〕0.05 〔2〕〔3〕〔4〕10004.表示数的相反数是:-2,5,,-4.5.如图.5.答:点B表示的数是3或-5.〔提示:在数轴上到一点相等距离的点有两个〕3.绝对值题精选一、选择题1.如果,那么〔〕A. B. C. D.2.下面说法中正确的选项是〔〕A.假设,那么B.假设,那么C.假设,那么D.假设,那么3.下面说法中正确的选项是〔〕A.假设和都是负数,且有,那么B.假设和都是负数,且有,那么C.假设,且,那么D.假设都是正数,且且,那么4.数轴上有一点到原点的距离是5,那么〔〕A.这一点表示的数的相反数是5B.这一点表示的数的绝对值是5C.这一点表示的数是5D.这一点表示的数是-5二、填空题1.某数的绝对值是,那么是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,那么这个数的绝对值是_________;4.数轴上有一点到原点的距离是3,那么这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.〔〕2.有理数的绝对值就等于这个有理数的相反数.〔〕3.两个有理数,绝对值大的数反而小.〔〕4.两个正有理数,绝对值大的数较小.〔〕5.〔〕四、解答题1.求以下各数的绝对值,并把它们用“<〞连起来-2.37,0,,-385.7.2.把以下一组数用“>〞连起来-999,,,0.01,.3.计算以下各式的值〔1〕;〔2〕;〔3〕;〔4〕4.如图,比拟和的绝对值的大小.5.计算下面各式的值〔1〕-〔-2〕;〔2〕-〔+2〕.参考答案:一、1. D 2.C 3. A 4. B二、1.正数,0 2.0 3.8 4.3、3或-3三、1.× 2.× 3.× 4.√ 5.√四、1.;.2.3.〔1〕〔2〕4 〔3〕2.5 〔4〕0.24.5.〔1〕2 〔2〕-24.有理数的加法习题精选一、选择题1.两个有理数的和〔〕A.一定大于其中的一个加数 B.一定小于其中的一个加数C.和的大小由两个加数的符号而定 D.和的大小由两个加数的绝对值而定2.下面计算错误的选项是〔〕A. B.〔-2〕+〔+2〕=4C. D.〔-71〕+0=-713.如图,以下结论中错误的选项是〔〕A. B. C. D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号一样.三、解答题1.如图,请用表示与的和.2.计算〔1〕;〔2〕〔-0.19〕+〔-3.12〕;〔3〕;〔4〕;〔5〕.3.计算〔1〕〔-12.56〕+〔-7.25〕+3.01+〔-10.01〕+7.25;〔2〕0.47+〔-0.09〕+0.39+〔-0.3〕+1.53;〔3〕;〔4〕23+〔-72〕+〔-22〕+57+〔-16〕;〔5〕;〔6〕〔7〕4.一名外地民工10天的收支情况如下〔收入为正〕:30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下〔亏为负〕:单位:元星期周一周二周三周四周五周六周日盈亏情况128.3 -25.6 -15 27 -7 36.5 98〔1〕计算出小商店一周的盈亏情况;〔2〕指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中〔1〕前99个连续整数的和是多少?〔2〕前100个连续整数的和是多少?参考答案:一、1. C 2. B 3.C二、1.负 2. 0 3.较大三、1.〔1〕〔2〕〔3〕〔4〕2.〔1〕〔2〕-3.31 〔3〕〔4〕〔5〕03.〔1〕-19.56 〔2〕2 〔3〕〔4〕-30 〔5〕0 〔6〕-2 〔7〕04.86元5.〔1〕242.2元〔2〕128.3元6.〔1〕0〔提示:前99个数是-49…0…49〕〔2〕505.有理数的减法习题精选一、选择题1.下面说法中正确的选项是〔〕A.在有理数的减法中,被减数一定要大于减数 B.两个负数的差一定是负数C.正数减去负数差是正数 D.两个正数的差一定是正数2.下面说法中错误的选项是〔〕A.减去一个数等于加上这个数的相反数 B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数 D.一个数减去零仍得这个数3.甲数减乙数差大于零,那么〔〕A.甲数大于乙数 B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零 D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.假设,那么;〔〕2.假设成立,那么;〔〕3.假设,那么〔〕四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.〔1〕;〔2〕;〔3〕;〔4〕3.计算〔1〕2.7-〔-3.1〕;〔2〕0.15-0.26;〔3〕〔-5〕-〔-3.5〕;〔4〕;〔5〕;〔6〕4.1998年4月2日,XX等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?城市名称XX XX XX XX最高温度2℃3℃3℃10℃6℃最低温度-12℃-10℃-8℃2℃-2℃5.求数轴上表示两个数的两点间的距离.〔1〕表示的点与表示的点.〔2〕当时,表示数的点与表示的点.参考答案:一、1. C 2. B 3. A二、1.-1,-5 2.3.三、1.√ 2.× 3.×四、1.举例:2-〔-2〕=4,而2.〔1〕〔2〕〔3〕〔4〕3.〔1〕5.8 〔2〕-0.11 〔3〕-1.5 〔4〕〔5〕-15 〔6〕4.XX温差最大,、XX温差最小.〔提示:分别算出各地温差,进展比拟〕5.〔1〕〔2〕6.有理数的加减混合运算习题精选一、选择题1.在1.17-32-23中把省略的“+〞号填上应得到〔〕A.1.17+32+23 B.-1.17+〔-32〕+〔-23〕C.1.17+〔-32〕+〔-23〕 D.1.17-〔+32〕-〔+23〕2.下面说法中正确的选项是〔〕A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的选项是〔〕A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-〔-6〕-7不能应用加法的结合律和交换律C.如果和都是的相反数,那么D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把以下式子变成只含有加法运算的式子.〔1〕-9-〔-2〕+〔-3〕-4=___________;〔2〕.2.把以下各式写成省略加号的形式.〔1〕-7-〔-15〕+〔-3〕-〔-4〕=____________;〔2〕3.计算:〔1〕-5+7-15-4+2=_______________;〔2〕-0.5+4.3-9.6-1.8=_____________;〔3〕三、解答题1.计算〔1〕;〔2〕;〔3〕;〔4〕2.计算〔1〕;〔2〕;〔3〕;〔4〕3.计算〔1〕;〔2〕-1999+2000-2001+2002-2003.4.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?参考答案:一、1. C 2. A 3.B二、1.〔1〕-9+2+〔-3〕+〔-4〕,〔2〕;2.〔1〕-7+15-3+4,〔2〕;3.〔1〕-15,〔2〕-7.6,〔3〕.三、1.〔1〕〔2〕〔3〕-17 〔4〕2.〔1〕〔2〕〔3〕〔4〕3.〔1〕-15.2 〔2〕-20014.2194元习题精选1.小胖去年年末称体重是75千克,今年一月份小胖开场减肥,下面是小胖今年上半年体重的变化情况:月份一月二月三月四月五月六月体重变化情况/千克-2.5 +2 -3.5 -3 +1.5 -2负数表示比上月减少,正数表示比上月增加〔1〕小胖1~6月中哪个月的体重最重,是多少?〔2〕小胖1~6月中哪个月的体重最轻,是多少?〔3〕小胖6月份的体重较比去年年末是增加了还是减少了,是多少?2.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:姓名小光小月小华小刚与小明体重的差数/千克+5 -4 -1 +3比小明重记为正,比小明轻记为负〔1〕哪几名同学的体重比小明重,重多少?〔2〕哪几名同学的体重比小明轻,轻多少?〔3〕写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?3.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比拟,其变化如下表〔前11个月〕:〔1〕每月的销售量是多少?〔2〕前11个月的平均销售是多少?〔3〕要到达预计的月平均销售量,12月份还需销售多少千克?参考答案1.〔1〕2月最重是74.5千克〔2〕6月最轻是67.5千克〔3〕是减少,减少了7.5干克〔提示:把小胖每个月的体重算出来〕2.〔1〕小光、小刚比小明重,分别重5千克和3千克;〔2〕小月、小华比小明轻,分别轻4千克和1千克;〔3〕最重的是小光,其体重是60千克;最轻的是小月,其体重是51千克,小光和小月之间相差9千克.3.〔1〕每月的销售量分别是510千克、515千克、517千克、517千克、514千克、510千克、500千克、488于克、493干克、497干克、502.8千克〔2〕平均销量505.8千克〔3〕436.2千克.〔提示:注意表格给出的变化是较比其上个月的增减情况〕8.有理数的乘法题精选一、选择题1.下面说法中正确的选项是〔〕A.因为同号相乘得正,所以〔-2〕×〔-3〕×〔-1〕=6B.任何数和0相乘都等于0C.假设,那么D.以上说法都不正确2.,其中有三个负数,那么〔〕A.大于0 B.小于0 C.大于或等于0 D.小于或等于03.假设,其a、b、c〔〕A.都大于0 B.都小于0 C.至少有一个大于0 D.至少有一个小于0二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,那么这个数是_________;3.假设干个有理数相乘,其积是负数,那么积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.〔1〕1×〔-7〕-1=_________,〔2〕 9×〔-9〕+1=___________,12×〔-7〕-2=_________, 98×〔-9〕+2=_________,123×〔-7〕-3=_________. 987×〔-9〕+3=_________.__________________________. __________________________.参考答案:一、1. B 2. D 3. C二、1.正、负、绝对值2.03.奇4.〔1〕-8,-86,-864,1234×〔-7〕-4=-8642〔2〕-80,-880,-8880,9876×〔-9〕+4=-888809.有理数的除法习题精选一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.二、解答题1.计算:〔1〕〔2〕2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.〔1〕8×3+12÷4=-30 〔2〕8×3+12÷4=-94.计算〔1〕;〔2〕〔-12〕÷〔-4〕÷〔-3〕÷〔-3〕;〔3〕;〔4〕参考答案:一、1.4,-8,;2.1和-1;3.;4.<5.>6.=二、1.〔1〕原式〔2〕原式2.原式3.答案不确定.如〔1〕8×〔-3+〔-12〕〕÷4=-30 〔2〕〔〔-8〕×3+〔-12〕〕÷4=-94.〔1〕1 〔2〕〔3〕〔4〕10.有理数的乘方习题精选一、填空题1.把〔-5〕×〔-5〕×〔-5〕写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以〔〕2.3.因为,所以有任何有理数的平方都是正数.〔〕4.〔n是正整数〕〔〕三、解答题1.计算题〔1〕〔2〕〔3〕2.任何整数的平方的个位数都不可能是哪些数字?3.假设a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进展下去,当折十次时,将得到多少节木棍?参考答案:一、1.〔-5〕3,-5,3 2. 0和1 3.-1,-1,-724.〔1〕4,8和-8 5.-1,0或1 6. 950〔原式=1-8+81-1024〕二、1.× 2.× 3.× 4.×三、1.〔1〕原式〔2〕解法不惟一,如原式=4×4×4×2.5×2.5=〔4×2.5〕×〔4×2.5〕×4=10×10×4=400〔3〕原式=-4-4=-82.不可能是2、3、7、8提示:可利用一些连续的整数进展实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.数怎么不够用了题精选一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成 D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米 B.+50米C.可能是+50米,也可能是-50米 D.以上都不对3.下面的说法错误的是().A.0是最小的整数 B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.(1)一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴习题精选一、选择题1.一个数的相反数是它本身,则这个数是()A.正数 B.负数 C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧 B.右侧 C.左侧或者右侧 D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数 B.大于另一个数的相反数C.等于另一个数的相反数 D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05 (2)(3)(4)-10004.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?个)3.绝对值题精选一、选择题1.如果,则()A. B. C. D.2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5B.这一点表示的数的绝对值是5C.这一点表示的数是5D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37,0,,-385.7.2.把下列一组数用“>”连起来-999,,,0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法习题精选一、选择题1.两个有理数的和()A.一定大于其中的一个加数 B.一定小于其中的一个加数C.和的大小由两个加数的符号而定 D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A. B.(-2)+(+2)=4C. D.(-71)+0=-713.如图,下列结论中错误的是()A. B. C. D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法习题精选一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数 B.两个负数的差一定是负数C.正数减去负数差是正数 D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数 B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数 D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数 B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零 D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算习题精选一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23 B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23) D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算(1);(2)-1999+2000-2001+2002-2003.4.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?习题精选1.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加(1)小胖1~6月中哪个月的体重最重,是多少?(2)小胖1~6月中哪个月的体重最轻,是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?2.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?3.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?2.(1)小光、小刚比小明重,分别重5千克和3千克;(2)小月、小华比小明轻,分别题精选一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6B.任何数和0相乘都等于0C.若,则D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0 B.小于0 C.大于或等于0 D.小于或等于03.若,其a、b、c()A.都大于0 B.都小于0 C.至少有一个大于0 D.至少有一个小于0二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2) 9×(-9)+1=___________,12×(-7)-2=_________, 98×(-9)+2=_________,123×(-7)-3=_________. 987×(-9)+3=_________.__________________________. __________________________.习题精选一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.二、解答题1.计算:(1)(2)2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30 (2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方习题精选一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以()2.3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算题精选一、选择题1.若,,则有() .A.B.C.D.2.已知,当时,,当时,的值是() .A.B.44 C.28 D.173.如果,那么的值为() .A.0 B.4 C.-4 D.24.代数式取最小值时,值为() .A.B.C.D.无法确定5.六个整数的积,互不相等,则() .A.0 B.4 C.6 D.86.计算所得结果为() .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则_________0,_________0,_______0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.。