初中数学一元一次不等式(组)单元综合能力达标测试题2(附答案)

合集下载

初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)

章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷-附答案

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷-附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B 种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.精品word 完整版-行业资料分享1、读书破万卷,下笔如有神。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(有答案解析)2

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(有答案解析)2

一、选择题1.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .22.如果a b >,则下列各式中不成立的是( )A .33a b +>+B .55a b ->-C .33a b ->-D .2323a b +>+3.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ). A .两胜一负B .一胜两平C .五平一负D .一胜一平一负4.如果m n >,则下列各式不成立的是( ) A .22m n +>+B .22m n ->-C .22m n > D .22m n -<-5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定6.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>7.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .10 8.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥9.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB.1a +C .1-aD .1a-10.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( ) A .1种B .2种C .3种D .4种11.如果不等式组5x x m<⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤812.P Q R S ,,,四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为( )A .R<Q P SB .Q<R S PC .Q<R P SD .Q<P R S二、填空题13.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.15.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x ⋅⋅⋅ 0 1 2 3⋅⋅⋅ 1y⋅⋅⋅ 232112⋅⋅⋅ x ⋅⋅⋅ 0 1 2 3 ⋅⋅⋅ 2y⋅⋅⋅-3-113⋅⋅⋅x 16.把方程组2123x y mx y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.17.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______. 18.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.19.如图,已知一次函数y=kx+b 的图象与正比例函数y=mx 的图象相交于点P (﹣3,2),则关于x 的不等式mx ﹣b≥kx 的解集为_____.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.三、解答题21.居家学习期间,小明坚持每天做运动.已知某两组运动都由波比跳和深蹲组成,每个波比跳耗时5秒,每个深蹲也耗时5秒.运动软件显示,完成第一组运动,小明花了5分钟,其中做了20个波比跳,共消耗热量132大卡;完成第二组运动,小明花了7分钟30秒,其中也做了20个波比跳,共消耗热量156大卡.每个动作之间的衔接时间忽略不计. (1)小明在第一组运动中,做了 个深蹲;小明在第二组运动中,做了 个深蹲.(2)每个波比跳和每个深蹲各消耗热量多少大卡?(3)若小明想只做波比跳和深蹲两个动作,花10分钟,消耗至少200大卡,小明至少要做多少个波比跳?22.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标; (3)当311y -<<时,求x 的取值范围.23.在同一平面直角坐标系内画出一次函数14y x =-+和225y x =-的图象,根据图象回答下列问题: (1)求出方程组425y x y x =-+⎧⎨=-⎩的解;(2)当x 取何值时,12y y >?当x 取何值时,10y >且20y <?24.请你用学习“一次函数”时积累的经验和方法研究函数y =|x|的图像和性质,并解决问题:(1)完成下列步骤,画出函数y =|x|的图像; ①列表、填空: x … ﹣2 ﹣1 0 1 2 … y…12…③连线(2)观察函数图像,写出该函数图像的一条性质 .(3)结合图像,写出不等式13x+43>|x|的解集为.25.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a元/千克的标价出售该种水果.(1)为避免亏本,求a的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a的最小值.26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k的取值范围,再结合选项解答.【详解】解:根据图象,得2k<6,3k>5,解得k<3,k>53,所以53<k <3. 只有2符合. 故选:D . 【点睛】利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.2.C解析:C 【分析】根据不等式的基本性质分别进行判断,即可得出结论. 【详解】解:A 、当a b >时,由不等式基本性质1得33a b +>+,故此选项不符合题意; B 、当a b >时,由不等式基本性质1得55a b ->-,故此选项不符合题意; C 、当a b >时,由不等式基本性质3得33a b -<-,故此选项符合题意; D 、当a b >时,由不等式基本性质2得33a b >,再由不等式基本性质1得2323a b +>+,故此选项不符合题意. 故选:C . 【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.3.B解析:B 【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值. 【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛, 设该球队胜场数为x ,平局数为y , ∵该球队小组赛共积5分, ∴y =5-3x , 又∵0≤y ≤3, ∴0≤5-3x ≤3, ∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场, 故选:B . 【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.4.B解析:B【分析】根据不等式的性质解答. 【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n>,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意. 故选:B . 【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.5.B解析:B 【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集. 【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方, ∴不等式21k x k x b >+的解集为: x<−1 故选:B. 【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵a<b∴a+2<b+2成立,则A 选项不符合题意; 当c=0时,22ac bc =,则B 选项符合题意;1122a b <成立,则C 选项不符合题意;-2a-1-2b-1>成立,则D选项不符合题意.故答案为B.【点睛】本题考查了不等式的性质,掌握①不等式左右两边同时加(减)一个数(式)不等式符号不变;②给不等式左右两边同时乘(除)一个不为零的数(式),当该数(式)大于零时不等式符号不变,反之改变.7.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】x->,依题意,得:3126x>.解得:9∵x为整数,∴x的最小值为10.故选:D.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.8.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D.【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a的不等式.9.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误; 由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D . 【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.10.C解析:C 【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案. 【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案. 故选:C . 【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.11.C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.12.C解析:C 【分析】观察图中的三个跷跷板,哪个重则往哪边下沉,可得出一元一次不等式组,解之即可得出结论. 【详解】解:依题意,哪个重则往哪边下沉可得:(1)(2)(3)S P P R P R S Q >⎧⎪>⎨⎪+>+⎩,由(1)(2)得:R P<S , 由(3)得:Q R , 故:Q R P S <<<, 故选:C . 【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217? 311?2x x x -<⎧⎪⎨+-≥⎪⎩①② 解不等式①得,x <4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4.故答案为:1≤x <4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1).则当x <2时,kx+b >mx+n ,故答案为:x <2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先将方程组中的两个方程相加化简得出的值再根据可得关于m 的一元一次不等式然后解不等式即可得【详解】由①②得:即解得故答案为:【点睛】本题考查了二元一次方程组的解解一元一次不等式根据二元一次方程 解析:4m >-【分析】先将方程组中的两个方程相加化简得出x y +的值,再根据0x y +>可得关于m 的一元一次不等式,然后解不等式即可得.【详解】2123x y m x y +=+⎧⎨+=⎩①②, 由①+②得:334x y m +=+, 即43m x y ++=,0x y +>,403m +∴>, 解得4m >-,故答案为:4m >-.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出x y +的值是解题关键.17.【分析】根据题意可得2m ﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m -5)⊕3=3∴2m ﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.18.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①② 由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.19.x≥﹣3【分析】根据图象得出P 点横坐标为﹣3观察函数图象得在P 点右侧y=mx 的函数在y=kx+b 的函数图象上方由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3【详解】由图象可知:P 点横坐标为﹣3当x≥﹣解析:x≥﹣3【分析】根据图象得出P 点横坐标为﹣3,观察函数图象得在P 点右侧,y=mx 的函数在y=kx+b 的函数图象上方,由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3.【详解】由图象可知:P 点横坐标为﹣3,当x≥﹣3时,y=mx 的函数在y=kx+b 的函数图象上方,即mx ﹣b≥kx ,所以关于x 的不等式mx ﹣b≥kx 的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx ﹣b≥kx 是解此题的关键.20.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 三、解答题21.(1)40;70;(2)每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡;(3)25个【分析】(1)根据做深蹲的数量=(每组运动的时间﹣做波比跳需要的时间)÷5,即可求出结论; (2)设每个波比跳消耗热量x 大卡,每个深蹲消耗热量y 大卡,根据“完成第一组运动,共消耗热量132大卡;完成第二组运动,共消耗热量156大卡”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(3)设小明要做m 个波比跳,则要做(120﹣m )个深蹲,根据至少要消耗200大卡热量,即可得出关于m 的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:(1)(60×5﹣5×20)÷5=40(个),(60×7+30﹣5×20)÷5=70(个).故答案为:40;70.(2)设每个波比跳消耗热量x 大卡,每个深蹲消耗热量y 大卡,依题意,得:20401322070156x y x y +=⎧⎨+=⎩, 解得:50.8x y =⎧⎨=⎩. 答:每个波比跳消耗热量5大卡,每个深蹲消耗热量0.8大卡.(3)设小明要做m 个波比跳,则要做601055m ⨯-=(120﹣m )个深蹲, 依题意,得:5m +0.8(120﹣m )≥200, 解得:m≥241621. 又∵m 为正整数,∴m 可取的最小值为25.答:小明至少要做25个波比跳.【点睛】本题考查了二元一次方程组,不等式及其整数解,熟练构造方程组和不等式是解题的关键.22.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .23.(1)31x y =⎧⎨=⎩;(2)当3x <时,12y y >,当 2.5x <时,10y >且20y < 【分析】(1)根据题意画出一次函数y 1=-x+4和y 2=2x-5的图象,根据两图象的交点即可得出方程组425y x y x =-+⎧⎨=-⎩的解; (2)根据函数图象可直接得出结论.【详解】解:(1)如图所示:一次函数14y x =-+和225y x =-的图象相交于点(3,1)∴方程组425y x y x =-+⎧⎨=-⎩的解为31x y =⎧⎨=⎩; (2)由图可知,当3x <时,12y y >当 2.5x <时,10y >且20y <;【点睛】本题考查的是一次函数与一元一次方程组,一次函数与一元一次不等式,能根据题意画出函数图象,利用数形结合求解是解答此题的关键.24.(1)2,1,图像见解析;(2)图像关于y 轴对称(答案不唯一,只要合理即可);(3)-1<x <2.【分析】(1)根据绝对值的意义计算,填表即可;(2)从函数图像的分布,对称性,增减性等角度回答即可;(3)画出函数图像,确定函数交点的横坐标,结合图像就可以确定满足题意的不等式的解集.【详解】(1)①∵|-2|=2,|1|=1,∴应该填2,1,故答案为:2,1;②描点,③连线如图所示:(2)图像关于y 轴对称;当x >0时,y 随x 的增大而增大;(3)在同一个坐标系中,画出直线y=13x+43的图像,如图所示, 图像交点的横坐标分别是-1, 2,∴不等式13x+43>|x|的解集为-1<x <2.【点睛】本题考查了函数图像的画法,交点坐标的意义,函数的对称性,增减性,熟练掌握图像的画法,交点的意义,会用数形结合的思想确定不等式的解集是解题的关键.25.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W ∴随x 的增大而减小,∴当9x =时,W 最小,220044000220094400024200W x =-+=-⨯+=(元)4044,207x x y ∴-=--=答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)

一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a << B .12a > C .4a < D .4a > 2.若a b >,则下列各式中一定成立的是( )A .22a b -<-B .11a b +>+C .22a b <D .33a b ->- 3.点P 坐标为(m +1,m -2),则点P 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知实数 a 、b ,若 a b >,则下列结论错误的是( ) A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 5.如果a <b ,那么下列不等式中一定成立的是( ) A .a 2<abB .ab <b 2C .a 2<b 2D .a ﹣2b <﹣b 6.等腰三角形的周长为20cm 且三边均为整数,底边可能的取值有( )个.A .1B .2C .3D .4 7.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 8.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 11.已知a <b ,下列变形正确的是( )A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 12.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x…-2-10123…y…3210-1-2…A.x<1 B.x>1 C.x<0 D.x>0二、填空题13.关于x的不等式组3222553xxxm+⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m的取值范围是_____.14.已知关于x的不等式组0,10x ax+>⎧⎨->⎩的整数解共有3个,则a的取值范围是___________.15.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.16.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.17.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.关于x的方程231x k+=的解是非负数,则k的取值范围是___________.19.不等式组210322xx x->⎧⎨<+⎩的整数解为_____.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.已知关于x 、y 的二元一次方程组256217x y m x y +=+⎧⎨-=-⎩的解x 、y 都是正数,且x 的值小于y 的值.(1)求该二元一次方程组的解(用含m 的代数式表示)(2)求m 的取值范围.22.计算:(1)()()148632323-++-. (2)()()2249m n m n +--.(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩.(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩.23.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A ,B 两种钢笔作为奖品,已知A ,B 两种每支分别为10元和20元,设购入A 种x 支,B 种y 支. (1)求y 关于x 的函数表达式;(2)若购进A 种的数量不少于B 种的数量,则至少购进A 种多少支?24.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.25.解不等式:431132x x +-->,并把解集在数轴上表示出来.26.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.3.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.4.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a>b,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B、∵a>b,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C、∵a>b,∴-3a<-3b,故本选项符合题意;D、∵a>b,∴5a>5b,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;B、a<b两边同时乘以b,应说明b>0才得ab<b2,故此选项错误;C、a<b两边同时乘以相同的数,故此选项错误;D、a<b两边同时减2b,不等号的方向不变可得a−2b<−b,故此选项正确;故选D.【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6.D解析:D【分析】设底边为xcm ,根据题意得腰202x -cm 为整数,且x<10,可得出底边的取值. 【详解】设底边为xcm ,根据题意得腰202x -cm 为整数, ∵能构成三角形,∴x<20-x ,x<10,∴x 可取的值为:2、4、6、8,故选:D .【点睛】此题考查三角形的三边关系,利用不等式解决实际问题,设边长时很重要,这腰长的话需要讨论 范围,故设底边较好,根据三角形三边关系就可以解答. 7.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案.【详解】解:根据题意,得:10b a b =⎧⎨+=⎩, 解得a=-1,b=1,则不等式-ax-b <0为x-1<0,解得x <1,故选:A .【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x 的不等式,并熟练掌握解一元一次不等式的步骤和依据.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】 解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.17.55【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最大值为:解析:55【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键. 18.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.解:解方程231x k +=得132k x -= ∵方程的解是非负数 ∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 19.1【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:由①得:x >由②得:x <2∴不等式组的解集为<x <2则不等式组的整数解为1故答案为1【点睛】考查了一元一次不等式组的整数 解析:1【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:210322x x x ->⎧⎨<+⎩①②, 由①得:x >12, 由②得:x <2, ∴不等式组的解集为12<x <2, 则不等式组的整数解为1,故答案为1【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)218x m y m =-⎧⎨=+⎩;(2)192m <<. 【分析】(1)运用加减消元法,即可求得x 和y ;(2)根据x 、y 都是整数,列出不等式组,即可求出m 的取值范围.【详解】解:(1):256217x y m x y +=+⎧⎨-=-⎩①②, 由②得:217x y =-,将217x y =-代入①中,∴()221756y y m -+=+,43456y y m -+=+,5540y m =+,8y m =+,将8y m =+代入217x y =-中,∴()28172161721x m m m =+-=+-=-,∴二元一次方程组的解为:218x m y m =-⎧⎨=+⎩. (2)∵二元一次方程组的解x 、y 是正数,且x 的值小于y 的值,∴21080218x m y m m m =->⎧⎪=+>⎨⎪-<+⎩,∴解得:192m <<, ∴m 的取值范围是:192m <<. 【点睛】本题考查二元一次方程组和不等式的综合,解题的关键是掌握解二元一次方程组的方法.22.(1)1;(2)225265m mn n -+-;(3)373x y =-⎧⎪⎨=-⎪⎩;(4)3x ≥. 【分析】(1)直接用平方差公式,化二次根式为最简,利用运算法则得出答案;(2)直接利用完全平方公式展开合并得出答案.(3)方程组整理后,利用加减消元法求出解即可(4))分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.【详解】(1)22222=-34=-1=.故答案为1(2)()()2249m n m n +-- ()()22224292m mn n m mn n =++--+22224849189m mn n m mn n =++-+-225265m mn n =-+-.故答案为225265m mn n -+-(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩①②将①变形:()()3142y x +=+3348y x +=+,即345y x -=……③,由②+③得:2451x x -=+26x -=3x =-.将3x =-代入231x y -=中,∴()3212317y x =-=⨯--=-, 则73y =-, ∴1243231y x x y ++⎧=⎪⎨⎪-=⎩的解为:373x y =-⎧⎪⎨=-⎪⎩故答案为373x y =-⎧⎪⎨=-⎪⎩(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩①②,解①得:53x ->-2x >,解②得:39x ≥3x ≥,由①②得:3x ≥, 故513841x x x -⎧>-⎪⎨⎪+≤-⎩的解集为:3x ≥.【点睛】本题考察二次根式混合运算,因式分解,解二元一次方程组,解不等式组;熟练掌握化二次根式为最简,平方差公式和完全平方公式;加减消元法;正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键23.(1)y =11202x -+;(2)至少购进A 种钢笔80支(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式;(2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.24.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.25.57x <;数轴见解析根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x的范围,再把所得的x的范围在数轴上表示出来即可.【详解】431132x x+-->,去分母,得()()243316x x+-->,去括号,得28936x x+-+>,移项、合并同类项,得75x->-,系数化为1,得57x<.在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.26.解集为:31x-<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x xx x<+⎧⎪⎨++≥⎪⎩①②,由①得:1x<;由②得:3x≥-,∴不等式组的解集为31x-≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.。

【最新试题库含答案】一元一次不等式组练习题(有答案)

【最新试题库含答案】一元一次不等式组练习题(有答案)

一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

一、选择题1.不等式3 23xx+-≤的非负整数解有()A.3个B.4个C.5个D.无数个2.不等式组10840xx-⎧⎨-≤⎩>的解集在数轴上表示为().A.B.C.D.3.关于函数3y x=-,下列说法正确的是()A.在y轴上的截距是3 B.它不经过第四象限C.当x≥3时,y≤0D.图象向下平移4个单位长度得到7y x=-的图象4.若a b>,则下列各式中一定成立的是()A.22a b-<-B.11a b+>+C.22a b<D.33a b->-5.点P坐标为(m+1,m-2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.不等式组()()303129xx x-≥⎧⎨->+⎩的解集为()A.3x<-B.3x>-C.3x≥D.3x≤7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-29.运行程序如图所示,规定从“输入一个值x”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤ 10.若a b <,则下列结论不正确的是( )A .44a b +<+B .33a b -<-C .22a b ->- D.1122a b > 11.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( ) A .a <b B .3a <3b C .﹣a >﹣b D .a ﹣2>b ﹣2 12.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <-二、填空题13.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________. 15.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.16.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 17.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.18.已知关于x 的不等式2x ﹣a >﹣3的解集是x >1,则a 的值为_____.19.一次函数y =kx +b (k≠0)的图象如图所示,则一元一次不等式﹣kx +2k +b >0的解集为_____.20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______. 三、解答题21.在平面直角坐标系中,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图象经过点(2,1)和(1,7)-.(1)求该函数的表达式;(2)若点(5,3)P a a -在该函数的图象上,求点P 的坐标;(3)当311y -<<时,求x 的取值范围.22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?(2)若有正方形纸板32张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完,已知7075a <<.求a 的值.23.某数学兴趣小组开展了一次活动,过程如下:设()090BAC θθ∠=︒<<︒,小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点1A 开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,12A A 为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:______;(填“能”或“不能”)(2)若112231AA A A A A ===,则θ=______度;活动二:如图乙所示,从点1A 开始,用等长的小棒依次向右摆放,其中12A A 为第1根小棒,且121A A AA =.数学思考:(3)若已经向右摆放了3根小棒,则1θ=______,2θ=______,3θ=______(用含θ的式子表示);(4)若只能摆放4根小棒,求θ的范围.24.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算:21390454025.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C.【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.A解析:A【分析】解不等式组,看解集表示是否正确即可.【详解】解:10 840 xx-⎧⎨-≤⎩>①②解不等式①得,1x>,解不等式②得,2x≥,不等式组的解集为:2x≥.故选:A.【点睛】本题考查了一元一次不等式组的解法及在数轴上表示解集,解题关键是熟练的运用解不等式组的方法进行计算.3.D解析:D【分析】令x=0,得到的y值就是在y轴上的截距;根据k,b判定图像的分布;根基自变量的范围计算函数的范围;根据平移规律确定即可.【详解】令x=0,得y= -3,∴函数在y轴上的截距为-3,∴选项A错误;∵3y x =-,∴函数分布在第一,第三,第四象限,∴选项B 错误;∵x≥3,∴x-3≥0,∴y≥0,∴选项C 错误;∵3y x =-,∴图象向下平移4个单位长度得到7y x =-的图象,∴选项D 正确;故选D .【点睛】本题考查了一次函数的性质,图像分布,平移规律,截距的定义,熟练掌握性质,规律是解题的关键.4.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.5.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B 符合题意;C 、当m<-1时,m+1与m-2都小于0,P 在第三象限,所以C 不符合题意;D 、当-1<m<2时,m+1>0,m-2<0,P 在第四象限,所以D 不符合题意;故选B .本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.6.A解析:A【分析】先解每一个不等式,再求不等式组的解集.【详解】解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 解不等式①得,x ≤3,解不等式②得,x <-3,∴不等式组的解集为x <-3,故选A【点睛】本题考查了解一元一次不等式组,先解每一个不等式,再求它们解集的公共部分即可求出不等式组的解集.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 8.D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.9.B解析:B【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可.【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>② 解不等式①得,47x ≤,解不等式②得,23x >,∴2347x ≤<,故选:B .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.10.D解析:D【分析】根据不等式的基本性质对各选项分析判断后利用排除法.【详解】A 、∵a <b ,∴44a b +<+,故本选项正确;B 、∵a <b ,∴a-3<b-3,故本选项正确;C 、∵a <b ,∴-2a >-2b ,故本选项正确;D、∵a<b,∴1122a b<,故本选项错误.故选D.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一定要注意不等号的方向的处理,也是容易出错的地方.11.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.12.B解析:B【分析】利用函数图象,写出直线y1在直线y2下方所对应的自变量的范围即可.【详解】结合图象,当x>3时,y1<y2,即kx+b<x+a,所以不等式kx-x<a-b的解集为x>3.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题13.【分析】直接把两个方程相加得到然后结合即可求出a的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】先将m 看做常数解方程组求出再代入可得关于m 的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题 解析:72m <【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.16.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 17.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.18.【分析】先解关于x 的不等式然后根据解集确定a 的值即可【详解】解:由2x ﹣a >﹣3得x >∵不等式2x ﹣a >﹣3的解集是x >1∴=1解得:a =5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a =【分析】先解关于x 的不等式,然后根据解集确定a 的值即可.【详解】解:由2x ﹣a >﹣3,得x >32a -, ∵不等式2x ﹣a >﹣3的解集是x >1, ∴32a -=1, 解得:a =5.故答案为5.【点睛】 本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.19.x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣20)y 随x 的增大而增大从而可以得到k 和b 的关系k >0然后即可得到不等式﹣kx +2k +b >0的解集【详解】解:由图解析:x <4【分析】根据函数图象可以得到一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大,从而可以得到k 和b 的关系,k >0,然后即可得到不等式﹣kx +2k +b >0的解集.【详解】解:由图象可得,一次函数y =kx +b (k≠0)的图象交x 轴于点(﹣2,0),y 随x 的增大而增大, ∴﹣2k +b =0,k >0,∴b =2k ,∴不等式﹣kx +2k +b >0可以化为:﹣kx +2k +2k >0,解得:x <4,故答案为:x <4.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答解答.20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)25y x =-+;(2)(2,9)P -;(3)34x -<<.【分析】(1)利用待定系数即可求得函数的表达式;(2)将(5,3)P a a -代入函数解析式,求得a 的值后即可求得P 的坐标;(3)根据y 的取值范围,可得x 的不等式,求解即可.【详解】解:(1)一次函数y kx b =+过(2,1)和(-1,7),∴127k b k b =+⎧⎨=-+⎩, 解得:25k b =-⎧⎨=⎩, ∴25y x =-+;(2)由(1)可知:25y x =-+,将(5,3)P a a -代入25y x =-+,∴32(5)5a a =--+,解得3a =,即39,52a a =-=-,∴(2,9)P -;(3)∵25y x =-+,当311y -<<时,则32511x -<-+<,解得:34x -<<,∴x 的取值范围:34x -<<.【点睛】本题考查待定系数法求一次函数解析式,一次函数与一元一次不等式.解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b .22.(1);(2)a=73【分析】(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.根据制作竖式纸盒用的正方形纸板+制作横式纸盒用的正方形纸板=150张;制作竖式纸盒用的长方形纸板+制作横式纸盒用的长方形纸板=300张.列方程组即可得到结论;(2)设x 个竖式需要正方形纸板x 张,长方形纸板横4x 张;y 个横式需要正方形纸板2y 张,长方形纸板横3y 张,可列出方程组,再根据a 的取值范围求出y 的取值范围即可.【详解】解:(1)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得215043300x y x y +=⎧⎨+=⎩, 解得:3060x y =⎧⎨=⎩, 答:可制作横式纸盒60个、竖式纸盒30个;(2)设制作竖式纸盒x 个,则制作横式纸盒y 个.由题意得23243x y x y a +=⎧⎨+=⎩, 解得y=1285a -, ∵70<a <75, ∴53<128-a <58,∵y 是整数,∴128-a=55,∴a=73.【点睛】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23.(1)能;(2)22.5︒;(3)2θ;3θ;4θ;(4)1822.5θ︒≤︒<【分析】(1)因为角的两条边为两条射线,没有长度限制,所以小棒可以无限摆下去; (2)根据直角三角形的性质、三角形外角的性质和等腰三角形的性质,即可推出; (3)根据三角形外角的性质、等腰三角形的性质即可推出12132A A A θθ=∠=,即可推出,同理即可推出2θ,3θ;(4)根据(3)的结论,和三角形外角的性质,即可推出不等式,解不等式即可.【详解】(1)∵角的两边为两条射线,没有长度限制,∴小棒可以无限摆下去;(2)∵112231AA A A A A ===,1223A A A A ⊥,∴12AA A 为等腰三角形,145a ∠=︒, ∴1122.52a θ=∠=︒; (3)∵1212334A A AA A A A A ===,,∴12132312A A A A A A θθ=∠=∠=,∴223123A A A θθθθθ=∠+=+=,∴324334A A A θθθθθ=∠+=+=;(4)∵根据三角形内角和定理和等腰三角形的性质,∴590490θθ≥︒⎧⎨︒⎩,< 解得,1822.5θ︒≤︒<.【点睛】本题考查了射线的性质、等腰三角形的性质、解一元一次不等式组,解题的关键在于找到等量关系,求相关角的度数.24.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解. (2)先化简二次根式,再合并即可.【详解】解:(1)()3x 24x?2x 5x 1?3⎧--≥-⎪⎨-<-⎪⎩①② 由①去括号得,-3x+6≥4-x ,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x <2,化系数为1得,x >-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)213904540+- =101091055+- =910.【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.25.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。

初中数学分式方程一元一次不等式组练习题(附答案)

初中数学分式方程一元一次不等式组练习题(附答案)

初中数学分式方程一元一次不等式组练习题一、单选题1.已知关于x 的分式方程211x kx x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠2.若分式293x x --的值为0,则x 的值等于( )A.0B.3±C.3D.3-3.方程2131x x =+-的解是( ) A.53x =B.5x =C.4x =D.5x =-4.已知: 3x =是分式方程2121kx k x x--=-的解,那么实数是k 的值为( ) A. 1- B.0 C.1 D.25.已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.1-B.0C.1D.26.关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A.5- B.8- C.2- D.57.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( )A .3m ≤B .3m <C .3m >-D .3m ≥-8.解分式方程1101x +=-,正确的结果是( ) A.0x =B.1x =C.2x =D.无解9.对于非零的两个实数a ,b ,规定11a b b a=-,若2(21)1x -=,则x 的值为( )A.56 B.54C.32 D.16- 10.若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A.1 B.1或3- C.1- D.1-或311.不等式32xx ->的解为( ) A.1x < B.1x <- C.1x > D.1x >- 12.不等式()215x -<的正整数解的个数为( ) A.2 B.3 C. 4 D. 5 13.不等式组2(2)22323x x x x -≤-⎧⎪++⎨>⎪⎩的解集是( )A.02x <≤B.06x <≤C.0x >D.2x ≤14.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( )A.5B.4C.3D.215.若数a 使关于x 的分式方程2311a x x x --=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1B .2C .3D .416.不等式293(2)x x +≥+的解集是( ) A .3x ≤ B .3x ≤-C .3x ≥D .3x ≥-17.不等式932122x x --+<的负整数解有( ) A.1个 B.2个 C.3个 D.4个18.下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .19.不等式组12,92x x x +⎧⎨-<⎩的解集在数轴上表示正确的是( )A. B. C.D.20.如果关于x 的分式方程1311a x x x --=++有负分数解,且关于x 的不等式组()24,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为2x <-,那么符合条件的所有整数a 的积是( ) A 、3-B 、0C 、3D 、9二、解答题 21.解方程: (1)21133x x x x =+++; (2)241111x x x -+=-+. 22.对于实数m n ,,定义一种新运算”©”为:21m n m n ©=-,这里等式右边是实数运算.求方程2(2)14x x ©-=--的解. 23.如果230x x +-=,求321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.解下列方程: (1)125210x x x x --=--; (2)214111x x x ++=--. 25.解不等式组:2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.26.解不等式组131722324334x x x x x ⎧+<-⎪⎪⎨--⎪≥+⎪⎩并写出它的所有整数解.27.解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩,并把解集在数轴上表示出来.28.如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136x x x ⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以 是 (写出一个即可);(2)若方程1322(2)3x x x x -=+=+,都是关于的不等式组22x x m x m <-⎧⎨-≤⎩,的关联方程,试求的取值范围. 三、填空题 29.若关于x 的方程2222x mx x++=--有增根,则m 的值是__________ 30.分式方程2332x x =--的解是_____. 31.若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 32.方程3122x x x =++的解是__________. 33.分式方程11233x x x-=---的解为 .34.若3311m m m m m --⋅=--,则m = . 35.不等式组30412x x -<⎧⎪⎨+≥⎪⎩的解为___________.36.不等式组23182x x x >-⎧⎨-≤-⎩的最小整数解是 .37.不等式组302321xx -⎧≤⎪⎨⎪+≥⎩的解集是________________。

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷(含答案)

北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》综合调研测试卷一.选择题(共8小题,满分24分)1.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个2.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b3.用不等式表示图中的解集,以下选项正确的是()A.x>1 B.x<1 C.x≥1 D.x≤14.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+65.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b<0的解集为()A.x B.x<C.x>3 D.x<36.已知点P(3a﹣9,a﹣1)在第二象限,且它的坐标都是整数,则a=()A.1 B.2 C.3 D.07.关于x的不等式组有四个整数解,则a的取值范围是()A.B.C.D.8.某学校要召学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[] B.y=[] C.y=[] D.y=[]二.填空题(共8小题,满分24分)9.x的3倍与2的差不小于1,用不等式表示为.10.若a<b,则﹣5a﹣5b(填“>”“<”或“=”).11.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.12.不等式1﹣4x≥x﹣8的非负整数解为.13.若不等式组的解集是x<3,则m的取值范围是.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.已知关于x的不等式组有2019个整数解,则m的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.三.解答题(共7小题,满分52分)17.解不等式(组):(1)19﹣3(x+7)≤0 (2)18.解不等式组,并把它的解集在数轴上表示出来.19.已知不等式组:(1)解此不等式组;(2)直接写出x可能取到的所有整数之和为.20.学校计划购买一批标有单价为3000元的某型号电脑,需要数量在10至20台之间,以下是甲、乙两个商家的优惠政策,学校购买哪家的电脑更合算呢?优惠政策:甲店:每台八折.乙店:先赠一台,其余每台九折.21.字母m、n分别表示一个有理数,且m≠n.现规定min{m,n}表示m、n中较小的数,例如:min{3,﹣1}=﹣1,min{﹣1,0}=﹣1.据此解决下列问题:(1)min{﹣,﹣}=.(2)若min{,2)=﹣1,求x的值;(3)若min{2x﹣5,x+3}=﹣2,求x的值.22.如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等式kx+b>1﹣mx的解集是x>﹣.(1)分别求出k,b,m的值;(2)求S△ACD.23.2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下隆重举行.组公(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两纪念品发放其中甲种纪念品每件售价120元,乙种纪念品每件售价80元,(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?参考答案一.选择题(共8小题)1.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.2.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.3.【解答】解:由题意,得x≥1,故选:C.4.【解答】解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.5.【解答】解:∵一次函数y=﹣2x+b的图象过A(0,3),∴b=3,∴函数解析式为y=﹣2x+3,当y=0时,x=,∴B(,0),∴不等式﹣2x+b<0的解集为x>,故选:A.6.【解答】解:∵点P(3a﹣9,a﹣1)在第二象限,∴,解得1<a<3,又∵它的坐标都是整数,∴a=2,故选:B.7.【解答】解:,∵解不等式①得:x>8,解不等式②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有四个整数解,是9、10、11、12,∴12<2﹣4a≤13,解得:﹣≤a<﹣,故选:B.8.【解答】解:由题意可得,当各班人数除以10的余数不大于6时,应舍去,当各班人数除以10的余数大于等于7时,就增加一名代表,故y与x的函数关系式是y=[],故选:B.二.填空题(共8小题)9.【解答】解:由题意得:3x﹣2≥1,故答案为:3x﹣2≥1.10.【解答】解:∵a<b,∴﹣5a>﹣5b;故答案为:>.11.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0 ∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.12.【解答】解:∵1﹣4x≥x﹣8,∴﹣4x﹣x≥﹣8﹣1,﹣5x≥﹣9,x≤,则该不等式的非负整数解为1和0,故答案为:1、0.13.【解答】解:解不等式x+8>4x﹣1,得:x<3,∵不等式组的解集为x<3,∴m≥3,故答案为:m≥3.14.【解答】解:设原来每天生产汽车x辆,则改进工艺后每天生产汽车(x+6)辆,根据题意,得:15(x+6)>20x,故答案为:15(x+6)>20x.15.【解答】解:∵解不等式①得:x>1﹣m,解不等式②得:x≤3,∴不等式组的解集是1﹣m<x≤3,∵关于x的不等式组有2019个整数解,∴﹣2016≤1﹣m<﹣2015,解得:2016<m≤2017,故答案为:2016<m≤2017.16.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.三.解答题(共7小题)17.【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.18.【解答】解:不等式组整理得:,解得:2<x≤4,表示在数轴上,如图所示:19.【解答】解:(1)解不等式①得:x<2,解不等式②得:x≥﹣4,则不等式组的解集为﹣4≤x<2.(2)∵符合不等式组的所有整数为﹣4,﹣3,﹣2,﹣1,0,1,∴﹣4﹣3﹣2﹣1+0+1=﹣9,故答案为﹣9.20.【解答】解:设买电脑x台,则在甲店花费:3000x×80%=2400x(元),在乙店花费:3000(x﹣1)×90%=2700x﹣2700(元)如果在甲店买合算,则2400x<2700x﹣2700,解得:x>9;如果在乙店买合算,则2400x>2700x﹣2700,解得:x<9;如果花费一样:2400x=2700x﹣2700,解得:x=9.答:这个学校买电脑9台时,两个店花费一样,多于9台时,在甲店买合算.21.【解答】解:(1)根据题中的新定义得:min{﹣,﹣}=﹣;故答案为:﹣;(2)由2>﹣1,得到=﹣1,解得:x=﹣1;(3)若2x﹣5=﹣2,解得:x=1.5,此时x+3=4.5>﹣2,满足题意;若x+3=﹣2,解得:x=﹣5,此时2x﹣5=﹣15<﹣2,不符合题意,综上,x=1.5.22.【解答】解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),,解得:k=,b=3,∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,∴点D的横坐标为﹣,将x=﹣代入y=x+3,得:y=,将x=﹣,y=代入y=1﹣mx,解得:m=1;(2)对于y=1﹣x,令y=0,得:x=1,∴点C的坐标为(1,0),∴S△ACD=×[1﹣(﹣2)]×=.23.【解答】解:(1)设甲种纪念品购买了x件,乙种纪念品购买了(100﹣x)件,根据题意得120x+80(100﹣x)=9600,解得x=40,则100﹣x=60,答:设甲种纪念品购买了40件,乙种纪念品购买了60件;(2)设购买甲种纪念品m件,乙种奖品购买了(100﹣m)件,根据题意,得,解得≤m≤35,∵m为整数,∴m=34或m=35,当m=34时,100﹣m=66;当m=35时,100﹣m=65;答:组委会有2种不同的购买方案:甲种纪念品34件,乙种奖品购买了66件或甲种纪念品35件,乙种奖品购买了65件.。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( )A .B .C .D .2.如图,已知一次函数y =kx +b 的图象经过点A (﹣1,2)和点B (﹣2,0),一次函数y =mx 的图象经过点A ,则关于x 的不等式组0<kx +b <mx 的解集为( )A .﹣2<x <﹣1B .﹣1<x <0C .x <﹣1D .x >﹣1 3.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y +卖出,结果发现自己亏了钱,其原因是( ) A .x y < B .x y > C .x y ≤ D .x y ≥ 4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 7.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定9.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 10.已知a <b ,下列变形正确的是( ) A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.下列不等式变形中,一定正确的是( ) A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 二、填空题13.不等式21302x --的非负整数解共有__个. 14.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.17.如图,数轴上所表示关于x 的不等式组的解集是__________.18.若不等式12x x -<的解都能使关于x 的一次不等式()11a x a -<+成立,则a 的取值范围是________. 19.某次知识竞赛共有10题,答对一题得10分,答错或不答扣5分,小华得分要超过70分,他至少要答对__________题20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.现对x ,y 定义一种新的运算T ,规定:(,)++=+ax by c T x y x y (其中a ,b ,c 为常数,且0abc ≠).例如:10(1,0)10⨯+⨯+==++a b c T a c . 已知(3,1)2,(2,3) 2.8,(1,1)3-===T T T .(1)求a ,b ,c 的值;(2)求关于m 的不等式组(4,54)3,(2,32)1T m m T m m -<⎧⎨->⎩的整数解. 22.解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.再求它的所有的非负整数.23.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题:(1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.24.已知线段12AB =,点C ,E ,F 在线段AB 上,E 是线段AC 的中点.(1)如图1,当F 是线段BC 的中点时,求线段EF 的长;(2)如图2.当F 是线段AB 的中点时,EF a =,①求线段AC 的长(结果可用含a 的代数式表示);②若a 为正整数,请写出所有满足条件的a 的值.25.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩26.已知一次函数y x b =+的图像经过点(1,3)A -.(1)求该函数的表达式;(2)x 取何值时,0y >?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】解出不等式,在进行判断即可;【详解】251x -+≥,24x -≥-,2x ≤,解集表示为:;故答案选C .【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.A解析:A【分析】利用函数图象,写出在x 轴上方且函数y=kx+b 的函数值小于函数y=mx 的函数值对应的自变量的范围即可.【详解】解:当x >﹣2时,y =kx +b >0;当x <﹣1时,kx +b <mx ,所以不等式组0<kx +b <mx 的解集为﹣2<x <﹣1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】 解:根据题意得,他买西瓜每斤平均价是300200500x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y +, 解之得,x >y .所以赔钱的原因是x >y .故选:B .【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.8.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.9.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C.【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.二、填空题13.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.14.【分析】先将m看做常数解方程组求出再代入可得关于m的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题解析:72 m<【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.17.【分析】数轴的某一段上面表示解集的线的条数与不等式的个数一样那么这段就是不等式组的解集实心圆点包括该点空心圆圈不包括该点>向右<向左两个不等式的公共部分就是不等式组的解集【详解】解:由图示可看出从- 解析:12x -<≤【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是空心圆,表示x>-1;从2出发向左画出的折线且表示2的点是实心圆,表示x≤2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:12x -<≤.故答案为:12x -<≤.【点睛】本题考查在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】求出不等式的解求出不等式的解集得出关于a 的不等式求出a 即可【详解】解:解不等式可得∵不等式的解都能使不等式成立∴∴解得故答案为:【点睛】本题考查解一元一次不等式不等式的性质等知识点能根据已知 解析:113a ≤< 【分析】 求出不等式12x x -<的解,求出不等式()11a x a -<+的解集,得出关于a 的不等式,求出a 即可.【详解】 解:解不等式12x x -<可得2x >-, ∵不等式12x x -<的解都能使不等式()11a x a -<+成立, ∴10a -<,11a x a +>-, ∴121a a +≤--, 解得113a ≤<, 故答案为:113a ≤<. 【点睛】本题考查解一元一次不等式,不等式的性质等知识点,能根据已知得到关于a 的不等式是解此题的关键..19.9【分析】设答对x 题则答错10-x 题然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可【详解】解:设答对x 题则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8故答解析:9【分析】设答对x 题,则答错10-x 题,然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可.【详解】解:设答对x 题,则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8.故答案为9.【点睛】本题考查了一元一次不等式的应用,设出未知数、确定不等关系、列出不等式是解答本题的关键.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)231a b c =⎧⎪=⎨⎪=⎩;(2)关于m 的不等式组(4,54)3(2,32)3T m m T m m -<⎧⎨->⎩的整数解有1,2,3. 【分析】(1)由题意易得323123 2.82311311a b c a b c a b c ⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,然后求解即可; (2)由题意,得243(54)135223(32)113m m m m ⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,则有大于14且小于72的整数有1,2,3,然后问题可求解.【详解】解:(1)由题意,得3231232.82311311a b ca b ca b c⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,整理,得34 23146a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得231abc=⎧⎪=⎨⎪=⎩;(2)由题意,得243(54)135223(32)113m mm m⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,解得17 42 <<m,∵大于14且小于72的整数有1,2,3,∴关于m的不等式组()()4,5432,323T m mT m m⎧-<⎪⎨->⎪⎩的整数解有1,2,3.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.22.0,1,2【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来,写出符合条件的x 的非负整数解即可.【详解】解:3(1)51?124?2x xxx-<+⎧⎪⎨-≥-⎪⎩①②,由①得,x>-2,由②得,73x≤,故此不等式组的解集为:723x-<≤,在数轴上表示为:,它的所有的非负整数解为:0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)33xy=⎧⎨=⎩;(2)B;(3)三种,方案见解析【分析】(1)求方程3x-y=6的正整数解,可给定x一个正整数值,计算y的值,如果y的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支; 或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数. 24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.。

八年级数学下册《一元一次不等式组》典型例题2(含答案)

八年级数学下册《一元一次不等式组》典型例题2(含答案)

《一元一次不等式组》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题8一条铁路线上EA,,,各站之间的路程如图所示,单位为千,DCB米.一列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题9某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题10某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三A,B类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题11有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题12大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题2(附答案) (1)

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题2(附答案) (1)

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题21(附答案) 1.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A .2010x x +>⎧⎨->⎩B .2010x x +>⎧⎨-<⎩C .2010x x +<⎧⎨->⎩D .2010x x +<⎧⎨-<⎩2.已知关于x 的不等式组 12x x m +≥⎧⎨-<⎩有3个整数解,则m 的取值范围是( )A .34m <≤B .4m ≤C .34m ≤<D .3m ≥3.不等式组31x x >⎧⎨≤⎩的解集在数轴上表示为( ) A .B .C .D .4.已知不等式2x−a<0的正整数解恰是1,2,3,则a 的取值范围是() A .6<a<8B .6⩽a ⩽8C .6⩽a<8D .6<a ⩽85.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .6.实数的平方根分别是和,且,则不等式的解集为( ) A .B .C .D .7.不等式组解集为 -1 ≤ x < 1 ,下列在数轴上表示正确的是( ) A .B .C .D .8.在一次“交通安全法规”如识竞赛中,竞赛题共25道题,每道题都给出4个答案,其中只有一个答案正确,选对得3分,不选或错选倒扣1分,得分不低于45分得奖,那么得奖者至少应选对的题数为( ) A .17B .18C .19D .209.甲种蔬菜保鲜适宜的温度是o o 2C~6C ,乙种蔬菜保鲜适宜的温度是o o 3C~8C ,将这两种蔬菜放在一起同时保鲜,适宜 的温度是( ) A .o o 2C~3CB .o o 2C~8CC .o o 3C~6CD .o o 6C~8C10.若a>b,则下列不等式中正确的是:( ) A .a -b<0B .-5a <-5bC .a+8<b -8D .ac 2≤bc 211.若a b >,则下列不等式成立的是( ) A .22a b -<-B .22a b >C .22a b ->-D .22a b< 12.已知关于的不等式组的解集中任意一个的值均不在...的范围内,则的取值范围是( ) A .或B .C .D .或13.已知对||3x =,||2y =,且20x y ++>,则2x y -=______.14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________. 15.12(x-m)>3-32m 的解集为x>3,则m 的值为____. 16.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________.17.不等式2552n n --<的所有正整数解是______.18.如图,已知抛物线y=x 2+bx+c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是________.19.已知关于x 的方程 2x+4 = m+x 的解为负数,则m 的取值范围是____. 20.不等式2x+5≤12的正整数解是___________21.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”).22.不等式2(x ﹣3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_____. 23.如果关于x 的不等式20.53x ->2a与关于x 的不等式5(1-x )<a -20的解集完全相同,则它们的解集为x________.24.一只纸箱质最为1kg,当放入一些苹果(每个苹果的质量为0.3kg),箱子和苹果的总质量不超过10kg,求这只纸箱内最多能装()个苹果A.30 B.31 C.32 D.3325.某单位计划组织员工到地旅游,人数估计在1025之间,甲乙两旅行社的服务质量相同,组织到H地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠,该单位怎样选择,才能使其支付的旅游总费用较少?26.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲乙两种型号设备的价格;(2)该公司决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有那几种购买方案?27.(1)解不等式113xx+<-,并将解集表示在数轴上;(2)解不等式组351,134.3xxx-≤⎧⎪⎨-<⎪⎩①②28.现计划把1240吨甲种货物和880吨乙种货物用一列火车运往某地,已知这列火车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,B型车厢每节费用8000元.如果每节A型车厢最多可装35吨甲种货物和15吨乙种货物,每节B型车厢最多可装25吨甲种货物和35吨乙种货物;(1)那么共有哪几种安排车厢的方案?(2)在上述方案中,哪种方案运费最省、最少运费为多少元?(3)在(1)问下,若两种货物全部售出,且每吨货物售出获利200元,除去运费获利154000元,问:在这种情况下是按哪种方案安排车厢的.29.已知方程组3951x y ax y a+=+⎧⎨-=+⎩的解x,y满足x>0,y>0.请化简:|4a+5|-2|a-4|.30.解方程组或不等式组(1)21321 3223x xx x++⎧->⎪⎨⎪-<⎩(2) 159317x y z x y z x y z ++=⎧⎪-+=⎨⎪-+=⎩31.解不等式:5-()()411x x ---<()223x - 32.解不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,并把其解集表示在数轴上.33.某商场决定从厂家购进甲、乙两种不同款型的名牌衬衫共150件,且购进衬衫的总金额不超过9080元,已知甲、乙两种款型的衬衫进价分别为40元/件、80元/件. (1)问该商场至少购买甲种款型的衬衫多少件?(2)若要求甲种款型的件数不超过乙种款型的件数,问有哪些购买方案?请分别写出来.34.解不等式组2+1)5733x x x x <+⎧⎪+⎨≤+⎪⎩(,并写出它的非负整数解.35.(1)计算:201(5)3tan 30|13π︒-++-.(2)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.参考答案1.B 【解析】 【分析】由数轴得出不等式组解集,据此可判断各选项是否符合此解集,从而得出答案. 【详解】解:由数轴知不等式组的解集为﹣2<x <1, 而2010x x +>⎧⎨-<⎩的解集为﹣2<x <1,故选:B . 【点睛】本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分. 2.A 【解析】 【分析】首先计算出不等式组的解集1≤x <m ,再根据不等式组的整数解确定m 的范围即可. 【详解】120x x m +≥⎧⎨-<⎩①②, 由①得:x≥1, 由②得:x <m ,不等式组的解集为:1≤x <m , ∵整数解共有3个, ∴整数解为:1,2,3, ∴34m <≤. 故选A. 【点睛】本题主要考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定m 的范围,是解决本题的关键.3.D【解析】【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【详解】解:不等式组31xx>⎧⎨≤⎩的解集在数轴上表示为.故选:D.【点睛】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D【解析】【分析】根据题目中的不等式可以求得x的取值范围,再根据不等式2x-a<0的正整数解恰是1,2,3,从而可以求得a的取值范围.【详解】由2x−a<0得,x<0.5a,∴不等式2x−a<0的正整数解恰是1,2,3,∴0.5a>3且0.5a⩽4,解得,6<a⩽8,故选D.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则.5.C【解析】 【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围. 【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限, ∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩,解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选:C . 【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限. 6.A 【解析】 【分析】先根据平方根求出a 的值,再求出m ,求出t ,再把t 的值代入不等式,求出不等式的解集即可. 【详解】∵3a−22和2a−3是实数m 的平方根, ∴3a−22+2a−3=0, 解得:a=5, 3a−22=−7, 所以m=49,=7,∵,∴,解得:,故选:A【点睛】此题考查平方根,不等式的解集,解题关键在于掌握运算法则7.C【解析】【分析】根据已知解集确定出数轴上表示的解集即可.【详解】不等式组解集为-1≤x<1,表示在数轴上为:,故选C.【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【解析】【分析】首先设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得出不等式,解得即可.【详解】解:设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得,3x-(25-x)≥45解得x ≥352又题数为整数,则至少应为18. 故答案为B. 【点睛】此题主要考查不等式的实际应用,关键是找出关系式,需要注意的是取整数. 9.C 【解析】 【分析】根据“2℃~6℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】设温度为x ℃,根据题意可知2x 63x 8≤≤⎧⎨≤≤⎩解得3≤x≤6.适宜的温度是3°C ~6°C . 故选:C 【点睛】此题主要考查了一元一次不等式组的应用,关键是弄懂题意,列出不等式,根据不等式组解集的确定规律:大小小大中间找确定出x 的解集. 10.B 【解析】 【分析】运用不等式的性质进行判断. 【详解】A 、当a >b 时,不等式两边都减b ,不等号的方向不变得a-b >0,故A 错误;B 、当a >b 时,不等式两边都乘以-5,不等号的方向改变得-5a <-5b ,故B 正确;C 、因为a>b,则a+8>b+8>b-8,故C 错误;D 、因为c 2≥0,所以ac 2≥bc 2,故D 错误. 故选B .【点睛】考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 11.B 【解析】 【分析】直接利用不等式的基本性质分别判断得出答案. 【详解】 解:A 、∵a >b ,∴a -2>b -2,故此选项错误; B 、∵a >b ,∴2a >2b ,故此选项正确; C 、∵a >b ,∴-2a <-2b ,故此选项错误; D 、∵a >b , ∴2a >2b,故此选项错误. 故选:B . 【点睛】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键. 12.D 【解析】 【分析】解不等式组,可得不等式组的解集,根据不等式组的解集与0≤x≤4的关系,可得答案. 【详解】 解:解,得a−1<x≤a +2,由不等式组的解集中任意一个x 的值均不在0≤x≤4的范围内,得a +2<0或a−1≥4, 解得:a≥5或a <−2,故选:D .【点睛】本题考查了不等式的解集,利用解集中任意一个x 的值均不在0≤x≤4的范围内得出不等式是解题关键.13.-1或7或-7.【解析】【分析】 由3x =,2y =得到3,2x y =±=±,再结合20x y ++>求出x 、y 的值,代入计算即可.【详解】 解:∵3x =,2y =,∴3,2x y =±=±,∵20x y ++>,∴2x y +>-,∴32x y =⎧⎨=⎩,32x y =⎧⎨=-⎩,32x y =-⎧⎨=⎩, 2x y ∴-=-1或7或-7.故答案是:-1或7或-7.【点睛】本题考查了绝对值的计算和不等式的知识,掌握绝对值的性质是关键.14.-0.5<m<7.【解析】【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-7+m <0,2m+1<0,求不等式组的解集即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即70 210mm-+⎧⎨+⎩<<,解得-0.5<m<7.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.3 2【解析】【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【详解】去括号得:12x−12m>3−32m,移项得:12x>3−32m+12m,合并同类项得;12x>3−m,系数化为1得;x>6-2m,∵不等式的解集为x>3,∴6-2m=3,解得:m=32,故答案为:32.【点睛】考查了解一元一次不等式,和解一元一次方程组,根据不等式的解集为x>3列出关于m的方程是解题的关键.16.12 x<【解析】【分析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =, 且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <. 故答案为:12x <【点睛】 本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键. 17.1,2【解析】【分析】先解得不等式2n-5<5-2n 的解集为n <2.5,则不等式2n-5<5-2n 的正整数解为1,2.【详解】2552n n --<移项、合并同类项得4n <10,系数化为1得n <2.5,所以不等式2n-5<5-2n 的正整数解为1,2.【点睛】本题考查一元一次不等式和正整数,解题的关键是掌握解一元一次不等式和正整数的定义. 18.1(在﹣2<b <2范围内的任何一个数)【解析】【分析】把(0,-3)代入抛物线的解析式求出c 的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【详解】把(0,-3)代入抛物线的解析式得:c=-3,∴y=x2+bx-3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx-3得:y=1+b-3<0把x=3代入y=x2+bx-3得:y=9+3b-3>0,∴-2<b<2,即在-2<b<2范围内的任何一个数都符合,故答案为1(在-2<b<2范围内的任何一个数).【点睛】本题考查了对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解题的关键.19.m<4【解析】试题分析:3x=m-4,解得:x=43m-,根据题意可得:43m-<0,解得:m<4.考点:一元一次方程.20.1,2,3【解析】【分析】先求出不等式的解集,再求出整数解即可.【详解】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为1,2,3.【点睛】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.21.>【解析】【分析】在a b <的基础上两边同时乘以b ,根据不等式的性质解题即可【详解】∵0,0a b <<,且a b <∴不等式两边同时乘以b 得:2ab b >故答案为>【点睛】本题考查不等式的性质,注意不等式两边同时乘以一个负数不等式要变号是解题的关键. 22.﹣1.5≤a <﹣0.5【解析】【分析】首先求得不等式的解集,然后根据不等式的自然数解只有0、1、2三个,即可得到一个关于a 的不等式,从而求得a 的范围.【详解】解:解不等式得:x≤a+3.5.不等式的自然数解只有0、1、2三个,则自然数解是:0,1,2.根据题意得:2≤a+3.5<3,解得:﹣1.5≤a <﹣0.5.故答案为﹣1.5≤a <﹣0.5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.23.>4【解析】【分析】根据不等式的解集相同,可得关于a 的方程,根据解方程,可得答案.【详解】由不等式20.532x a -> 解得x >314a +, 由5(1-x )<a-20解得x >25a 5-. 关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a -20的解集完全相同,得 3125a 45a +-=. 解得a=5,关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a-20解集为x >4, 故答案为:>4.【点睛】本题考查了不等式的解集,利用不等式的解集相同得出关于a 的方程式解题关键. 24.A【解析】【分析】根据“箱子和苹果的总质量不超过10 Kg”列出不等式进行求解即可.【详解】解:设这只纸箱内装了x 个苹果,根据题意得0.3x+1≤10解得x≤30所以的最大值是30.【点睛】本题主要考查不等式的应用,找出题中的等量关系列出不等式即可.25.当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【解析】【分析】去的人数是变量可设为x ,在两个旅行社提出的不同优惠条件下根据公式:旅游费用=优惠前总费用-优惠费,分别列出解析式y 1 和y 2 ,然后根据两解析式大小比较来解题.【详解】设人数为x 人,该单位选择甲乙两旅行社分别支付的旅游费用为y 1 和y 2.则y 1=200×0.75x=150xy 2=200×0.8(x-1)=160x-160由y 1=y 2得:150x=160x-160解得x=16由y 1>y 2得:150x >160x-160解得x <16由y 1<y 2得:150<160x-160解得x >16答:当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【点睛】此题考查一次函数的应用,一元一次不等式的应用,解题关键在于分情况对费用进行讨论从而得出人数.26.(1)甲设备每台12万元,乙设备每台10万元.(2)有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【解析】【分析】(1)设设甲设备每台x 万元,乙设备每台y 万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”列出二元一次方程组可以求解;(2)设购买甲设备a 台,根据购买甲型设备不少于3台,和购买甲、乙两种新设备的资金不超过110万元,列出不等式组,根据不等式组的整数解得出购买方案.【详解】(1)设甲设备每台x 万元,乙设备每台y 万元,由题意得:3216326x y y x -=⎧⎨-=⎩解得:1210x y =⎧⎨=⎩, 答:甲设备每台12万元,乙设备每台10万元.(2)设购买甲设备a 台,则购买乙设备()10a -台,由题意得:()3121010110a a a ≥⎧⎪⎨+-≤⎪⎩解得:35a ≤≤, 又∵a 为整数,∴3a =,或4a =,或5a =,因此有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【点睛】考查一元一次不等式组和二元一次方程组的应用,分析题目中数量关系是列不等式组和方程组的关键,通过方程组确定价格,通过不等式组的整数解确定购买方案.27.(1)2x >,这个不等式的解集在数轴上的表示如图所示见解析;(2)12x <≤.【解析】【分析】(1)根据不等式性质进行解不等式;(2)分别解不等式,再求不等式组的解集.【详解】(1)去分母,得133x x +<-,移项,合并同类项,得24x -<-,系数化为1,解得2x >.这个不等式的解集在数轴上的表示如图所示:(2)解不等式①,得2x ≤.解不等式②,得1x >.∴不等式组的解集为12x <≤.【点睛】考核知识点:解不等式和不等式组.掌握一般步骤是关键.28.(1)共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)当A 车厢用26节时,总运费最少,最少为268000元;(3)按A 车厢25节,B 车厢15节安排的车厢.【解析】【分析】(1)关系式为:35×A 车厢节数+25×B 车厢节数≥1240;15×A 车厢节数+35×B 车厢节数≥880;(2)运费=6000×A 车厢节数+8000×B 车厢节数,结合(1)中的自变量的取值求解;(3)算出毛利润,减去154000,得到运费,把运费代入(2)即可得到方案.【详解】(1)设A 车厢用x 节,由题意,得3525401240? 153540880x x x x +⨯-≥⎧⎨+⨯-≥⎩()() 解得24≤x≤26,∴共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)总运费为:6000x+8000×(40-x )=-2000x+320000,当x 值越大时费用越小,故当A 车厢用26节时,总运费最少,最少为268000元,答:当A 车厢用26节时,总运费最少,最少为268000元;(3)200×(1240+880)-154000=-2000x-320000,解得x=25,所以是按A 车厢25节,B 车厢15节安排的车厢.【点睛】此题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,及所求量的等量关系.29.6a -3.【解析】【分析】先解方程组,得出x 和y 的值后,满足x >0,y >0,再化简|4a +5|-2|a -4|.【详解】3951x y a x y a +=+⎧⎨-=+⎩①② ①+②,得x =4a +5.③将③代入①,得y =-a +4.∵x >0,y >0,∴4a +5>0,-a +4>0,∴a -4<0.∴|4a +5|-2|a -4|=4a +5+2(a -4)=4a +5+2a -8=6a -3.【点睛】此题重点考察学生对二元一次方程组解的应用和整式化简的应用,熟练二元一次方程组的解法是解题的关键.30.(1)原不等式组的解集是 2.x <- (2) 122.x y z =⎧⎪=-⎨⎪=⎩【解析】【分析】(1)先求出两个不等式的解集,再求其公共解;(2)先消掉z ,得到关于x 、y 的二元一次方程,联立组成方程组求出x 、y 的值,然后代入方程③求解即可.【详解】 (1)213213223x x x x ++⎧->⎪⎨⎪-<⎩①②,解不等式①,()()2213326,x x +-+>42966,x x +-->510,x <-2,x <-解不等式②,23x x -<,3x ,<所以,原不等式组的解集是 2.x <-(2) 159317x y z x y z x y z ①②③,++=⎧⎪-+=⎨⎪-+=⎩①−②得,24y =-④,③−①得,8x −4y =16,即2x −y =4⑤,联立2424,y x y =-⎧⎨-=⎩④⑤ 解得12x y =⎧⎨=-⎩, 把x =1,y =−2代入③得,9617z ++=,解得z =2,所以,原方程组的解是122.x y z =⎧⎪=-⎨⎪=⎩【点睛】考查解一元一次不等式组,解三元一次方程组,掌握解题的步骤是解题的关键.31.x <23. 【解析】【分析】先移项,再分别运用平方差公式和完全平方公式进行去括号,合并同类项,系数化为1,从而得解.【详解】5-()()411x x ---<()223x - 5-()()411x x ----()223x -<0 5+4x 2-4-4x 2+12x-9<012x <8x <23. 【点睛】此题主要考查了解一元一次不等式,运用平方差公式和完全平方公式去括号是解此题的关键.32. 2.54x-<≤【解析】【分析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【详解】131722523(1)x xx x⎧--⎪⎨⎪+>-⎩①②解不等式①,得4x≤解不等式②,得 2.5x>-,把不等式的解集在数轴上表示为:所以原不等式组的解集为{| 2.54}x x-<≤.【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则33.(1)甲至少购买73件;(2)共3种方案.见详解【解析】【分析】(1)直接利用购进衬衫的总金额不超过9080元,进而得出不等式求出答案;(2)利用甲种款型的件数不超过乙种款型的件数,得出不等式结合(1)所求,进而得出答案.【详解】解:(1)设该商场购买甲种款型的衬衫x件,则购进乙种款型的衬衫(150-x)件,根据题意可得:40x+80(150-x)≤9080,解得:x≥73,答:该商场至少购买甲种款型的衬衫73件;(2)根据题意可得:x ≤150-x ,解得:x ≤75,∴73≤x ≤75,∵x 为正整数,∴x=73,74,75,∴购买方案有三种,分别是:方案一:购买甲种款型的衬衫73件,乙种款型77件;方案二:购买甲种款型的衬衫74件,乙种款型76件;方案三:购买甲种款型的衬衫75件,乙种款型75件.【点睛】本题考查了一元一次不等式的综合运用,重点掌握解应用题的步骤.难点是正确列出不等量关系.34.13x -≤<,非负整数解是0,1,2.【解析】【分析】先求出每一个不等式的解集,得到不等式组的解集,然后找到非负整数解即可.【详解】解:解不等式①得3x <,解不等式②得1x -≥,∴此不等式组的解集是13x -≤<,∴此不等式组的非负整数解是0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.35.(1)1;(2) 1<x <4.【解析】【分析】(1)先根据零指数幂、有理数乘方的法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.(2)分别求出不等式的解集,即可解答【详解】解:(1)原式=﹣1+1+3×3+1=1;(2)3(2)42113x xxx-->⎧⎪⎨+>-⎪⎩①②,由①得:x>1,由②得:x<4,则不等式组的解集为1<x<4.【点睛】此题考查负整数指数幂,零指数幂,实数的运算,特殊角的三角函数值,解一元一次不等式组,掌握运算法则是解题关键。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不等式组3xx a>⎧⎨>⎩的解是x>a,则a的取值范围是()A.a<3 B.a=3 C.a>3 D.a≥32、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A.24人B.23人C.22人D.不能确定3、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A.B.C.D.4、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9 B.8 C.7 D.65、已知关于x的不等式3226x a xx a-≥⎧⎨+≤⎩无解,则a的取值范围为()A.a<2 B.a>2 C.a≤2D.a≥26、如果a>b,下列各式中正确的是()A.﹣2021a>﹣2021b B.2021a<2021bC.a﹣2021>b﹣2021 D.2021﹣a>2021﹣b7、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量()A.小于12件B.等于12件C.大于12件D.不低于12件8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A .关于x 的不等式ax +b >0的解集是x >2B .关于x 的不等式ax +b <0的解集是x <2C .关于x 的方程ax +b =0的解是x =4D .关于x 的方程ax +b =0的解是x =210、若点()2,1A a a -+在第一象限,则a 的取值范围是() A .2a > B .1a 2-<< C .1a <D .无解 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______.2、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2a c _______2bc(3)c -a _______c -b(4)-a |c |_______-b |c |3、不等式3141x +>-的解集是______.4、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.5、如图直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则40x bkx+>⎧⎨+>⎩解集为_____________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?3、已知方程组31313x y mx y m+=-+⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.4、如图,函数y=2x和y=-23x+4的图象相交于点A.(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥-23x+4的解集.5、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.-参考答案-一、单选题1、D【分析】根据不等式组的解集为x >a ,结合每个不等式的解集,即可得出a 的取值范围.【详解】解:∵不等式组3x x a>⎧⎨>⎩的解是x >a , ∴3a ≥,故选:D .【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.2、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数22x ∴=【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、D【分析】由图像可知当x≤-1时,1+≤-,然后在数轴上表示出即可.x b kx【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1+≤-,x b kx∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.4、C【分析】设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.【详解】根据题意得:1100×10x ﹣700≥700×10%, 解得:x ≥7,∴至多可以打7折故选:C .【点睛】本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.5、B【分析】先整理不等式组,根据无解的条件列出不等式,求出a 的取值范围即可.【详解】 解:整理不等式组得:{x ≥x x ≤6−x 2,∵不等式组无解, ∴62a <a ,解得:a >2. 故选:B .【点睛】本题主要考查了不等式组无解的条件,根据整理出的不等式组和无解的条件列出关于a 的不等式是解答本题的关键.6、C【分析】根据不等式的性质即可求出答案.解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B 、∵a >b ,∴2021a >2021b ,故B 错误;C 、∵a >b ,∴a ﹣2021>b ﹣2021,故C 正确;D 、∵a >b ,∴2021﹣a <2021﹣b ,故D 错误;故选:D .【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.7、C【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.8、B观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是2x>-,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.10、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组2010a a ->⎧⎨+>⎩,再解不等式组即可得到答案. 【详解】 解: 点()2,1A a a -+在第一象限,2010a a ①②由①得:2,a <由②得:1,a12,a 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.二、填空题1、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.2、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >,∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、|a |-a ≥0 x -(-5)≤2 23a a -> 2220x -<【分析】(1)a 的绝对值表示为:a ,根据与它本身的差是非负数,即可列出不等式;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,综合即可列出不等式;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,综合即可列出不等式;(4)x 与2的平方差表示为:222x -,负数表示为:0<,综合即可列出不等式.【详解】解:(1)a 的绝对值表示为:a ,与它本身的差是非负数, 可得:0a a -≥;(2)x 与-5的差表示为:()5x --,不大于2表示为:2≤,可得:()52x --≤;(3)a 与3的差表示为:3a -,大于a 与a 的积表示为:2a >,可得:23a a ->;(4)x 与2的平方差表示为:222x -,负数表示为:0<,可得:2220x -<; 故答案为:①0a a -≥;②()52x --≤;③23a a ->;④2220x -<.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.5、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.三、解答题1、(1)每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①y =﹣80x +24000;②商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,然后根据“销售10台A 型和20台B 型电脑的利润为6400元,销售20台A 型和10台B 型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出x 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得,1020640020105600x y x y +=⎧⎨+=⎩, 解得160240x y =⎧⎨=⎩. ∴每台A 型电脑销售利润为160元,每台B 型电脑的销售利润为240元;(2)①设购进A 型电脑x 台,这100台电脑的销售总利润为y 元,据题意得,y =160x +240(100﹣x ),即y =﹣80x +24000,②∵100﹣x ≤2x ,∴x ≥3313,∵y =﹣80x +24000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时y =-80×34+24000=21280(元),即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.2、(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=- 解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a ⨯⨯+⨯=+方案二:206400.8100.82128a a +⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a +解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a +解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.3、(1)﹣2<m ≤3;(2)﹣1【分析】(1)先求出二元一次方程组的解为324x m y m =-⎧⎨=--⎩,然后根据x 为非正数,y 为负数,即x ≤0,y <0,列出不等式求解即可;(2)先把原不等式移项得到(2m +1)x <2m +1.根据不等式(2m +1)x ﹣2m <1的解为x >1,可得2m +1<0,由此结合(1)所求进行求解即可.【详解】解:(1)解方程组31313x y m x y m +=-+⎧⎨-=+⎩①②用①+②得:4412x m =-,解得3x m =-③,把③代入②中得:313m y m --=+,解得24y m =--,∴方程组的解为:324x m y m =-⎧⎨=--⎩. ∵x 为非正数,y 为负数,即x ≤0,y <0,∴30240m m -≤⎧⎨--⎩<. 解得﹣2<m ≤3;(2)(2m +1)x ﹣2m <1移项得:(2m +1)x <2m +1.∵不等式(2m +1)x ﹣2m <1的解为x >1,∴2m +1<0,解得m 12-<.又∵﹣2<m ≤3,∴m 的取值范围是﹣2<m 12-<.又∵m 是整数,∴m 的值为﹣1.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.4、 (1) (32,3);(2) x ≥32. 【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得2,24,3y x y x =⎧⎪⎨=-+⎪⎩解得3,23.x y ⎧=⎪⎨⎪=⎩ ∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32. 【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.5、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为x 元,乙为y 元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案.【详解】解:(1)解:设甲型号手机每部进价为x 元,乙为y 元,由题意得.200329600x y x y -=⎧⎨+=⎩,解得20001800x y =⎧⎨=⎩答:甲型号手机每部进价为2000元,乙为1800元.(2)设甲型号进货a 台,则乙进货()20a -台,由题意可知()8200018002038000a a a ≥⎧⎨+-≤⎩解得810a ≤≤ 故8a =或9或10,则共有3种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.。

北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析

北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析

北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。

第3章一元一次不等式 单元达标测试题 2022-2023学年浙教版八年级数学上册

第3章一元一次不等式 单元达标测试题 2022-2023学年浙教版八年级数学上册

2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》单元达标测试题(附答案)一、选择题(共30分)1.如果a>b,可知下面哪个不等式一定成立()A.﹣a>﹣b B.<C.a+b>2b D.a2>ab2.不等式组的解集在数轴上用阴影表示正确的是()A.B.C.D.3.若x<y成立,则下列不等式成立的是()A.x﹣2<y﹣2B.4x>4y C.﹣x+2<﹣y+2D.﹣3x<﹣3y 4.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣35.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g6.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥a C.5a≥3b D.5a=3b7.不等式(x﹣m)>2﹣m的解集为x>2,则m的值为()A.4B.2C.1.5D.0.58.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约是()A.1小时~2小时B.2小时~3小时C.3小时~4小时D.2小时~4小时9.小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种10.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13B.14C.15D.16二、填空题(共24分)11.x的与5的差不小于3,用不等式表示为.12.设x>y,则x+2y+2,﹣3x﹣3y,x﹣y0,x+y2y.13.如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x的取值范围是.14.在某校有住校男生若干名,若每间宿舍住4名,则还剩下20名未住下;若每间住宿8名,则一部分宿舍没住满,且无空房.该校共有男生名.15.如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.16.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.三、解答题(共66分)17.解不等式(组):(1)2x﹣1>;(2).18.若关于x的不等式(2a﹣b)x+3a﹣4b<0的解集是,试求关于x的不等式(a﹣4b)x+2a﹣3b<0的解集.19.已知方程2x﹣ax=3的解是不等式5(x﹣2)﹣7<6(x﹣1)﹣8的最小整数解,求代数式4a﹣的值.20.已知关于x的不等式≤的解集是x≥,求m的值.21.某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?22.已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.23.在一次高速铁路建设中,某渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方.已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?24.为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).参考答案一、选择题(共30分)1.解:A、∵a>b,∴﹣a<﹣b,故本选项不符合题意;B、∵a>b,∴当a与b同号时有,当a与b异号时,有,故本选项不符合题意;C、∵a>b,∴a+b>2b,故本选项符合题意;D、∵a>b,且a>0时,∴a2>ab,故本选项不符合题意;故选:C.2.解:不等式组整理得:,∴不等式组的解集为x≤﹣3,故选:C.3.解:(A)∵x<y,∴x﹣2<y﹣2,故选项A成立;(B)∵x<y,∴4x<4y,故选项B不成立;(C)∵x<y,∴﹣x>﹣y,∴﹣x+2>﹣y+2,故选项C不成立;(D)∵x<y,∴﹣3x>﹣3y,故选项D不成立;故选:A.4.解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.5.解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.6.解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故选:C.7.解:去括号得x﹣m>2﹣m,移项、合并得x>2﹣m,解得x>6﹣2m,因为不等式(x﹣m)>2﹣m的解集为x>2,所以6﹣2m=2,解得m=2.故选:B.8.解:设某人所用的时间为x小时,故≤x,解得:2≤x≤4故选:D.9.解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.10.解:设要答对x道.10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.二、填空题(共28分)11.解:根据题意得:x﹣5≥3.故答案为:x﹣5≥3.12.解:设x>y,则x+2>y+2,﹣3x<﹣3y,x﹣y>0,x+y>2y.13.解:根据题意得:1<1﹣2x<2,解得:﹣<x<0,则x的范围是﹣<x<0,故答案为:﹣<x<014.解:设该校有男生宿舍x间,那么住校的男生有(4x+20)名.∵每间宿舍住8名,一部分未住满且无空房,∴x间宿舍中必有一宿舍住的人数至少为1人,最多为7人.则,解得,∵x为整数,∴x=6,∴4x+20=44,故该校共有住校男生44名,故答案为:44.15.解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.16.解:根据题意,得50+0.3x≤1200.三、解答题(共66分)17.解:(1)去分母,得2(2x﹣1)>3x﹣1,去括号,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并,得:x>1;(2)解不等式①得x<8,解不等式②得x>1,所以不等式组的解集为1<x<8.18.解:(2a﹣b)x<4b﹣3a,∵x>,∴2a﹣b<0且.∴a=b,将a=b代入2a﹣b<0得,2×b﹣b<0,即b<0,故b<0.∴关于x的不等式(a﹣4b)x+2a﹣3b<0可化为﹣bx<b.∵b<0,∴﹣b>0,∴.19.解:∵5(x﹣2)﹣7<6(x﹣1)﹣8,∴x>﹣3,∴不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解是﹣2,∵x=﹣2是方程2x﹣ax=3的解,解得a=.∴4a﹣=4×﹣=14﹣4=10.20.解:原不等式可化为:4m+2x≤12mx﹣3,即(12m﹣2)x≥4m+3,又因原不等式的解集为x≥,则12m﹣2>0,m>,比较得:=,即24m+18=12m﹣2,解得:m=﹣(舍去).故m无值.21.解:(1)设小明答对了x道题.依题意得5x﹣3(20﹣x)=68.解得x=16.答:小明答对了16道题.(2)设小亮答对了y道题.依题意得因此不等式组的解集为16≤y≤18.∵y是正整数,∴y=17或18.答:小亮答对了17道题或18道题.22.解:(1)∵∴由于该方程组的解都是正数,∴∴a>1(2)∵a+b=4,∴a=4﹣b,∴解得:0<b<3,∴z=2(4﹣b)﹣3b=8﹣5b∴﹣7<8﹣5b<8,∴﹣7<z<823.解:(1)设一辆大型渣土运输车一次运输x吨,一辆小型渣土运输车一次运输y吨,由题意得:,解得:,答:一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为a辆、(20﹣a)辆,由题意可得:,解得:16≤a≤18,故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.答:有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.24.解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.。

华东师大版七年级数学下册第8单元《一元一次不等式》单元检测试题(含答案)

华东师大版七年级数学下册第8单元《一元一次不等式》单元检测试题(含答案)

华东师大版七年级数学下册第8单元《一元一次不等式》单元检测试题(含答案)一.选择题1.a、b都是实数,且a<b,则下列不等式正确的是()A.a+x>b+x B.1﹣a<1﹣b C.5a<5b D.>2.若a>b,则下列各式中一定成立的是()A.b>a B.a﹣c>b﹣c C.ac>bc D.3.不等式x﹣2<3x﹣5的解是()A.x<B.x>C.x<D.x>4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.给出下列数学表达式:①﹣3<0;②4x+3y>0;③x=5;④x2﹣xy+y2;⑤x+2>y﹣7.其中不等式的个数是()A.5个B.4个C.3个D.2个6.已知关于x的不等式组,的整数解共有3个,则m的取值范围是()A.3<m<4B.3≤m<4C.3≤m≤4D.3<m≤47.某社区超市以4元瓶从厂家购进一批饮料,以6元瓶销售近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打()A.六折B.七折C.七五折D.八折8.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3200元,且购买篮球的数量不少于足球数量的一半,若每个篮球80元,每个足球50元.求共有几种购买方案?设购买篮球x个,可列不等式组()A.B.C.D.二.填空题9.今年3月某天的最高气温为12℃,最低气温为﹣1℃,则这天气温t(℃)的变化范围是.10.当k=时,不等式(k﹣2)x|k|﹣2+2>0是一元一次不等式.11.如果a>b,那么2﹣a2﹣b(填“=”、“>”或“<”).12.满足不等式4x﹣9<0的正整数解为.13.若不等式(1﹣a)x>1﹣a的解集是x<1,则a的取值范围是.14.某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是.三.解答题15.解不等式(组):(1)3x+2<9﹣4x;(2).16.解下列不等式(组),并把它们的解集分别表示在数轴上;(1)解不等式:﹣<4;(2)解不等式组:.17.求下列不等式组的整数解.18.为了丰富学生的大课间活动,振海中学到体育用品商店购买篮球和足球,若购买2个篮球和3个足球共需600元,购买3个篮球和1个足球其需550元.(1)求篮球和足球的单价分别是多少元?(2)振海中学决定购买篮球和足球共20个,经商议,体育用品商店决定篮球单价打八折,足球单价不变,若总费用不超过2200元,那么该校最多可以购买多少个篮球?19.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x﹣)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.20.西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?21.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[﹣2.1]=﹣3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,﹣2.1=[﹣2.1]+0.9.请你解决下列问题:(1)[4.8]=,[﹣6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x﹣2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.参考答案一.选择题1.解:A、不等式两边同时加上一个数,不等号方向不变,故A错误;B、不等式两边同时乘以负数,不等号方向改变,故B错误;C、不等式两边同时乘以正数,不等号方向不变,故C正确;D、不等式两边同时除以正数,不等号方向不变,故D错误;故选:C.2.解:根据a>b,不能得b>a,故A不成立;根据不等式两边减同一个数,不等号的方向不变,故B成立;根据不等式两边乘同一个负数,不等号的方向改变,不等式两边乘同一个正数,不等号的方向不变,故C不一定成立;根据不等式两边除以同一个负数,不等号的方向改变,不等式两边除以同一个正数,不等号的方向不变,故D不一定成立;故选:B.3.解:∵x﹣2<3x﹣5∴移项得,﹣2+5<3x﹣x,合并同类项得,2x>3,即x>.故选:B.4.解:解不等式x+1>0,得:x>﹣1,解不等式2x﹣6≥0,得:x≥3,所以不等式组的解集为x≥3,故选:A.5.解:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤,共3个.故选:C.6.解:,由①解得:x≤m,由②解得:x≥1,故不等式组的解集为1≤x≤m,由不等式组的整数解有3个,得到整数解为1,2,3,则m的范围为3≤m<4.故选:B.7.解:设可以打a折,6×﹣4≥4×20%,解得,a≥8,即最多可打八折,故选:D.8.解:设购买篮球x个,则购买足球(50﹣x)个,由题意,得.故选:C.二.填空题9.解:因为最低气温是﹣1℃,所以﹣1≤t,最高气温是12℃,t≤12,则今天气温t(℃)的范围是﹣1≤t≤12.故答案为:﹣1≤t≤12.10.解:∵不等式(k﹣2)x|k|﹣2+2>0是一元一次不等式,∴,解得:k=±3,故答案为:±3.11.解:∵a>b,∴﹣a<﹣b,∴2﹣a<2﹣b,故答案为:<.12.解:4x﹣9<0,4x<9,解得,x<,∴不等式的正整数解是1,2;故答案为:1,2.13.解:∵不等式(1﹣a)x>1﹣a的解集是x<1,∴1﹣a<0,解得:a>1.故答案为:a>1.14.解:设购买x块彩色地砖,则购买块单色地砖,依题意得:,解得:<x<,又∵x,均为正整数,∴x可以取24,27.∴当x=24时,=60;当x=27时,=55.故答案为:购买24块彩色地砖、60块单色地砖(或购买27块彩色地砖、55块单色地砖).三.解答题15.解:(1)移项得:3x+4x<9﹣2,合并同类项得:7x<7,把x的系数化为1得:x<1;(2)由①得x<1,由②得x≤﹣,∴不等式组的解集为x≤﹣.16.解:(1)原不等式变化为﹣(2x﹣2)<12,∴2x﹣2>﹣12,∴x>﹣5,在数轴上表示为:;(2)原不等式组转化为,化简为,∴不等式组的解集为:﹣1<x≤5.在数轴上表示为:.17.解:由①得:x>1,由②得:x≤4,∴不等式组的解集为1<x≤4.∴不等式组的整数解是:2,3,4.18.解:(1)设每个篮球的售价为x元,每个足球的售价为y元,依题意,得:,解得:.答:每个篮球的售价为150元,每个足球的售价为100元.(2)设振海中学购买m个篮球,则购买(20﹣m)个足球,根据题意,得150×80%m+100×(20﹣m)≤2200,解得:m≤10,答:该校最多可以购买10个篮球.19.解:(1)解方程3x﹣1=0得:x=,解方程x+1=0得:x=﹣,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:<x<,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式<,得:x<,∴不等式组的解集为﹣1<x<,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x﹣)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m<﹣x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.20.解:(1)设组建中型图书角x个,则组建小型图书角(30﹣x)个,依题意得:,解得:18≤x≤20,又∵x为整数,∴x可以取18,19,20,∴共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)选择方案1的费用为860×18+570×12=22320(元);选择方案2的费用为860×19+570×11=22610(元);选择方案3的费用为860×20+570×10=22900(元).∵22320<22610<22900,∴方案1费用最低,最低费用是22320元.21.解:(1)[4.8]=4,[﹣6.5]=﹣7.故答案为:4,﹣7.(2)如果[x]=3.那么x的取值范围是3≤x<4.故答案为:3≤x<4.(3)如果[5x﹣2]=3x+1,那么3x+1≤5x﹣2<3x+2.解得:≤x<2.∵3x+1是整数.∴x=.故答案为:.(4)∵x=[x]+a,其中0≤a<1,∴[x]=x﹣a,∵4a=[x]+1,∴a=∵0≤a<1,∴0≤<1,∴﹣1≤[x]<3,∴[x]=﹣1,0,1,2.当[x]=﹣1时,a=0,x=﹣1,当[x]=0时,a=,x=,当[x]=1时,a=,x=1,当[x]=2时,a=,x=2,∴x=﹣1或或1或2。

初中数学一元一次不等式的应用综合练习2(附答案)

初中数学一元一次不等式的应用综合练习2(附答案)

初中数学一元一次不等式的应用综合练习2(附答案)1.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式()7811x x +>,则横线的信息可以是( )A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本2.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A .6折B .7折C .8折D .9折 3.“x 的2倍与3的差不大于8”列出的不等式是( )A .2x 38-≤B .2x 38-≥C .2x 38-<D .2x 38-> 4.某中学的高中部在A 校区,初中部在B 校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A 校区的每位高中学生往返车费是6元,B 校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多各有多少学生参加.5. 某超市分别以每盏150元,190元的进价购进A ,B 两种品牌的护眼灯,下表是近两天的销售情况.(1)求A ,B 两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B 品牌的护眼灯最多采购多少盏?6.京东商城A 品牌电脑的定价是a 元/台,最近,该商城对A 品牌电脑举行团购促销活动,设有两种优惠方案,方案一:不论团购数量,每台均按定价的九折销售;方案二:若团购数量不超过5台,每台按定价销售,若团购数量超过5台,超过的部分每台按定价的八折销售,某校为了创建义务教育管理标准化的需要,决定从京东商城团购A 品牌电脑x 台(x >5).(1)当x=12时,应选择哪种方案,该校购买费用最少?最少费用是多少元?(结果用含a的代数式表示)(2)若该校采用方案一购买比方案二购买更合算,求x的最大值.7.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.8.风筝又称“纸鸢”、“鸢儿”,放风筝是民间传统游戏之一,也是清明时节人们所喜爱的活动.小李打算抓住这一机遇,以每个20元的成本制作了30个风筝,再以每个40元的价格售出,很快就被一抢而空,于是小李计划加紧制作第二批风筝.(1)预计第二批风筝的成本是每个15元,仍以原价出售,若两批风筝的总利润不低于2850元,则第二批至少应该制作多少个风筝?(2)在实际制作过程中,小李按照(1)中风筝的最低数量进行制作,但制作风筝的成本比预期的15元多了a%(a>10),于是小李决定将售价也提高a%,附近的商户受到小李的启发,也纷纷卖起了风筝,在市场冲击下,小李实际还剩下12a%的风筝没卖出去,但仍然比第一次获利多1668元,求a的值.9.某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B 型智能扫地机器人多少个?10.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?11.某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.12.问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号来确定它们的大小,要比较代数式M 、N 的大小,只要作出它们的差M N -,若0M N ->,则M N >.若0M N -=,则M N =.若0M N -<,则M N <.问题解决:如图,试比较图①、图②两个矩形的周长1C 、2C 的大小()b c >;主图形得:12()242C a b c b a b c =+++=++;22(3)224C a c b c a b c =-++=++,122422242()C C a b c a b c b c -=++---=-,∵b c >,∴2()0b c ->,则12C C >;类比应用:(1)用材料介绍的“作差法”比较2631x x ++与2532x x +-的大小;联系拓展:(2)小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图3所示(其中0b a c >>>),售货员分别可按图4、图5、图6三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.13.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) 销售时段销售数量销售收入A 种型号种型号 第一周3台 4台 1200元 第二周 5台 6台 1900元 (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于1240元,则每千克这种水果的标价至少是多少元?15.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?16.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.17.“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元,我想买一盒饼干和一袋牛奶.阿姨:小朋友,本来你用10元钱买一盒饼干是有剩的,但是要再买一袋牛奶钱就不够了,不过今天是儿童节,饼干打九折,两样东西请你拿好,还要找你8角钱.如果每盒饼干和每袋牛奶的标价分别是x元,y元,请你根据以上信息,回答下列问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.18.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?19.某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?20.某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?21.某文具店用1200元购进了A、B两种羽毛球拍.已知A种羽毛球拍进价为每副12元,B种羽毛球拍进价为每副10元.文教店在销售时A种羽毛球拍售价为每副15元,B种羽毛球拍售价为每副12元,全部售完后共获利270元.(1)求这个文教店购进A、B两种羽毛球拍各多少副?(2)若该文教店以原进价再次购进A、B两种羽毛球拍,且购进A种羽毛球拍的数量不变,而购进B种羽毛球拍的数量是第一次的2倍,B种羽毛球拍按原售价销售,而A 种羽毛球拍降价销售.当两种羽毛球拍销售完毕时,要使再次购进的羽毛球拍获利不少于340元,A种羽毛球拍最低售价每副应为多少元?22.列不等式解应用题:某车间有20名工人.每人每天可加工甲种零件5个或乙种零件4个,在这20名工人中,派一部分人加工甲种零件,其余人加工乙种零件.已知每加工一个甲种零件获利16元,每加工一个乙种零件可获利24元.若要使车间每天获利不低于1800元,问至少要派多少人加工乙种零件?三、填空题23.根据数量关系:x的5倍加上1是正数,可列出不等式:__________.24.一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果张明需要100本笔记本,则张明购买______本会出现多买比少买反而付钱少的情况.(写出所有的情况)25.若三角形三边长为3,2x+1,10,则x的取值范围是______.26.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.27.“九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为A(小蟹)、B(中蟹)、C(大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若2只A类蟹、1只B类蟹和3只C 类蟹的价格之和正好是第一批蟹8只的价格,而6只A类蟹、3只B类蟹和2只C类蟹的价格之和正好是第一批蟹12只的价格,且A类蟹与B类蟹每只的单价之比为3:4,根据市场有关部门的要求A、B、C三类蟹的单价之和不低于40元、不高于60元,则第一批大闸蟹每只价格为________元.28.用不等式表示“2x与3的差不小于x的一半” __________________.29.某种笔记本原售价是每本5元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本________________本.30.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.参考答案1.B【解析】【分析】根据不等式的意义即可求解.【详解】由7(x+8)>11x可知条件为:每人分7本,则可多分8个人.故本题选B .【点睛】本题主要考察了不等式的意义,学生们熟练掌握即可求解.2.B【解析】【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于5%,列不等式求解.【详解】解:设打了x折,由题意得900×0.1x-600≥600×5%,解得:x≥7.答:最低可打7折.故选B.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3.A【解析】【分析】x的2倍即2x,不大于8即≤8,据此列不等式.【详解】解:根据题意,得2x-3≤8.故选:A.【点睛】本题考查列一元一次不等式,解题的关键是读懂题意,注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.初中最多有14名学生参加,高中最多有10名学生参加.【解析】试题分析:设参加活动的高中生x人,初中生(x+4)人,根据限制关系“初中生的往返车费+高中生的往返车费≤210”列不等式进行求解即可得.试题解析:设高中有x名学生参加,初中有(x+4)名学生参加,依题意,得6x+10(x+4)≤210,解得x≤1058,∵x为整数,∴x最多为10,∴x+4=14,答:初中最多有14名学生参加,高中最多有10名学生参加.【点睛】本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到题中的不等关系列不等式进行解答.5.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【解析】【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:2680 341670x yx y+=⎧⎨+=⎩,解得:210260 xy=⎧⎨=⎩.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.6.(1)应选方案二,该校购买费用最少,最少费用是10.6a元;(2)x的最大值为9【解析】【分析】(1)根据两个方案的优惠政策,分别求出购买12台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【详解】解:(1)当x=12时:方案一:12×90%a=10.8a(元),方案二:5a+7×80%a=10.6a(元),∵10.6a<10.8a,∴应选方案二,该校购买费用最少,最少费用是10.6a元.(2)依题意得:90%ax<5a+(x-5)×80%a,解得x <10,∵x 为整数,∴x 的最大值为9.【点睛】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.7.(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解析】【分析】(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据表中的数量关系列出关于x 和y 的二元一次方程组,解之即可,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,根据(1)的结果结合图表列出W 关于m 的一次函数,再根据“总件数中B 产品的件数不得超过A 产品件数的2倍”,列出关于m 的一元一次不等式,求出m 的取值范围,再根据一次函数的增减性即可得到答案.【详解】解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:4525120030201200300x y x y +⎧⎨+-⎩==, 解得:1030x y ⎧⎨⎩==, 答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m )件,B 产品的数量为30+(8-m )=(38-m )件, 根据题意得:W=30(10+m )+20(38-m )=10m+1060,由题意得:38-m≤2(10+m ),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.8.(1)第二批至少应该制作90个风筝;(2)a的值是20.【解析】【分析】(1)根据题意可以列出相应的不等式,从而可以解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题.【详解】解:(1)设第二批制作x个风筝,(40﹣15)x+(40﹣20)×30≥2850,解得,x≥90,答:第二批至少应该制作90个风筝;(2)[40(1+a%)﹣15(1+a%)]×90(1﹣12a%)﹣15(1+a%)×90×12a%﹣(40﹣20)×30=1668,解得,a=20或a=5(舍去),答:a的值是20.【点睛】本题考查一元二次方程的应用和一元一次不等式的应用,解答关键是明确题意,找出所求问题需要的条件,利用方程和不等式的思想解答.9.(1)购进A型智能扫地机器人20个,购进B型智能扫地机器人40个;(2)至少需购进B型智能扫地机器人17个.【解析】【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价=单价×数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据总利润=单台利润×购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论.【详解】解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:60 20002600144000x yx y+=⎧⎨+=⎩,解得:2040 xy=⎧⎨=⎩.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据题意得:(3700-2600)m+(2800-2000)(60-m)≥53000,解得:m≥503.∵m为整数,∴m≥17.答:至少需购进B型智能扫地机器人17个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.10.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x元,则:16006000 32x x⨯=+解得:8x=经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则:()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.11.(1) A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A 种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解; (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A ,B 两种型号电风扇的销售单价分别为x 元/台、y 元/台.依题意,得3518004103100x y x y +=⎧⎨+=⎩解得250210x y =⎧⎨=⎩答:A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.依题意,得200a +170(30-a )≤5400,解得a ≤10.答:A 种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.12.(1)22 631532x x x x ++>+-;(2) 图5的方法用绳最短,图6的方法用绳最长【解析】【分析】(1)根据两个代数式之差大于0,即可做出判断;(2)分别表示出图4的捆绑绳长为L 1,图5的捆绑绳长为L 2,图6的捆绑绳长为L 3,进而表示出它们之间的差,即可得出大小关系.【详解】(1)2631x x ++-(2532x x +-)22631532x x x x =++--+23x =+,因为20x ≥,所以230x +>,所以22631532x x x x ++>+-;(2)设图4的捆绑绳长为L 1,则L 1222242448a b c a b c =⨯+⨯+⨯=++,设图5的捆绑绳长为L 2,则L 2222222444a b c a b c =⨯+⨯+⨯=++,设图6的捆绑绳长为L 3,则L 3322232646a b c a b c =⨯+⨯+⨯=++,∵L 1-L 2()44844440a b c a b c c =++-++=>,∴L 1>L 2,∵L 3-L 2()646444220a b c a b c a c =++-++=+>,∴L 3-L 1=()()6464482a b c a b c a c ++-++=-,∵a c >,∴()20a c ->,∴L 3>L 1.∴第二种方法用绳最短,第三种方法用绳最长.【点睛】本题主要考查了整式的混合运算以及不等式的性质,根据已知表示出绳长再利用绳长之差比较是解决问题的关键.13.(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)能,方案有两种:当a=36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a=37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得得到方程,求解即可得到答案.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.由题意得160a+120(30﹣a )≤7500,求解即可得到答案.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,由于a≤3712,且a 应为整数,所以在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种.【详解】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=⎧⎨+=⎩,解得:200{150x y ==, 答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.依题意得:160a+120(30﹣a )≤7500,解得:a≤3712. 答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,∵a≤3712,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,解题的关键是读懂题意,设未知数,找出合适的等量关系和不等式.14.(1)该商店第一次购进水果100千克;(2)每千克这种水果的标价至少是16元.【解析】【分析】(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于1240元列出不等式,然后求解即可得出答案.【详解】解:(1)设该商店第一次购进这种水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得100x=.经检验,100x=是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则()100100220200.5100024001240y y+⨯-⋅+⨯≥++,解得16y≥.答:每千克这种水果的标价至少是16元.【点睛】此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键15.(1)甲种图书的单价为30元/本,乙种图书的单价为45元/本;(2)乙种图书最多能买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一元一次不等式(组)单元综合能力达标测试题2(附答案)1.根据数量关系:2x 减去10不大于10,用不等式表示为( )A .2x 1010->B .x 1010-≥C .2x 1010-≤D .2x 1010-< 2.已知a b <,则下列不等式一定成立的是( )A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <3.下面是嘉嘉和琪琪的对话,根据对话内容,则x 的值可能是( )嘉嘉:我能正确的化简分式22111x x x⎛⎫-÷ ⎪+-⎝⎭;琪琪:我给x 取一个值,使你化简分式后所得代数式的值大于0,你能猜出来我给x 取的值是几吗?A .-1B .1C .0D .24.若点P (a -3,a -1)是第二象限内的一点,则a 的取值范围是( )A .3a >B .3a <C .1a >D .13a <<5.下列变形错误的是( )A .a-c>b-c,则a>bB .2a<2b,则a<bC .-a-c>-b-c,则a>bD .-2a<-2b,则a>b6.不等式2x ﹣1<1的解集在数轴上表示正确的是( )A .B .C .D .7.满足不等式2x >的正整数是( )A .2.5B 5C .-2D .58.若x y >,则下列式子中正确的是( )A .33x y ->-B .33x y ->-C .33x y ->-D .33x y ->-9.若x +a >ax +1的解集为x >1,则a 的取值范围为( )A .a <1B .a >1C .a >0D .a <010.如果关于x 的不等式2≤3x +b <8的整数解之和为7,那么b 的取值范围是( ) A .﹣7≤b ≤﹣4 B .﹣7<b <﹣4 C .﹣7<b ≤﹣4 D .﹣7≤b <﹣4 11.不等式5x ﹣2≤7x+1的负整数解为_____.12.甲乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过元时,在甲商场购物花费比在乙商场购物花费少.13.若不等式组5512x x x m ++⎧⎨-⎩<>的解集是x >1,则m 的取值范围是___________ 14.已知4a b -= ,(3)(4)a b ab -+<.(1)a 的取值范围是______.(2)若22253a a ab b b ++-+=,则+a b 的值是______.15.若不等式组22x a x b b +>⎧⎨-<⎩的解集为-1<x<2,则a =________,b =________. 16.不等式6﹣3x ≥0的非负整数解是_____.17.已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为3≤x <5,则b 的值为______ 18.不等式 2x 60-≤ 解集是_______________.19.己知关于X 的不等式组5x-a 3(1)?2x 17x >-⎧⎨-≤⎩的所有整数解的和为7,则a 的取值范围是_____20.适合条件2 5x <<的整数x 共有__________个.21.某校图书馆为了满足同学们阅读课外书的需求,计划购进甲、乙两种图书共100套,其中甲种图书每套120元,乙种图书每套80元.设购买甲种图书的数量x 套.(1)按计划用11000元购进甲、乙两种图书时,问购进这甲、乙两种图书各多少套?(2)若购买甲种图书的数量要不少于乙种图书的数量的13,购买两种图书的总费用为W 元,求出最少总费用.(3)图书馆在不增加购买数量的情况下,增加购买丙种图书,要求甲种图书与丙种图书的购买费用相同.丙种图书每套100元,总费用比(2)中最少总费用多出1240元,请直接写出购买方案.22.计算3 (2)解方程组2510536x y x y +=-⎧⎨-=⎩(3)解不等式:73(1)4x x +≤-+(并把解集在数轴上表示出来)(4)解不等式组213213232x x x ++⎧->⎪⎨⎪-≥⎩ 23.解不等式:5(2)84x x ->-24.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.25.关于x 的方程2a ﹣3x=6的解是非负数,求a 的取值范围26.(1)解不等式:1223132x x ---≤ (2)解不等式组:3(1)72513x x x x --≤⎧⎪-⎨-<⎪⎩27.在解不等式|x +1|>2时,我们可以采用下面的解答方法:①当x +1≥0时,|x +1|=x +1.∴由原不等式得x +1>2.∴可得不等式组1012x x +≥⎧⎨+>⎩ ∴解得不等式组的解集为x >1.②当x +1<0时,|x +1|=﹣(x +1).∴由原不等式得﹣(x +1)>2.∴可得不等式组10(1)2x x +<⎧⎨-+>⎩∴解得不等式组的解集为x <﹣3.综上所述,原不等式的解集为x >1或x <﹣3.请你仿照上述方法,尝试解不等式|x ﹣2|≤1. 28.解不等式组4151132522x x x x -<+⎧⎪⎨-≤-⎪⎩,并求它的整数解.参考答案1.C【解析】【分析】根据题意,可以用不等式表示出2x 减去10不大于10,本题得以解决.【详解】解:由题意可得,2x 减去10不大于10,用不等式表示为:2x 1010-≤,故选C .【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.2.A【解析】【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,22a b ∴+<+,故本选项正确;B 、a b <,22a b ∴->-,故本选项错误;C 、a b <,c a c b ∴->-,故本选项错误;D 、a b <,22a b ∴<或22a b >,故本选项错误.故选:A .【点睛】本题考查不等式的性质,不等式的基本性质1 :若a<b 和b<c ,则a<c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立. 3.D【解析】先化简分式,然后列出不等式,解不等式即可.【详解】原式=211112x x x x x+-⎛⎫-⋅⎪++⎝⎭=1(1)(1)12x xx--+-=⋅+=1 2x-,∵10 2x->,∴x>1,故选D.【点睛】本题考查了分式化简与一元一次不等式,熟练掌握分式化简是解题的关键.分式加减的本质是通分,乘除的本质是约分.4.D【解析】【分析】根据第二象限点的坐标特征不等式组,求出不等式组的解集即可.【详解】∵点P(a-3,a-1)是第二象限内的一点,∴3010aa-<⎧⎨->⎩,解得:1<a<3,故选D.【点睛】考查了点的坐标和解一元一次不等式组,能得出关于a的不等式组是解此题的关键.5.C【解析】【分析】根据不等式的基本性质对各选项判断后利用排除法求解.解:A、不等式的两边都-c,不等号的方向不变,正确;B、两边都乘以2,不等号的方向不变,正确;C、先给不等式a>b两边同时乘以-1得,-a<-b,再两边同时-c得,-a-c<-b-c,不符合题意;D、两边都乘以-2,不等号的方向改变,正确.【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.6.C【解析】【分析】不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【详解】解:不等式移项合并得:2x<2,解得:x<1,表示在数轴上,如图所示:故选C.【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.D【解析】【分析】在取值范围内找到满足条件的正整数解即可.【详解】x 的正整数解有无数个,不等式2四个选项中满足条件的只有5故选:D.【点睛】考查不等式的解,使不等式成立的未知数的值就是不等式的解.8.C【解析】【分析】根据不等式的基本性质,进行判断即可.【详解】A.根据不等式的性质1,不等式两边同时乘以1-,再加3,即可得33x y --<,故A 选项错误,B.根据不等式的性质2,不等式两边同时乘以13-,可得33x y -<-,故B 选项错误, C.根据不等式的性质1,不等式两边同时减3,可得33x y ->-,故C 选项正确,D.根据不等式的性质3,不等式两边同时乘以3-,可得33x y --<,故D 选项错误. 故选:C.【点睛】此题考查不等式的性质,解题关键在于熟练掌握不等式的基本性质.9.A【解析】【分析】根据已知解集得到1﹣a 为正数,即可确定出a 的范围.【详解】∵x +a >ax +1,∴(1﹣a )x >1﹣a .∵不等式x +a >ax +1的解集为x >1,∴1﹣a >0,解得:a <1.故选A .【点睛】本题考查了不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.10.D【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出不等式组,再求解即可.【详解】解:2≤3x+b<8,即2338x bx b+⎧⎨+<⎩①②∵解不等式①得:x≥23b -,解不等式②得:x<83b -,∴不等式组的解集为23b-≤x<83b-,∵关于x的不等式2≤3x+b<8的整数解之和为7,∴4<83b-≤5且2<23b-≤3,解得:﹣4>b≥﹣7,故选:D.【点睛】本题考查了一元一次不等式组,一元一次不等式的整数解的应用,关键是能根据题意得出关于b的不等式组.11.x=﹣1【解析】【分析】移项;合并同类项;化系数为1,依此求出不等式的解,再写出它的负整数解即可.【详解】解:5x﹣2≤7x+1,5x﹣7x≤1+2,﹣2x≤3,x≥﹣1.5,故不等式5x﹣2≤7x+1的负整数解为x=﹣1.故答案为:x=﹣1.【点睛】考查了解一元一次不等式,根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.12.150【解析】【分析】设累计购物x元,分x≤50、50<x≤100和x>100三种情况分别求解可得.【详解】解:(1)当x≤50时,在甲、乙两个商场购物都不享受优惠,因此到两个商场购物花费一样;(2)当50<x≤100时,在乙商场购物享受优惠,在甲商场购物不享受优惠,因此在乙商场购物花费少;(3)当累计购物超过100元时,即x>100元,甲商场消费为:100+(x-100)×0.9元,在乙商场消费为:50+(x-50)×0.95元.当100+(x-100)×0.9>50+(x-50)×0.95,解得:x<150,当100+(x-100)×0.9<50+(x-50)×0.95,解得:x>150,当100+(x-100)×0.9=50+(x-50)×0.95,解得:x=150.综上所述,当累计消费大于50元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.故答案为:150.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,列出不等式,再根据实际情况分段进行讨论.13.m≤-1【解析】【分析】先解每个不等式,然后根据不等式组的解集是x>1,即可得到一个关于m的不等式,从而求解.【详解】解:5512x xx m++⎧⎨-⎩<①>②解①得x>1,解②得x>m+2,∵不等式组的解集是x>1,∴m+2≤1,解得m≤-1.故答案是:m≤-1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.a<0;-7【解析】【分析】(1)利用代入消元法,把问题转化为关于a的不等式即可解决问题;(2)求出a+b的平方的值,再根据a+b<0,可得结论.【详解】(1)∵(a−3)(b+4)<ab,∴ab−3b+4a−12<ab,∴−3b+4a−12<0,∵b=a−4,∴−3(a−4)+4a−12<0,∴a<0,故答案为a<0;(2)∵a2+a+2ab−b+b2=53,∴(a+b)2+(a−b)=53,∵a−b=4,∴(a+b)2=49,∵a<0,b=a−4<0,∴a+b<0,∴a+b=−7,故答案为:−7.【点睛】本题考查配方法的应用、不等式等知识,解题的关键是学会灵活运用所学知识解决问题,属于中考常考题型.15.1,2 3【解析】【分析】解出不等式组的解集,与已知解集-1<x<2比较,可以求出a、b的值.【详解】由x+2>a得:x>a-2.由x-2b<b得:x<3b.∵-1<x<2.∴a-2=-1;3b=2.解得:a=1 b=23,故答案为:a=1 b=23.【点睛】本题考查了已知不等式组的解集,求不等式中另一未知数的问题.关键是可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.16.0,1,2【解析】【分析】先移项、化系数为1即可求出x的取值范围.【详解】解:移项得,﹣3x≥﹣6,系数化为1得,x≤2.满足不等式6﹣3x≥0的非负整数解是0,1,2,故答案为0,1,2.【点睛】本题考查了解一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.17.6【解析】【分析】先解不等式组,再由不等式组221x a b x a b -⎧⎨-<+⎩的解集为3≤x <5,转化成关于a ,b 的方程组来解即可.【详解】不等式组221x a b x a b -⎧⎨-<+⎩①② 由①得,x≥a+b ,由②得,x <212a b ++, ∵关于x 的不等式组221x a b x a b -≥⎧⎨-+⎩<的解集为3≤x <5, ∴32152a b a b +⎧⎪⎨++⎪⎩== , 解得36a b -⎧⎨⎩==. 故答案为:6.【点睛】此题考查不等式组和二元一次方程组的解法,解题关键在于要灵活运用运算法则. 18.x 3≤【解析】【分析】按照移项,系数化为一的步骤即可解题.【详解】解:2x 60-≤2x ≤6x 3≤【点睛】本题考查了解不等式,属于简单题,熟悉解不等式的一般步骤是解题关键.19.7≤a <9 或-3≤a <-1【解析】【分析】先解不等式组,再根据整数解的要求推出a 的取值范围.【详解】5x-a 3(1)?2x 17x >-⎧⎨-≤⎩①② 解:不等式组的解集是:342a x -≤,因为所有整数解的和为7所以x 可取的数是:4,3或4,3,2,1,0,-1,-2 所以3232a -≤或3322a --≤-解得7≤a <9 或-3≤a <-1故答案是:7≤a <9 或-3≤a <-1.【点睛】考核知识点:不等式组的整数解.解不等式组是关键.20.4【解析】【分析】先把绝对值去掉,再解出不等式的解.【详解】当x 是正整数时,x 可以是3或4.当x 是负整数时,x 可以是-3或-4.所以整数x 共有4个.故答案为:4.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握其性质.21.(1)购进甲种75件,乙种25件;(2)9000;(3)甲种35套,乙种23套,丙种42套.【解析】【分析】(1)设购买甲种图书的数量x 套,则乙种图书数量为(100-x )套,根据总价钱列出方程120x+80(100-x )=11000即可解决;(2)根据x ≥(100-x ),在此条件下,利用一次函数求费用的最小值;(3)根据甲、丙两种费用相等,表示出丙种图书的数量,再根据总费用列方程即可.【详解】解:(1)设购进甲种x 套,乙种(100x -)件,则120x+80(100-x)=11000解得 x=75100-75=25套答:购进甲种75套,乙种25套.(2)设购进甲种x 套,则1(100)3x x ≥- 25x ≥,购买两种图书的总费用12080(100)408000W x x x =+-=+∵40k =,∴w 随x 的增大而增大∵25x ≥∴当x =25时,最少总费用是9000.(3)设购买丙种图书为y 本,由题意知120x=100y∴y=1.2x于是有120x+100y+80(100-x-y )=9000+1240解得x=35,则1.2x=42∴100-x-1.2x=23答:满足条件的方案是购买甲种图书35套,乙种图书23套,丙种图书42套.【点睛】本题考查的是一次函数与一元一次不等式的综合应用,根据不等式求出变量范围和最值是解决问题的重难点,正确列出方程是解决问题的关键.22.(1)5(2)02x y =⎧⎨=-⎩;(3)x≥1;数轴见解析;(4)x <﹣2. 【解析】【分析】(1)先计算算术平方根、立方根、取绝对值符号,再计算加减可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)分别求出每个不等式的解集,再根据“同小取小”确定不等式组的解集.【详解】(1)原式=74+14+3﹣5=5﹣5;(2)2510 536x yx y①②+=-⎧⎨-=⎩,①×3+②×5,得:31x=0,解得:x=0,将x=0代入①,得:5y=﹣10,解得:y=﹣2,所以方程组的解为2 xy=⎧⎨=-⎩;(3)x+7≤6(x﹣1)+8,x+7≤6x﹣6+8,x﹣6x≤﹣6+8﹣7,﹣5x≤﹣5,x≥1,将不等式的解集表示在数轴上如下:(4)解不等式2x13x232++->1,得:x<﹣2,解不等式3﹣x≥2,得:x≤1,则不等式组的解集为x<﹣2.【点睛】本题主要考查实数的混合运算、解二元一次方程组、一元一次不等式及不等式组,解题的关键是熟练掌握算术平方根、立方根及加减消元法解方程组、解一元一次不等式的基本步骤.23.2x <-.【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】51084x x ->-,58410x x ->-+,36x ->,2x <-.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.a ≥3.【解析】【分析】 通过解关于x 的方程2a-3x=6求得x=263a -,然后根据已知条件“关于x 的方程2a-3x=6的解是非负数”列出关于a 的不等式263a -≥0,通过解该不等式即可求得a 的取值范围. 【详解】解:由原方程移项,得-3x=6-2a ,两边同时除以-3,化为指数系数为1,得 x=263a -; 则根据题意,得263a -≥0, 解得,a≥3;故答案为:a≥3.【点睛】本题考查解一元一次方程、解一元一次不等式,解题的关键是根据条件表示出x=263a -. 26.(1)2x ≤;(2)12<2x -≤-【解析】【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】 (1)1223132x x ---≤, 解:()()2123236x x ---≤ ,24696x x --+≤,49626x x -+≤-+,510x ≤,2x ≤;(2)()317{ 2513x x x x --≤--<①② 解:由①得2x ≥-, 由②解得1<2x -, 所以,原不等式组的解集是12<2x -≤-. 【点睛】本题考查了一元一次不等式的解法及一元一次不等式组的解法,熟练掌握解题步骤是解答本题的关键. 不等式组的解法:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.27.原不等式的解集为1≤x≤3.【解析】【分析】分两种情况:①当x﹣2≥0时,|x﹣2|=x﹣2.②当x﹣2<0时,|x﹣2|=﹣(x﹣2).讨论即可求解.【详解】①当x﹣2≥0时,|x﹣2|=x﹣2.∴由原不等式得x﹣2≤1.∴可得不等式组2021xx-≥⎧⎨-≤⎩.∴解得不等式组的解集为2≤x≤3.②当x﹣2<0时,|x﹣2|=﹣(x﹣2).∴由原不等式得﹣(x﹣2)≤1.∴可得不等式组20 (2)1 xx-⎧⎨--≤⎩<.∴解得不等式组的解集为1≤x<2.综上所述,原不等式的解集为1≤x≤3.【点睛】考查了含绝对值的一元一次不等式组,注意读懂题目的解答,以及分类思想的运用.28.﹣1、0、1、2、3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式1 2x﹣2≤5﹣32x,得:x≤72,则不等式组的解集为﹣2<x≤72,所以不等式组的整数解为﹣1、0、1、2、3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

相关文档
最新文档