自控实验报告 控制系统串联校正
自动控制原理实验报告(控制系统串联校正)
自动控制原理实验报告(控制系统串联校正)自动控制原理实验报告学院机械工程及自动化学院专业方向机械工程及自动化班级16学号1学生姓名自动控制与测试教学实验中心实验三控制系统串联校正实验目的了解和掌握串联校正的分析和设计方法。
研究串联校正环节对系统稳定性及过渡过程的影响。
实验内容设计串联超前校正,并验证。
设计串联滞后校正,并验证。
实验原理系统结构如下图所示:图SEQ 图\* ARABIC 1 控制系统结构图图中GC图SEQ 图\* ARABIC 2 控制系统模拟电路图未加校正时Gc(s)=1加串联超前校正时G给定a=2.44,T=0.26,则GCs=0.63s+10.26s+1 QUOTE加串联滞后校正时G给定b=0.12,T=83.33,则G在实验中,选取,通过Simulink模拟器产生模拟信号与实验采集的实测数据进行对比,分析实验结果,验证自动控制理论。
实验设备HHMN-1型电子模拟机一台。
PC机一台。
数字式万用表一块。
实验步骤熟悉HHMN-1电子模拟机的使用方法。
将各运算放大器接成比例器,通电调零。
断开电源,按照系统结构图和传递函数计算电阻和电容的取值,并按照模拟线路图搭接线路,不用的运算放大器接成比例器。
将D/A1与系统输入端Ui连接,将A/D1与系统输出端Uo 连接(此处谨慎连接,不可接错)。
在Windows XP桌面用鼠标双击“自控原理实验”图标后进入实验软件系统,在项目中选择“实验三”。
分别完成不加校正,加入超前校正,加入滞后校正的实验。
观察实验结果,绘制实验结果图形。
用MATLAB绘制以上三种情况时系统的波特图,完成实验报告。
实验结果原系统原系统阶跃响应曲线如下图SEQ 图\* ARABIC 3原系统时域阶跃响应曲线其阶跃响应性能参数如下σTT44.0389%0.16955.5645表格1 原系统阶跃响应性能参数原系统Bode图如下图SEQ 图\* ARABIC 4原系统Bode图超前校正系统超前校正系统阶跃响应曲线如下图SEQ 图\* ARABIC 5超前校正系统时域阶跃响应曲线超前校正后,系统阶跃响应性能参数如下σTT22.1411%0.04761.9845表格2 超前校正系统阶跃响应曲线超前校正系统Bode图如下图SEQ 图\* ARABIC 6超前校正系统Bode图滞后校正系统滞后校正系统阶跃响应曲线如下图SEQ 图\* ARABIC 7滞后校正系统时域阶跃响应曲线滞后校正后,系统阶跃响应性能参数如下σTT20.6731%2.358014.5420表格3 滞后校正系统阶跃响应性能参数滞后校正后系统Bode图如下图SEQ 图\* ARABIC 8滞后校正系统Bode图截止频率和稳定裕度计算在命令窗口输入相关命令,在得到的图形中读出系统的相角裕度γ、截止频率ωc项目系统项目系统γ/°ω原系统281.88超前校正47.42.38滞后校正54.80.449结果分析超前校正实验结果分析首先从系统频率特性曲线Bode图可以看出,经过超前校正后的系统在校正点处的性能有所改善。
自动控制实验报告五-连续系统串联校正
自动控制实验报告五-连续系统串联校正实验介绍本次实验是针对连续系统的串联校正实验,目的是使控制系统能够精确地跟踪给定输入信号。
具体地,要求通过串联校正的方式,将系统的稳态误差控制在一个很小的范围内。
为此,本次实验将对校正器进行串联配置,然后测试系统并进行基本的数据分析。
实验原理首先,需要明确串联校正的概念。
所谓串联校正,就是将校正器和系统连接起来,以提高控制系统的性能。
串联校正实现的基本思想是,先将校正器的控制信号与系统输入信号串联起来,通过对校正器进行调整,来改变系统的特性,以便使系统的输出信号与给定输入信号精确匹配。
具体来说,要完成串联校正,需要如下步骤:1.测量系统的开环特性,并进行基本的分析。
2.将校正器和系统进行串联,校正器的输出信号作为输入信号,系统的输出信号作为反馈信号。
3.根据反馈信号调整校正器的参数,使系统具有更好的稳态性能。
4.再次测量系统的闭环特性,检验串联校正后的效果。
具体的实现步骤和公式可参考连续系统校正实验报告。
实验过程实验步骤1.首先进行系统的稳态误差测量,记录输出信号与给定信号之间的稳态误差。
2.将校正器与系统进行串联,根据实验要求设定校正器的参数。
3.测试校正后的系统,记录输出信号与给定信号之间的稳态误差,与前一次进行对比。
实验结果实验结果如下表所示:测量项目原始系统校正后系统稳态误差0.2 0.02由上表可知,经过串联校正后,系统的稳态误差从0.2减少到了0.02,已经达到了实验的预期。
实验通过本次实验,我们掌握了连续系统的串联校正方法,了解了校正器与系统的串联关系,掌握了相应的实验操作和数据分析技术。
同时,我们还了解了校正器的参数调整对系统运行性能的影响,并进一步提高了自己的实际操作能力。
自动控制原理实验报告-线性系统串联校正设计
实验五线性系统串联校正设计实验原理:(1)串联校正环节原理串联校正环节通过改变系统频率响应特性,进而改善系统的动态或静态性能。
大致可以分为(相位)超前校正、滞后校正和滞后-超前校正三类。
超前校正环节的传递函数如下Tαs+1α(Ts+1),α>1超前校正环节有位于实轴负半轴的一个极点和一个零点,零点较极点距虚轴较近,因此具有高通特性,对正频率响应的相角为正,因此称为“超前”。
这一特性对系统的穿越频率影响较小的同时,将增加穿越频率处的相移,因此提高了系统的相位裕量,可以使系统动态性能改善。
滞后校正环节的传递函数如下Tαs+1Ts+1,α<1滞后校正环节的极点较零点距虚轴较近,因此有低通特性,附加相角为负。
通过附加低通特性,滞后环节可降低系统的幅值穿越频率,进而提升系统的相位裕量。
在使系统动态响应变慢的同时提高系统的稳定性。
(2)基于Baud图的超前校正环节设计设计超前校正环节时,意图让系统获得最大的超前量,即超前网络的最大相位超前频率等于校正后网络的穿越频率,因此设计方法如下:①根据稳态误差要求确定开环增益。
②计算校正前系统的相位裕度γ。
③确定需要的相位超前量:φm=γ∗−γ+(5°~12°) ,γ∗为期望的校正后相位裕度。
④计算衰减因子:α−1α+1= sin φm。
此时可计算校正后幅值穿越频率为ωm=−10lgα。
⑤时间常数T =ω√α。
(3)校正环节的电路实现构建待校正系统,开环传递函数为:G(s)=20s(s+0.5)电路原理图如下:校正环节的电路原理图如下:可计算其中参数:分子时间常数=R1C1,分母时间常数=R2C2。
实验记录:1.电路搭建和调试在实验面包板上搭建前述电路,首先利用四个运算放大器构建原系统,将r(t)接入实验板AO+和AI0+,C(t)接入AI1+,运算放大器正输入全部接地,电源接入±15V,将OP1和OP2间独立引出方便修改。
基于另外两运算放大器搭建校正网络,将所有电容值选为1uF,所有电阻引出方便修改。
自控课程设计实验报告串联超前校正滞后装置
课题:串联超前校正滞后装置专业:电气工程及其自动化班级:组长:组员:指导教师:设计日期:成绩:超前校正课程设计报告一、设计目的(1)把握操纵系统设计与校正的步骤和方式。
(2)把握对操纵系统相角裕度、稳态误差、剪切频率、相角穿越频率和增益裕度的求取方式。
(3)把握利用Matlab 对操纵系统分析的技术。
熟悉MATLAB 这一解决具体工程问题的标准软件,能熟练地应用MATLAB 软件解决操纵理论中的复杂和工程实际问题,并给以后的模糊操纵理论、最优操纵理论和多变量操纵理论等奠定基础。
(4)提高操纵系统设计和分析能力。
二、设计要求与内容已知单位负反馈系统的开环传递函数0()(1)(0.251)K G S S S S =++,试用频率法设计串联校正装置,要求校正后系统的静态速度误差系数1v K 5s -≥,系统的相角裕度045γ≥,校正后的剪切频率2C rad s ω≥已知参数和设计要求:1.前期基础知识,要紧包括MATLAB 系统要素,MATLAB 语言的变量与语句,MATLAB 的矩阵和矩阵元素,数值输入与输出格式,MATLAB 系统工作空间信息,和MATLAB 的在线帮忙功能等。
2.操纵系统模型,要紧包括模型成立、模型变换、模型简化,Laplace 变换等等。
3.操纵系统的时域分析,要紧包括系统的各类响应、性能指标的获取、零极点对系统性能的阻碍、高阶系统的近似研究,操纵系统的稳固性分析,操纵系统的稳态误差的求取。
4.操纵系统的根轨迹分析,要紧包括多回路系统的根轨迹、零度根轨迹、纯迟延系统根轨迹和操纵系统的根轨迹分析。
5.操纵系统的频域分析,要紧包括系统Bode图、Nyquist图、稳固性判据和系统的频域响应。
6.操纵系统的校正,要紧包括根轨迹法超前校正、频域法超前校正、频域法滞后校正和校正前后的性能分析。
三、实现进程1、系统概述所谓校正,确实是在系统中加入一些其参数能够依照需要而改变的机构或装置,使系统整个特性发生转变,从而知足给定的各项性能指标。
自动控制串联校正实验报告
实验五线性定常系统的串联校正班级:姓名:学号:实验指导老师:成绩:实验目的:1、对系统性能进行分析,选择合适的校正方式,设计校正器模型。
2、通过仿真实验,理解和验证所加校正装置的结构、特性和对系统性能的影响;3、通过模拟实验部分进一步理解和验证设计和仿真结果,进而掌握对系统的实时调试技术。
实验内容1、系统开环传递函数为G0(s)=1/s(s+1)校正前系统的波特图:Gm =Inf Pm =12.7580 Weg =Inf Wep =4.4165由此可得,系统相角欲度r=12.758,穿越频率Wc=4.4165rad/s均低于指标要求校正前闭环系统的单位阶跃响应曲线:由图可得,校正前系统的单位阶跃响应参数如下:最大超调量为70%,调整时间为Ts=5.78s.源程序代码如下:num = [20];den = [1 1 0];g = tf(num,den)Nyquist(g)bode(g)margin(g)[Gm,Pm,Weg,Wep] = Margin(g)gf = feedback(g,1)step(gf)2、经过理论计算得到校正器模型:Gc(s)=(0.38s+1)/(0.046s+1)校正后系统的波特图为Gm =Inf Pm =59.1872 Weg =Inf Wep =7.5393 校正后的系统相角欲度为r=59.1872,穿越角频率Wc=7.5393rad/s,符合性能指标要求。
校正前后系统的波特图比较:校正后闭环系统的单位阶跃响应由图可得,校正后闭环系统的单位阶跃响应参数如下:最大超调量为15%,调整时间Ts=0.744s。
系统的稳定性和快速性得到了提高。
源程序代码如下:num = [20]den = [1 1 0]g0 = tf(num,den)gc = tf([0.38 1],[0.046 1]);g = g0 * gc;Bode(g,g0)margin(g)[Gm,Pm,Weg,Wep] = margin(g)gf = feedback(g,1);figure;step(gf)3、模拟部分3.1 根据给定的实验模型搭接校正前的模拟电路图根据传递函数绘制系统模拟电路图,搭接后系统传递函数为G0(s)=19.6/s*(s+1)在试验台上搭接模拟电路完毕后,使用模拟示波器观测校正前系统的阶跃响应,其响应曲线如下图所示:从图中可以看出,模拟校正前网络的阶跃响应参数为:最大超调量为68.6%,调整时间为Ts=6.185s3.2 搭建校正后系统的模拟电路图,校正环节传递函数为:Gc(s)=(0.47s+1)/(1+0.039s)在试验台上搭接校正器的模拟电路后,并引入原系统,用模拟示波器观测校正后系统的阶跃响应,其响应曲线如图所示:由图可知,校正后系统阶跃响应参数如下:最大超调量为:9%,调整时间Ts=0.344s。
(完整word版)自动控制原理线性系统串联校正实验报告五..(word文档良心出品)
武汉工程大学实验报告专业电气自动化班号指导教师姓名同组者无
SIMULINK仿真模型:
单位阶跃响应波形:
分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性
单位阶跃响应:
单位阶跃响应:
分析:由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发散
单位阶跃响应:
单位阶跃响应:
由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。
北航自动控制原理实验三:控制系统串联校正
本次实验通过设计串联超前校正和串联滞后校正装置研究了串联校正环节对系统稳定性及过渡过程的影响,从直观的角度认识了串联校正环节的作用及超前校正和滞后校正的不同之处,对理论学习有一定的帮助。
附:实验数据,
成绩
自动控制原理
实验报告
院(系)名称
专业名称
学生学号
学生姓名
指导老师
2015年12月
实验二
实验时间
一、实验目的
1.了解和掌握串联校正的分析和设计方法。
2.研究串联校正环节对系统稳定性及过渡过程的影响。
二、实验内容
1.单位负反馈系统的开环传递函数为 ,进行半实物实时仿真,研究其时域性能,同时从频域分析系统稳定性。
2.电子模拟机
3.万用表
4.测试导线
五、实验步骤
1.正确连接电路,分别完成不加校正、加入超前校正、加入滞后校正的实验。在系统模型上的“Manual Switch”处可设置系统是否加入校正环节,在“ ”处可设置校正环节的传递函数。
2.绘制以上三种情况时系统的波特图。
3.采用示波器“Scope”观察阶跃响应曲线。观测试验结果,记录实验数据,绘制实验结果图形,完成实验报告。
图3-1系统结构图
其中 为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机实现。
2.系统模拟电路如图3-2所示。
图3-2系统模拟电路图
取 , , , , 。
3.未加校正时, 。
4.加串联超前校正时, 。
取 , ,则 。
5.加串联滞后校正时, 。
取 , ,则 。
四、实验设备
1.数字计算机
2.针对以上系统,设计串联超前校正装置 ,使系统的相稳定裕度 ,并进行半实物实时仿真验证,研究其时域性能,同时从频域分析系统稳定性。
自控实验报告控制系统串联校正
自动控制原理实验报告(III)一、实验名称:控制系统串联校正二、实验目的1. 了解和掌握串联校正的分析和设计方法。
2. 研究串联校正环节对系统稳定性及过渡过程的影响。
三、实验内容1. 设计串联超前校正,并验证。
2. 设计串联滞后校正,并验证。
四、实验原理1. 系统结构如图3-1图3-1其中Gc(s) 为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机来实现。
2. 系统模拟电路如图3-2图3-2各电阻电容取值R3=2MΩ R4=510KΩ R5=2MΩC1=0.47μF C2=0.47μF3. 未加校正时Gcs=14. 加串联超前校正时Gcs=aTs+1Ts+1 (a >1)给定 a = 2.44 , T = 0.26 , 则 Gcs=0.63s+10.26s+15. 加串联滞后校正时Gcs=bTs+1Ts+1(0<b<1)给定b = 0.12 , T = 83.33, 则Gcs=10s+183.33s+1五、数据记录未加校正超前校正滞后校正ts实测值/s 5.90 2.3515.24 ts理论值/s 5.41 1.9215.14γ/°25.546.855.7ωc/rad∙s-1 2.11 2.430.48(1)未加校正(2)超前校正(3)滞后校正3. 系统波特图(1)未加校正环节系统开环传递函数Gs=4s2+s(2)串联超前校正系统开环传递函数Gs=2.52s+40.26s3+1.26s2+s(3)串联滞后校正系统开环传递函数Gs=40s+483.33s3 + 84.33s2+s六、数据分析1、无论是串入何种校正环节,或者是否串入校正环节,系统最终都会进入稳态,即三个系统都是稳定系统。
2、超前校正:系统比未加校正时调节时间短,即系统快速性变好了,而且超调量也减小了。
从频率角度来看,戒指频率减小,相位稳定域度增大,系统稳定性变好。
3、滞后校正:系统比未加校正时调节时间长,即系统快速性变差了,但是超调量减小了很多,甚至比加串联超前校正时的超调还小。
(整理)自动控制原理设计实验
编号:自动控制原理Ⅰ实验课题:控制系统串联校正设计专业:智能科学与技术学生姓名:黎良贵学号:2008502112014 年 1 月 5 日一、 实验目的:1、了解控制系统中校正装置的作用;2、研究串联校正装置对系统的校正作用。
二、 实验基本原理:1、 滞后-超前校正超前校正的主要作用是增加相位稳定裕量,从而提高系统的稳定裕量,改善系统响应的动态特性。
滞后校正的主要作用则是改善系统的静态特性。
如果把这两种校正结合起来,就能同时改善系统的动态特性和静态特性。
滞后超前校正综合了滞后校正和超前校正的功能。
滞后-超前校正的线路由运算放大器及阻容网络组成。
2、 串联滞后校正串联滞后校正指的是校正装置的输出信号的相位角滞后于输入信号的相位角。
它的主要作用是降低中频段和高频段的开环增益,但同时使低频段的开环增益不受影响。
这样来兼顾静态性能与稳定性。
它的副作用是会在ωc 点产生一定的相角滞后。
三、 实验内容:设单位反馈系统的开环传递函数为设计串联校正装置,使系统满足下列要求静态速度误差系数1S K -≥250ν,相角裕量045≥γ,,并且要求系统校正后的截止频率s rad c /30≥ω。
四、 实验步骤:1、 用MATLAB 软件对原系统进行仿真,讨论校正方案;2、 对校正后的系统进行仿真,确定校正方案;)101.0)(11.0()(0++=s s s Ks G3、设计原系统和校正环节的电模拟电路及元器件有关参数;4、设计制作硬件电路,调试电路,观察原系统阶跃响应并记录系统的瞬态响应数据;5、加入校正装置,系统联调,观察并记录加入校正装置后系统的阶跃响应,记录系统的瞬态响应数据。
五、MATLAB仿真:程序:K=250;G=tf(K,[0.001 0.11 1 0]);[gm,pm,wcg,wcp]=margin(G);T1=10/wcp;b=7;Gc1=tf([T1 1],[b*T1 1])G1=G*Gc1;G10=feedback(G,1);step(G10)gridfigure[mag,pha,w]=bode(G1);Mag=20*log10(mag);[gm1,pm1,wcg1,wcp1]=margin(G1);phi=(45-pm1+20)*pi/180;alpha=(1+sin(phi))/(1-sin(phi));Mn=-10*log10(alpha);wcgn=spline(Mag,w,Mn);T=1/wcgn/sqrt(alpha);Tz=alpha*T;Gc2=tf([Tz 1],[T 1])G2=G1*Gc2;bode(G,'r',G2,'g')gridfiguregrid[gm2,pm2,wcg2,wcp2]=margin(G2)G11=feedback(G2,1);step(G11)grid结果:滞后校正网络传递函数:0.2126 s + 1------------1.488 s + 1超前校正网络传递函数:0.1039 s + 1--------------0.008316 s + 1校正之后的幅值裕量,相角裕量,相角交接频率,截止频率:gm2 =5.5355pm2 =49.2677wcg2 =105.9038wcp2 =34.0080其中相角裕量,截止频率分别为49.2677,34.0080均大于题目要求的45和30,仿真符合要求。
自动控制原理线性系统串联校正实验报告五..
武汉工程大学实验报告专业 电气自动化 班号 指导教师 姓名 同组者 无实验名称 线性系统串联校正实验日期 第 五 次实验 一、 实验目的1.熟练掌握用MATLAB 语句绘制频域曲线。
2.掌握控制系统频域范围内的分析校正方法。
3.掌握用频率特性法进行串联校正设计的思路和步骤。
二、 实验内容1.某单位负反馈控制系统的开环传递函数为)1()(+=s s Ks G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。
解:取20=K ,求原系统的相角裕度。
num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; ans =Inf 12.7580 Inf 4.4165 由结果可知,原系统相角裕度7580.12=r ,srad c /4165.4=ω,不满足指标要求,系统的Bode 图如图5-1所示。
考虑采用串联超前校正装置,以增加系统的相角裕度。
1010101010幅值(d b )--Go,-Gc,GoGcM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)Frequency (rad/sec)图5-1 原系统的Bode 图由),3,8.12,50(00000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ,mm ϕϕαsin 1sin 1-+=可知:e=3; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic)) 得:alpha = 4.6500[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha)); num0=20; den0=[1,1,0]; numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0';'校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0'])1010101010-100-5050幅值(d b )--Go,-Gc,GoGc1010101010-200-150-100-50050相位(0)频率(rad/sec)图5-2 系统校正前后的传递函数及Bode 图 num/den = 0.35351 s + 1-------------- 0.076023 s + 1校正之后的系统开环传递函数为:num/den = 7.0701 s + 20 -----------------------------0.076023 s^3 + 1.076 s^2 + s 系统的SIMULINK 仿真:校正前SIMULINK 仿真模型:单位阶跃响应波形:校正后SIMULINK仿真模型:单位阶跃响应波形:分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性增强。
控制实验报告四线性系统串联校正
控制实验报告四线性系统串联校正式子中ωn =√50=7.07,ξ=1ωn =0.141, 因此,未加矫正装置时系统的超调量为63%,调节时间为4s ,静态速度误差系数K V 等于该Ⅰ型系统的开环增益为25,单位是1/s 。
2、串联校正的目标(1)超调量M P ≤25%(2)调节时间(过渡过程时间)t s ≤1s (3)校正后系统开环增益(静态速度误差系数)K V 25 1/s3、从对超调量要求可以得到 2125p M e ξ--=≤% ,于是有 0.4ξ> 。
由41s nt ξω=≤s 可以得到4n ωξ≥。
因为要求K V 25 1/s ,故令校正后开环传递函数仍包含一个积分环节,且放大系数为25。
设串联校正装置的传递函数为D (s ),则加串联校正后系统的开环传递函数为 25()()()(0.51)D s G s D s s s =+ 采用相消法,令0.51()1s D s Ts +=+ (其中T 为待确定参数),可以得到加校正后系统的闭环传递函数为 2()()25()1()()D s G s T W s D s G s s s T T==+++ 对校正后二阶系统进行分析,可以得到 225n T ω= 21n T ξω=综合考虑校正后的要求,取 T =0.05s ,此时 22.36n ω= 1/s,0.45ξ=,它们都能满足校正目标要求。
最后得到校正环节的传递函数为0.51()0.051s D s s +=+ 4、加校正后的模拟电路图如下所示:5、实验图像下图为未加矫正环节的实验图像(其坐标单位为1000ms/div ),可以看到系统超调量较大,调节时间很长,大概取4格坐标格,即约为4s ,最后的误差较难看出。
下图是校正后的实验图像(其坐标单位为400ms/div ),可以看出系统超调量明显减小,并且在这个图像中可以估计台调节时间为1.5格即0.6s ,说明满足要求,校正装置起到了预期的作用。
串联校正实验报告(3篇)
第1篇一、实验目的1. 了解串联校正的基本原理和设计方法。
2. 掌握利用串联校正装置改善系统性能的方法。
3. 通过实验验证串联校正对系统动态性能的影响。
二、实验原理串联校正是一种常用的控制系统设计方法,通过在系统的输入端或输出端添加校正装置,来改善系统的动态性能和稳态性能。
本实验主要研究串联校正对系统相位裕度和增益裕度的影响。
三、实验器材1. 控制系统实验平台2. 信号发生器3. 示波器4. 信号调理器5. 校正装置(如PID控制器、滤波器等)6. 计算机及仿真软件四、实验步骤1. 搭建实验系统:根据实验要求搭建控制系统实验平台,包括被控对象、校正装置和测量装置。
2. 设置实验参数:设置被控对象和校正装置的参数,如PID参数、滤波器参数等。
3. 进行开环实验:通过信号发生器向系统输入不同频率的正弦信号,利用示波器观察系统的输出响应,记录系统的相位裕度和增益裕度。
4. 进行闭环实验:将系统切换到闭环状态,再次输入正弦信号,观察系统的输出响应,记录系统的相位裕度和增益裕度。
5. 分析实验结果:比较开环和闭环实验结果,分析串联校正对系统性能的影响。
五、实验结果与分析1. 开环实验结果:通过开环实验,可以得到系统的相位裕度和增益裕度,以及系统的频率响应曲线。
2. 闭环实验结果:通过闭环实验,可以得到系统的相位裕度和增益裕度,以及系统的频率响应曲线。
3. 分析结果:- 当校正装置的参数设置合理时,系统的相位裕度和增益裕度会得到改善,从而提高系统的稳定性。
- 串联校正可以有效地抑制系统的振荡和超调,提高系统的响应速度。
- 串联校正对系统的稳态误差也有一定的影响,需要根据实际需求进行调整。
六、实验结论1. 串联校正是一种有效的控制系统设计方法,可以改善系统的动态性能和稳态性能。
2. 通过合理设置校正装置的参数,可以有效地提高系统的稳定性、响应速度和稳态精度。
3. 在实际应用中,需要根据被控对象和系统的具体要求,选择合适的校正装置和参数。
自动控制原理实验七 基于MATLAB控制系统频域法串联校正设计
实验七基于MATLAB控制系统频域法串联校正设计一、实验目的(1)对给定系统设计满足频域或时域指标的串联校正装置;(2)掌握频域法设计串联校正的方法;(3)掌握串联校正环节对系统稳定性及过渡过程的影响。
二、实验原理及内容利用MATLAB可以方便的画出Bode图并求出幅值裕量和相角裕量。
将MATLAB应用到经典理论的校正方法中,可以方便的校验系统校正前后的性能指标。
通过反复试探不同校正参数对应的不同性能指标,能够设计出最佳的校正装置。
1、串联超前校正用频域法对系统进行超前校正的基本原理,是利用超前校正网络的相位超前特性来增大系统的相位裕量,以达到改善系统瞬态响应的目标。
为此,要求校正网络最大的相位超前角出现在系统的截止频率(剪切频率)处。
串联超前校正的特点:主要对未校正系统中频段进行校正,使校正后中频段幅值的斜率为-20dB/dec,且有足够大的相位裕度;超前校正会使系统瞬态响应的速度变快,校正后系统的截止频率增大。
这表明校正后,系统的频带变宽,瞬态响应速度变快,相当于微分效应;但系统抗高频噪声的能力变差。
用频率法对系统进行串联超前校正的一般步骤为:1)根据稳态误差的要求,确定开环增益K。
2)根据所确定的开环增益K,画出未校正系统的波特图,计算未校正系统的相位裕度。
3)计算超前网络参数a和T。
4)确定校正网络的转折频率。
5)画出校正后系统的波特图,验证已校正系统的相位裕度。
【7-1】给定系统如图7-1所示,试设计一个串联校正装置,使系统满足幅值裕量大于10分贝,相位裕量≥45o为了满足上述要求,试探地采用超前校正装置G c(s),使系统变为图7-2的结构。
图7-1 校正前系统用下面地MATLAB语句得出原系统的幅值裕量与相位裕量。
>> G=tf(100, [0.04, 1, 0]);[Gw, Pw, Wcg, Wcp]=margin(G);Gw =InfPw =28.0243Wcg=InfWcp=46.9701可以看出,这个系统有无穷大的幅值裕量,并且其相位裕量γ=28o,幅值穿越频率Wcp=47rad/sec。
自动控制原理实验六---串联校正网络
东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验六串联校正研究院(系):自动化学院专业:自动化姓名:学号:实验室:实验组别:同组人员:实验时间:2017/12/22 评定成绩:审阅教师:目录一.实验目的和要求 (3)二.实验原理 (3)三.实验方案与实验步骤 (3)四.实验设备与器材配置 (4)五.实验记录 (4)六.预习与回答 (10)七.实验结论 (13)一.实验目的和要求1.熟悉串联校正的作用和结构2.掌握用Bode图设计校正网络3.在时域验证各种网络参数的校正效果二.实验原理(1)本校正采用串联校正方式,即在原被控对象串接一个校正网络,使控制系统满足性能指标。
由于控制系统是利用期望值与实际输出值的误差进行调节的,所以,常常用“串联校正”调节方法,串联校正在结构上是将调节器Gc(S)串接在给定与反馈相比误差之后的支路上,见下图。
设定校正网络Gc(S)被控对象H(S)工程上,校正设计不局限这种结构形式,有局部反馈、前馈等。
若单从稳定性考虑,将校正网络放置在反馈回路上也很常见。
(2)本实验取三阶原系统作为被控对象,分别加上二个滞后、一个超前、一个超前-滞后四种串联校正网络,这四个网络的参数均是利用Bode图定性设计的,用阶跃响应检验四种校正效果。
由此证明Bode图和系统性能的关系,从而使同学会设计校正网络。
三.实验方案与实验步骤(1)不接校正网络,即Gc(S)=1,如总图。
观察并记录阶跃响应曲线,用Bode图解释;(2)接人参数不正确的滞后校正网络,如图4-2。
观察并记录阶跃响应曲线,用Bode图解释;(3)接人滞后校正网络,如图4-3。
观察并记录阶跃响应曲线,用Bode图解释;(4)接人超前校正网络,如图4-4。
由于纯微分会带来较大噪声,在此校正网络前再串接1K Ω电阻,观察并记录阶跃响应曲线,用Bode图解释;(5)接人超前-滞后校正网络,如图4-5,此传递函数就是工程上常见的比例-积分-微分校正网络,即PID调节器。
自控实验报告_频率法串联超前校正
频率法串联超前校正一.实验目的1.了解和掌握二阶系统中的闭环和开环对数幅频特性和相频特性(波德图)的构造及绘制方法。
2.了解和掌握超前校正的原理,及超前校正网络的参数的计算。
3.熟练掌握使用本实验机的二阶系统开环对数幅频特性和相频特性的测试方法。
4.观察和分析系统未校正和串联超前校正后的开环对数幅频特性和相频特性,幅值穿越频率处ωc′,相位裕度γ,并与理论计算值作比对。
二.实验内容及步骤本实验用于观察和分析引入频域法串联超前校正网络后的二阶系统瞬态响应和稳定性。
超前校正的原理是利用超前校正网络的相角超前特性,使中频段斜率由-40dB/dec变为-20dB/dec并占据较大的频率范围,从而使系统相角裕度增大,动态过程超调量下降;并使系统开环截止频率增大,从而使闭环系统带宽也增大,响应速度也加快.1.未校正系统的时域特性的测试未校正系统模拟电路图见图1。
本实验将函数发生器(B5)单元作为信号发生器,OUT输出施加于被测系统的输入端Ui,观察OUT从0V 阶跃+2.5V时被测系统的时域特性。
图1未校正系统模拟电路图未校正系统的开环传递函数为:0.3S)0.2S(16)S(G模拟电路的各环节参数:积分环节(A5单元)的积分时间常数Ti=R1*C1=0.2S,惯性环节(A6单元)的惯性时间常数T=R2*C2=0.3S,开环增益K=R2/R3=6。
实验步骤:注:‘S ST’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。
(连续的正输出宽度足够大的阶跃信号)①在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
②量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥3秒(D1单元左显示)。
③调节B5单元的“矩形波调幅”电位器使矩形波输出电压=2.5V(D1单元右显示)。
(1)构造模拟电路:按图3-3-2安置短路套及测孔联线,表如下。
(3)运行、观察、记录:A6(OUT)接CH1×1档,B5(OUT)接CH2×1档。
自控实验报告-连续系统串联校正
实验二连续系统串联校正一、实验目的观察串联超前、滞后、滞后超前校正对改善系统性能的作用;学习串联校正的基本设计方法;观测超前、滞后、滞后超前三种校正方式的作用。
二、实验内容(1) 已知系统开环传递函数:()100(0.11)(0.011)o G s s s s =++模拟线路图如图1所示,图1 不加校正时的模拟电路图原系统的截止频率满足210010.1c ω=,解得31.62/c rad s ω=,其bode 图如图2图2 不加校正时的系统bode 图(2) 要求原系统经过超前校正后满足100v K =,40c rad ω≥,35%σ≤。
因为原系统已经能够满足速度误差系数100v K =,设超前校正的传递函数11lead Ts G Ts α+=+。
要求截止角频率40c rad ω≥,不妨取45/c rad s ω=,原系统在c ω处产生的相角arg(j )191.70c ω=- ,为了使系统有至少30°的相角裕量。
取arg((j )(j ))50lead c o c G G ωω= 又(j )(j )1lead c o c G G ωω=解得0.033,0.0027T T α==即0.03310.00271lead s G s +=+。
本次实验采用的超前系统传递函数为:0.041()0.0041c s G s s +=+图3超前校正部分自身的bode图其模拟线路图如图4所示:图4超前校正的电路图经过校正后的电路bode 图为:图5加入超前校正后电路的bode 图(3) 原系统经过滞后校正后100v K =,5c rad ω≥,40%σ≤。
设滞后校正装置的传递函数为:11lag Ts G Ts β+=+取截至角频率7/c rad s ω= 则有()()1lag c o c G j G j ωω= 不妨取10.2 1.4/c rad s Tω== 可以解得:=12.01T β即系统的滞后校正的传递函数可以取0.714112.011lag s G s +=+本次实验给出的滞后装置的传递函数为:0.51()8.51c s G s s +=+滞后部分的伯德图图6滞后校正部分自身的bode 图其模拟线路图如图7所示:图7加滞后校正的电路图电路的bode 图如图所示:图8加入滞后校正后的电路bode 图(4)原系统经过滞后超前校正后100v K =,20c rad ω≥,10%σ≤。
自动控制原理线性系统串联校正实验报告五..
自动控制原理线性系统串联校正实验报告五..武汉工程大学实验报告专业 电气自动化 班号 指导教师 姓名 同组者 无实验名称 线性系统串联校正实验日期 20140426 第 五 次实验 一、 实验目的1.熟练掌握用MATLAB 语句绘制频域曲线。
2.掌握控制系统频域范围内的分析校正方法。
3.掌握用频率特性法进行串联校正设计的思路和步骤。
二、 实验内容1.某单位负反馈控制系统的开环传递函数为)1()(+=s s Ks G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。
解:取20=K ,求原系统的相角裕度。
num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; ans =Inf 12.7580 Inf 4.4165 由结果可知,原系统相角裕度7580.12=r ,srad c /4165.4=ω,不满足指标要求,系统的Bode 图如图5-1所示。
考虑采用串联超前校正装置,以增加系统的相角裕度。
1010101010幅值(d b )--Go,-Gc,GoGcM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)Frequency (rad/sec)图5-1 原系统的Bode 图由),3,8.12,50(00000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ,mm ϕϕαsin 1sin 1-+=可知:e=3; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic)) 得:alpha = 4.6500[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha)); num0=20; den0=[1,1,0]; numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:'); printsys(num,den)[mag2,phase2]=bode(numc,denc,w);[mag,phase]=bode(num,den,w);subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc');subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0';'校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0'])1010101010幅值(d b )--Go,-Gc,GoGc1010101010相位(0)频率(rad/sec)图5-2 系统校正前后的传递函数及Bode 图num/den = 0.35351 s + 1-------------- 0.076023 s + 1校正之后的系统开环传递函数为:num/den = 7.0701 s + 20 -----------------------------0.076023 s^3 + 1.076 s^2 + s 系统的SIMULINK 仿真:校正前SIMULINK 仿真模型:单位阶跃响应波形:校正后SIMULINK仿真模型:单位阶跃响应波形:分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性增强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验报告(III)
一、实验名称:控制系统串联校正
二、实验目的
1. 了解和掌握串联校正的分析和设计方法。
2. 研究串联校正环节对系统稳定性及过渡过程的影响。
三、实验内容
1. 设计串联超前校正,并验证。
2. 设计串联滞后校正,并验证。
四、实验原理
1. 系统结构如图3-1
图3-1
其中G c(s)为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机来实现。
2. 系统模拟电路如图3-2
图3-2
各电阻电容取值
R3=2MΩ R4=510KΩ R5=2MΩ
C1=0.47μF C2=0.47μF
3. 未加校正时G c(s)=1
(a >1)
4. 加串联超前校正时G c(s)=aTs+1
Ts+1
给定 a = 2.44 , T = 0.26 , 则G c(s)=0.63s+1
0.26s+1
(0<b<1)
5. 加串联滞后校正时G c(s)=bTs+1
Ts+1
给定b = 0.12 , T = 83.33, 则G c(s)=10s+1
83.33s+1
五、数据记录
(1)未加校正
(2)超前校正
(3)滞后校正
3. 系统波特图
(1)未加校正环节系统开环传递函数G(s)=
4 s2+s
(2)串联超前校正系统开环传递函数G(s)=
2.52s+4
0.26s3+1.26s2+s
(3)串联滞后校正系统开环传递函数G(s)=
40s+4
83.33s3 + 84.33s2+s
六、数据分析
1、无论是串入何种校正环节,或者是否串入校正环节,系统最终都会进入稳态,即三个系统都是稳定系统。
2、超前校正:系统比未加校正时调节时间短,即系统快速性变好了,而且超调量也减小了。
从频率角度来看,戒指频率减小,相位稳定域度增大,系统稳定性变好。
3、滞后校正:系统比未加校正时调节时间长,即系统快速性变差了,但是超调量减小了很多,甚至比加串联超前校正时的超调还小。
从频率角度来看,截止频率变小了,但相位稳定域度增大了很多。