人教版七年级下册数学期末复习(及答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下册数学期末复习(及答案)
一、选择题
1.在下列图形中,1∠与2∠是内错角的是( )
A .
B .
C .
D . 2.下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( ) A . B . C . D . 3.在平面直角坐标系中,点(3,-3)所在的象限是( ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( )
A .1个
B .2个
C .3个
D .4个
5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).
A .40°
B .60°
C .45°
D .70° 6.下列计算正确的是( ) A .93=± B .311-=- C .||0a a -= D .43a a -= 7.如图,在//AB CD 中,∠AEC =50°,CB 平分DC
E ∠,则ABC ∠的度数为( )
A .25°
B .30°
C .35°
D .40°
8.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A →→→→⋅⋅⋅的规律绕在四边形ABCD 的边上,则细线另--端所在位置的点的坐标是( )
A .()1,1-
B .()0,1
C .()1,1
D .()0,2-
九、填空题
9.100的算术平方根是_____.
十、填空题
10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.
十一、填空题
11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.
十二、填空题
12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .
十三、填空题
13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.
十四、填空题
14.按下面的程序计算:
若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.
十五、填空题
15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___.
十六、填空题
16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.
十七、解答题
17.计算:
(1)20183(1)128-+
(220319()(2018)1252
π--+-十八、解答题
18.已知6a b +=,4ab =-,求下列各式的值:
(1)22a b +;
(2)22a ab b -+.
十九、解答题
19.完成下面的证明与解题.
如图,AD∥BC,点E是BA延长线上一点,∠E=∠DCE.
(1)求证:∠B=∠D.
证明:∵AD∥BC,
∴∠B=∠______________(______________)
∵∠E=∠DCE,
∴AB∥CD(______________).
∴∠D=∠______________(______________).
∴∠B=∠D.
(2)若CE平分∠BCD,∠E=50°,求∠B的度数.
二十、解答题
20.如图,三角形ABC在平面直角坐标系中.
(1)请写出三角形ABC各点的坐标;
(2)求出三角形ABC的面积;
''',在图(3)若把三角形ABC向上平移2个单位,再向左平移1个单位得到三角形A B C
'''.
中画出平移后三角形A B C
二十一、解答题
21.阅读理解.
∵459253.
∴151<2
∴51的整数部分为1,
∴5152.
解决问题:已知a173的整数部分,b173的小数部分.
(1)求a ,b 的值;
(2)求(﹣a )3+(b +4)2的平方根,提示:(17)2=17.
二十二、解答题 22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二十三、解答题
23.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.
(1)AOB ∠= ︒;
(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;
(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.
二十四、解答题
24.已知:ABC 和同一平面内的点D .
(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;
(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.
(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.
二十五、解答题
25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;
(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角定义进行解答即可.
【详解】
解:A、∠1与∠2是同位角,故此选项不合题意;
B、∠1与∠2是同旁内角,故此选项不合题意;
C、∠1与∠2是内错角,故此选项符合题意;
D、∠1与∠2不是内错角,此选项不合题意;
故选:C.
【点睛】
此题主要考查了内错角,关键是掌握内错角的边构成“Z“形.
2.B
【分析】
根据平移的概念观察即可
【详解】
解:由“基本图案”经过旋转得到
由“基本图案”经过平移得到
由“基本图案”经过翻折得到
不能由“基本图案”经过平移得到
故选:B
【点睛】
本题考查
解析:B
【分析】
根据平移的概念观察即可
【详解】
解:由“基本图案”经过旋转得到
由“基本图案”经过平移得到
由“基本图案”经过翻折得到
不能由“基本图案”经过平移得到
故选:B
【点睛】
本题考查平移的概念,考查观察能力
3.D
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
点(3,-3)的横坐标为正数,纵坐标为负数,
所以点(3,-3)所在的象限是第四象限,
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可.
【详解】
解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题;
(2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题;
(3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题;(4)1的平方根±1,故(4)是假命题;
所以假命题的个数有3个,
故选:C.
【点睛】
本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键.
5.A
【分析】
根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.
【详解】
解:如图,
∵AB∥CD,
∴∠2=∠D,
∵∠1=140°,
∴∠D=∠2=180°−∠1=180°−140°=40°,
故选:A.
【点睛】
此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
6.B
【分析】
直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.
【详解】
A93,故此选项错误;
B311
--,故此选项正确;
C、|a|﹣a=0(a≥0),故此选项错误;
D、4a﹣a=3a,故此选项错误;
故选:B.
【点睛】
此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.
7.A
【分析】
根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到
∠ECD=25°,由此即可求解.
∠BCE=∠BCD =1
2
【详解】
解:∵AB∥CD,
∴∠ABC=∠BCD,∠ECD=∠AEC=50°
∵CB平分∠DCE,
∠ECD=25°
∴∠BCE=∠BCD =1
2
∠ABC=∠BCD=25°
故选A.
【点睛】
本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.
8.B
【分析】
先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.
【详解】
解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),
∴四边形ABCD的
解析:B
【分析】
先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题.
【详解】
解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),
∴四边形ABCD的周长为10,
2021÷10的余数为1,
又∵AB=2,
∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1).
故选:B.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中
考常考题型.
九、填空题
9.10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.解析:10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
十、填空题
10.-2
【分析】
直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】
∵点A(m,1)和点B(2,n)关于x轴对称,
∴m=2,n=-1,
故mn=−2.
故填:-2.
【点睛】
此题
解析:-2
【分析】
直接利用关于x轴对称点的性质得出m,n的值进而得出答案.
【详解】
∵点A(m,1)和点B(2,n)关于x轴对称,
∴m=2,n=-1,
故mn=−2.
故填:-2.
【点睛】
此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.十一、填空题
11.60
【分析】
由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.
【详解】
∵OE平分∠AOC,
∴∠AOE=∠EOC,
∵OC平分∠BOE,
∴
解析:60
【分析】
由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.
【详解】
∵OE平分∠AOC,
∴∠AOE=∠EOC,
∵OC平分∠BOE,
∴∠EOC=∠COB
∴∠AOE=∠EOC=∠COB,
∵∠AOE+∠EOC+∠COB=180︒
∴∠COB=60°,
∴∠AOD=∠COB=60°,
故答案为:60
【点睛】
本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.
十二、填空题
12.48°
【分析】
先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.
【详解】
解:若AB//CD ,
则∠3=∠4,
又∵∠1+∠3=180°,∠1=138°,
解析:48°
【分析】
先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.
【详解】
解:若AB //CD ,
则∠3=∠4,
又∵∠1+∠3=180°,∠1=138°,
∴∠3=∠4=42°;
∵EF ⊥MN ,
∴∠2+∠4=90°,
∴∠2=48°;
故答案为:48°.
【点睛】
本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.
十三、填空题
13.70
【分析】
由题意易图可得,由折叠的性质可得,然后问题可求解.
【详解】
解:由长方形可得:,
∵,
∴,
由折叠可得,
∴;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟
解析:70
【分析】
由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.
【详解】
解:由长方形ABCD 可得://AD BC ,
∵155∠=︒,
∴155EFC ∠=∠=︒,
由折叠可得55EFC EFC '∠=∠=︒,
∴218070EFC EFC '∠=︒-∠-∠=︒;
故答案为70.
【点睛】
本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.
十四、填空题
14.131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
解析:131或26或5.
【解析】
试题解析:由题意得,5n+1=656,
解得n=131,
5n+1=131,
解得n=26,
5n+1=26,
解得n=5.
十五、填空题
15.(-9, 2)
【分析】
点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.
【详解】
∵点在第二象限,
∴,,
又∵,,
∴,,
∴点的坐标是.
【点睛】
本题主要考查
解析:(-9, 2)
【分析】
点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.
【详解】
∵点()P x y ,在第二象限,
∴0x <,0y >,
又∵9x =,24y =,
∴9x =-,2y =,
∴点P 的坐标是()92-,
. 【点睛】
本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.
十六、填空题
16.(2,2)
【分析】
由格点确定点A 、B 、C 的坐标,从而得出AB 、BC 的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.
【详
解析:(2,2)
【分析】
由格点确定点A 、B 、C 的坐标,从而得出AB 、BC 的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.
【详解】
解:∵A 点坐标为(−2,2),B 点坐标为(3,2),C 点坐标为(3,−1),
∴AB =3−(−2)=5,BC =2−(−1)=3,
∴从A →B →C →D →A →B →…一圈的长度为2(AB +BC )=16.
∵2020=126×16+4,
∴当蚂蚁爬了2020个单位时,它所处位置在点A 右边4个单位长度处,即(2,2). 故答案为:(2,2).
【点睛】
本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.
十七、解答题
17.(1);(2)-5.
【分析】
(1)直接利用算术平方根以及立方根的定义化简得出答案;
(2)直接利用算术平方根以及立方根的定义化简得出答案.
【详解】
(1)
=1+-2
=
(2)
=3-4+
解析:(12;(2)-5.
【分析】
(1)直接利用算术平方根以及立方根的定义化简得出答案;
(2)直接利用算术平方根以及立方根的定义化简得出答案.
【详解】
(1)2018(1)1-+
1-2
2
(2201()(2018)2
π--+-=3-4+1-5
=-5
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
十八、解答题
18.(1)44;(2)48
【分析】
(1)把a+b=6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;
(2)将a2+b2与ab 的值代入原式计算即可求出值.
【详解】
解:(1)把
解析:(1)44;(2)48
【分析】
(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;
(2)将a 2+b 2与ab 的值代入原式计算即可求出值.
【详解】
解:(1)把6a b +=两边平方得:()2
22236a b a b ab +=++=,
把4ab =-代入得:()222436a b ++⨯-=, ∴2244a b +=;
(2)∵2244a b +=,4ab =-,
∴22a ab b -+=22a b ab +-=()444--=48.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
十九、解答题
19.(1)EAD ;两直线平行,同位角相等;内错角相等,两直线平行;EAD ;两直线平行,内错角相等;(2)80°.
【分析】
(1)根据平行线的性质及判定填空即可;
(2)由∠E =∠DCE ,∠E =50°,
解析:(1)EAD ;两直线平行,同位角相等;内错角相等,两直线平行;EAD ;两直线平行,内错角相等;(2)80°.
【分析】
(1)根据平行线的性质及判定填空即可;
(2)由∠E =∠DCE ,∠E =50°,可得AB ∥CD ,∠DCE =50°,而CE 平分∠BCD ,即得∠BCD =100°,故∠B =80°.
【详解】
(1)证明:∵AD ∥BC ,
∴∠B =∠EAD (两直线平行,同位角相等),
∵∠E =∠DCE ,
∴AB ∥CD (内错角相等,两直线平行),
∴∠D =∠EAD (两直线平行,内错角相等),
∴∠B =∠D ;
故答案为:EAD ;两直线平行,同位角相等;内错角相等,两直线平行;EAD ;两直线平行,内错角相等;
(2)解:∵∠E =∠DCE ,∠E =50°,
∴AB ∥CD ,∠DCE =50°,
∴∠B +∠BCD =180°,
∵CE 平分∠BCD ,
∴∠BCD =2∠DCE =100°,
∴∠B =80°.
【点睛】
本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算.
二十、解答题
20.(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得三点坐标
解析:(1)()2,2A --,()3,1B ,()0,2C ;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形ABC 的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得A B C '''、、三点坐标,连接对应线段即可.
【详解】
解:(1)根据平面直角坐标系中点的位置,可得:
()2,2A --,()3,1B ,()0,2C ;
(2)三角形ABC 的面积11154245313222
=⨯-⨯⨯-⨯⨯-⨯⨯ 2047.5 1.520137=---=-=;
(3)三角形ABC 向上平移2个单位,再向左平移1个单位得到三角形A B C '''
可得()3,0A '-,()2,3B ',()1,4C '-,连接''''''A B A C B C 、、,三角形A B C '''如图所示:
【点睛】
此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以
及平移规则是解题的关键.
二十一、解答题
21.(1)a=1,b=﹣4;(2)±4.
【分析】
(1)根据被开饭数越大算术平方根越大,可得a,b的值,
(2)根据开平方运算,可得平方根.
【详解】
解:(1)∴,
∴4<5,
∴1<﹣3<2,
∴
解析:(1)a=1,b4;(2)±4.
【分析】
(1)根据被开饭数越大算术平方根越大,可得a,b的值,
(2)根据开平方运算,可得平方根.
【详解】
解:(1)∴<
∴4<5,
∴1﹣3<2,
∴a=1,b4;
(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,
∴(﹣a)
3+(b+4)2的平方根是:±4.
【点睛】
本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出45是解题关键.
二十二、解答题
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x ,宽为2x ,
则:3x •2x =30,
∴x
∴3x =,2x =
答:这个长方形纸片的长为
(2)正确.理由如下:
根据题意得:()()2504230a b a b a b ⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩
, 解得:105a b =⎧⎨=⎩
, ∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二十三、解答题
23.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n =3.
【分析】
(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,
∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;
(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;
(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =
641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =
1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得
144606411
n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】
解:(1)如图:过O 作OP //MN ,
∵MN //GHl
∴MN //OP //GH
∴∠NAO +∠POA =180°,∠POB +∠OBH =180°
∴∠NAO +∠AOB +∠OBH =360°
∵∠NAO =116°,∠OBH =144°
∴∠AOB =360°-116°-144°=100°;
(2)分别延长AC 、CD 交GH 于点E 、F ,
∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,
又∵MN //GH ,
∴58CEF ∠=︒;
∵144OBH ∠=︒,36OBG ∠=︒
∵BD 平分OBG ∠,
∴18DBF ∠=︒,
又∵,CDB ∠=︒35
∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,
∵116NAO ∠=︒,则MAO ∠=︒64; ∴641
n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=
⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601
n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.
经检验:3n =是原方程的根,且符合题意.
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
二十四、解答题
24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可
解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得
,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;
(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;
(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.
【详解】
(1)由题意,补全图形如下:
EDF BAC ∠=∠,理由如下:
//DE BA ,
EDF BFD ∴∠=∠,
//DF CA ,
BA BFD C ∴∠=∠,
EDF BAC ∴∠=∠;
(2)//DE BA ,理由如下:
如图,延长BA 交DF 于点O ,
//DF CA ,
BAC BOD ∴∠=∠,
EDF BAC ∠=∠,
EDF BOD ∴∠=∠,
(3)由题意,有以下两种情况:
①如图3-1,EDF BAC ∠=∠,理由如下:
//DE BA ,
180E EAF ∴∠+∠=︒,
//DF CA ,
180E EDF ∴∠+∠=︒,
EAF EDF ∴∠=∠,
由对顶角相等得:BAC EAF ∠=∠,
EDF BAC ∴∠=∠;
②如图3-2,180EDF BAC ∠+∠=︒,理由如下:
//DE BA ,
180EDF F ∴∠+∠=︒,
//DF CA ,
BAC F ∴∠=∠,
180EDF BAC ∴∠+∠=︒.
【点睛】
本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.
二十五、解答题
25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA=45°,
∴AO=OG=2,
∵S△AHG=1
2•GH•AO=4,S△AHF=1
2
•FH•AO=1,
∴GH=4,FH=1,
∴OF=GH-HF-OG=4-1-2=1.
②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,
∵MF,MO分别平分∠AFO,∠AOF,
∴∠M=180°-1
2(∠AFO+∠AOF)=180°-1
2
(180°-∠FAO)=90°+1
2
∠FAO,
∵NH,NG分别平分∠DHG,∠BGH,
∴∠N=180°-1
2
(∠DHG+∠BGH)
=180°-1
2
(∠HAG+∠AGH+∠HAG+∠AHG)
=180°-1
2
(180°+∠HAG)
=90°-1
2
∠HAG
=90°-1
2
(30°+∠FAO+45°)
=52.5°-1
2
∠FAO,
∴∠M+∠N=142.5°.
【点睛】
本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。