上海民办尚德实验学校八年级上册压轴题数学模拟试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海民办尚德实验学校八年级上册压轴题数学模拟试卷及答案
一、压轴题
1.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.
(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.
2.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .
(1)求OAB ∠的度数;
(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.
3.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;
(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;
(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.
4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .
(1)求∠AFE 的度数;
(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;
(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF
的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )
5.已知在△ABC 中,AB =AC ,射线BM 、BN 在∠ABC 内部,分别交线段AC 于点G 、H . (1)如图1,若∠ABC =60°,∠MBN =30°,作AE ⊥BN 于点D ,分别交BC 、BM 于点E 、F .
①求证:∠1=∠2;
②如图2,若BF =2AF ,连接CF ,求证:BF ⊥CF ;
(2)如图3,点E 为BC 上一点,AE 交BM 于点F ,连接CF ,若∠BFE =∠BAC =2∠CFE ,求ABF
ACF S S 的值.
6.阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”
小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”
(1)求∠DFC 的度数;
(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;
(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.
7.(1)填空
①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;
②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度
数.
(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.
8.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)
(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.
(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.
(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.
(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,
90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.
9.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.
(1)求点C 的坐标;
(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;
(3)在(2)的条件下,当点P 到AC 的距离PD 为33AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.
10.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.
(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;
(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
11.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足a6b80
-+-=.
(1)a= ;b= ;直角三角形AOC的面积为.
(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.
(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分
∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).
12.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.
(1)如图2,在等腰ABE
△中,AE=BE,四边形ABCD是互补等对边四边形,求证:
∠ABD=∠BAC=1
2
∠AEB.
(2)如图3,在非等腰ABE
△中,若四边形ABCD仍是互补等对边四边形,试问
∠ABD=∠BAC=1
2
∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.
13.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,
∠DCE=,BC、DC、CE之间的数量关系为;
(2)设∠BAC=α,∠DCE=β.
①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;
②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.
(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).
14.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED EC
=,试确定线段AE与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:
(1)取特殊情况,探索讨论:当点E为AB的中点时,如图(2),确定线段AE与DB 的大小关系,请你写出结论:AE_____DB(填“>”,“<”或“=”),并说明理由.
(2)特例启发,解答题目:
解:题目中,AE与DB的大小关系是:AE_____DB(填“>”,“<”或“=”).理由如下:
如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答过程完成)
(3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).
15.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
①当50A ︒∠=时,则BOC ∠=
②当A α∠=时,求BOC ∠的度数(用含α的代数式表示)﹔
(2)应用:如图2,直线MN 与直线PQ 垂直相交于点O ,点A 在射线OP 上运动(点A 不与点O 重合),点B 在射线OB 上运动(点B 不与点O 重合),延长BA 至G ,已知BAO OAG ∠∠、的角平分线与BOQ ∠的角平分线所在的直线相交于E F 、,在AEF ∆中,如果一个角是另一个角的3倍,请直接写出ABO ∠的度数.
16.如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .
(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;
(2)在运动过程中,当BPD CQP ≌时,求出t 的值;
(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.
17.阅读材料并完成习题:
在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积.
解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则
∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形
ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.
(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.
(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积.
18.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;
(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.
19.(1)在等边三角形ABC 中,
①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;
②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;
(2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).
20.(1)问题发现.
如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .
①求证:ADC BEC ∆∆≌.
②求AEB ∠的度数.
③线段AD 、BE 之间的数量关系为__________.
(2)拓展探究.
如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .
①请判断AEB ∠的度数为____________.
②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)见解析;(2)30ABE CDE ∠-∠=︒
【解析】
【分析】
(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;
(2)根据平行线的性质和三角形的外角性质可得结论.
【详解】
解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,
AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,
FN FM ⊥,
90F ∴∠=︒,
90GAF ∴∠=︒,
90FAB MCD ∠-∠=︒,
FAB GAF MCD BAG ∴∠-∠=∠=∠,
//AB CD ∴;
(2)解:30ABE CDE ∠-∠=︒,理由如下:
如图3,//AB CD ,
BPD ABE ∴∠=∠,
BPD CDE BED ∠=∠+∠,30BED ∠=︒,
30BPD CDE ∴∠-∠=︒,
∴30ABE CDE ∠-∠=︒.
【点睛】
本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.
2.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828,0).
【解析】
【分析】
(1)根据(42,0)A ,(0,42)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;
(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明
△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;
(3)证明△POB ≌△DPA ,得到PA=OB=42DA=PB ,进而得OD 的值,即可求出点D 的坐标.
【详解】
(1)(42,0)A ,(0,42)B ,
∴OA=OB=42
∵∠AOB=90°,
∴△AOB 为等腰直角三角形,
∴∠OAB=45°;
(2)PE 的值不变,理由如下:
∵△AOB 为等腰直角三角形,C 为AB 的中点,
∴∠AOC=∠BOC=45°,OC ⊥AB ,
∵PO=PD ,
∴∠POD=∠PDO ,
∵D 是线段OA 上一点,
∴点P 在线段BC 上,
∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,
∴∠POC=∠DPE ,
在△POC 和△DPE 中,
90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
, ∴△POC ≅△DPE(AAS),
∴OC=PE ,
∵OC=12AB=12
×
, ∴PE=4;
(3)∵OP=PD ,
∴∠POD=∠PDO=(180°−45°)÷2=67.5°,
∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,
∴∠APD=∠BOP ,
在△POB 和△DPA 中,
OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△POB ≌△DPA(AAS),
∴
PA=OB=DA=PB ,
∴
DA=PB=
∴
OD=OA−DA=
8,
∴点D 的坐标为
(8-,0).
【点睛】
本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.
3.(1)见解析;(2)见解析;(3)3
【解析】
【分析】
(1)根据等腰三角形的性质和外角的性质即可得到结论;
(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=
12
CF=3. 【详解】
解:(1)∵AB=AC ,
∴∠ABC=∠ACB ,
∵DE=DC ,
∴∠E=∠DCE ,
∴∠ABC-∠E=∠ACB-∠DCB ,
即∠EDB=∠ACD ;
(2)∵△ABC 是等边三角形,
∴∠B=60°,
∴△BEF 是等边三角形,
∴BE=EF ,∠BFE=60°,
∴∠DFE=120°,
∴∠DFE=∠CAD ,
在△DEF 与△CAD 中,
EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△DEF ≌△CAD (AAS ),
∴EF=AD ,
∴AD=BE ;
(3)连接AF ,如图3所示:
∵DE=DC ,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°,
∵BF 平分∠ABC ,
∴∠ABF=∠CBF ,
在△ABF 和△CBF 中,
AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩
, △ABF ≌△CBF (SAS ),
∴AF=CF ,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°,
∵AH ⊥CD ,
∴AH=12AF=12CF=3, ∵∠DEC=∠ABC+∠BDE ,
∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=3.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.
4.(1)∠AFE =60°;(2)见解析;(3)
75
【解析】
【分析】
(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒; (2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;
(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)
【详解】
(1)解:如图1中.
∵ABC 为等边三角形,
∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,
在BCE 和CAD 中,
60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩
, ∴ BCE CAD ≌(SAS ),
∴∠BCE =∠DAC ,
∵∠BCE +∠ACE =60°,
∴∠DAC +∠ACE =60°,
∴∠AFE =60°.
(2)证明:如图1中,∵AH ⊥EC ,
∴∠AHF =90°,
在Rt △AFH 中,∵∠AFH =60°,
∴∠FAH =30°,
∴AF =2FH ,
∵ EBC DCA ≌,
∴EC =AD ,
∵AD =AF +DF =2FH +DF ,
∴2FH +DF =EC .
(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,
∵∠AFK =60°,AF =KF ,
∴△AFK 为等边三角形,
∴∠KAF =60°,
∴∠KAB =∠FAC ,
在ABK 和ACF 中,
AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩
, ∴ ABK ACF ≌(SAS ),BK CF =
∴∠AKB =∠AFC =120°,
∴∠BKE =120°﹣60°=60°,
∵∠BPC =30°,
∴∠PBK=30°,
∴
2
9
BK CF PK CP
===,
∴
7
9
PF CP CF CP
=-=,
∵
45
()
99 AF KF CP CF PK CP CP CP ==-+=-=
∴
7
7
9
55
9
CP
PF
AF CP
== .
【点睛】
掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.
5.(1)①见解析;②见解析;(2)2
【解析】
【分析】
(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;
②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;
(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;
【详解】
(1)①证明:如图1中,
∵AB=AC,∠ABC=60°
∴△ABC是等边三角形,
∴∠BAC=60°,
∵AD⊥BN,
∴∠ADB=90°,
∵∠MBN=30°,
∠BFD=60°=∠1+∠BAF=∠2+∠BAF,
∴∠1=∠2
②证明:如图2中,
在Rt △BFD 中,∵∠FBD =30°,
∴BF =2DF ,
∵BF =2AF ,
∴BF =AD ,
∵∠BAE =∠FBC ,AB =BC ,
∴△BFC ≌△ADB ,
∴∠BFC =∠ADB =90°,
∴BF ⊥CF
(2)在BF 上截取BK =AF ,连接AK .
∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,
∴∠CFB =∠2+∠4+∠BAC ,
∵∠BFE =∠BAC =2∠EFC ,
∴∠1+∠4=∠2+∠4
∴∠1=∠2,∵AB =AC ,
∴△ABK ≌CAF ,
∴∠3=∠4,S △ABK =S △AFC ,
∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,
∴∠KAF =∠1+∠3=∠AKF ,
∴AF =FK =BK ,
∴S △ABK =S △AFK , ∴ABF AFC
S 2S ∆∆=. 【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.
【解析】
【分析】
(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;
(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;
(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.
【详解】
解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,
又△ABE为等边三角形,
∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,
在△ACE中,2α+60°+2β=180°,
∴α+β=60°,
∴∠DFC=α+β=60°;
(2)EF=AF+FC,证明如下:
∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,
∵∠CFD=60°,则∠DCF=30°,
∴CF=2DF,
在EC上截取EG=CF,连接AG,
又AE=AC,
∴∠AEG=∠ACF,
∴△AEG≌△ACF(SAS),
∴∠EAG=∠CAF,AG=AF,
又∠CAF=∠BAD,
∴∠EAG=∠BAD,
∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,
∴△AFG为等边三角形,
∴EF=EG+GF=AF+FC,
即EF=AF+FC;
(3)补全图形如图所示,
结论:AF=EF+2DF .证明如下:
同(1)可设∠BAD =∠CAD =α,∠ACE =∠AEC =β,
∴∠CAE =180°-2β,
∴∠BAE =2α+180°-2β=60°,∴β-α=60°,
∴∠AFC=β-α=60°,
又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,
∴由8字图可得:∠BAD =∠BEF ,
在AF 上截取AG =EF ,连接BG ,BF ,
又AB=BE ,
∴△ABG ≌△EBF (SAS ),
∴BG =BF ,
又AF 垂直平分BC ,
∴BF=CF ,
∴∠BFA=∠AFC=60°,
∴△BFG 为等边三角形,
∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,
∴AF =AG +GF =BF +EF =2DF +EF .
【点睛】
本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.
7.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.
【解析】
【分析】
(1)①如图①知1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠得 ()1112
EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=
∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.
(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出
11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.
②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出
()112906090A MC ︒︒︒-+∠=,即可求出解.
(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.
【详解】
解:(1)①如图①中,
1112EMC BMC ∠=∠,1112
C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=
∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22
EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=
∠+∠=⨯=, 故答案为45︒.
(2)①如图③中由折叠可知,
11,CMF FMC BME EMB ∠=∠∠=∠,
1111C MF EMB EMF C MB ∠+∠-∠=∠,
11CMF BME EMF C MB ∴∠+∠-∠=∠,
11()BMC EMF EMF C MB ∴∠-∠-∠=∠,
111808020C MB ︒︒︒∴-=∠=;
②如图④中根据折叠可知,
11,CMF C MF ABE A BE ∠=∠∠=∠,
112290CMF ABE AMC ︒∠+∠+∠=,
112()90CMF ABE AMC ︒∴∠+∠+∠=,
(
)1129090EMF A MC ︒︒∴-∠+∠=, ()
112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=;
(3)如图⑤-1中,由折叠可知,a ββγ-=-,
2a γβ∴+=;
如图⑤-2中,由折叠可知,a ββγ-=+,
2a γβ∴-=.
【点睛】
本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.
8.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7
【解析】
【分析】
(1)由DE ∥BC ,得到DB EC AB AC
=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;
(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;
(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;
(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.
【详解】
[初步感知](1)∵DE ∥BC , ∴DB EC AB AC
=, ∵AB=AC ,
∴DB=EC ,
故答案为:=,
(2)成立.
理由:由旋转性质可知∠DAB=∠EAC ,
在△DAB 和△EAC 中
AD AE DAB EAC AB AC ⎪∠⎪⎩
∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),
∴DB=CE ;
[深入探究](3)如图③,设AB ,CD 交于O ,
∵△ABC 和△ADE 都是等边三角形,
∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,
∴∠DAB=∠EAC ,
在△DAB 和△EAC 中
AD AE DAB EAC AB AC ⎪∠⎪⎩
∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),
∴DB=CE ,∠ABD=∠ACE ,
∵∠BOD=∠AOC ,
∴∠BDC=∠BAC=60°;
(4)∵△DAE 是等腰直角三角形,
∴∠AED=45°,
∴∠AEC=135°,
在△DAB 和△EAC 中
AD AE DAB EAC AB AC ⎪∠⎪⎩
∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),
∴∠ADB=∠AEC=135°,BD=CE ,
∵∠ADE=45°,
∴∠BDC=∠ADB-∠ADE=90°,
∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,
∴AM=EM=MD ,
∴AM+BD=CM ;
故答案为:90°,AM+BD=CM ;
【拓展提升】
(5)如图,
由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,
△ADE 与△ADC 面积的和达到最大,
∴△ADC 面积最大,
∵在旋转的过程中,AC 始终保持不变,
∴要△ADC 面积最大,
∴点D 到AC 的距离最大,
∴DA ⊥AC ,
∴△ADE 与△ADC 面积的和达到的最大为2+
12×AC×AD=5+2=7, 故答案为7.
【点睛】
此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.
9.(1)C (4,0);(2)433d t =;(3)103MN =
【解析】
【分析】
(1)根据对称的性质知ABC ∆为等边三角形,利用直角三角形中30度角的性质即可求得答案;
(2)利用面积法可求得AC PD PC OA ⋅=⋅,再利用坐标系中点的特征即可求得答案; (3)利用(2)的结论求得2BP =,利用角平分线的性质证得ABO CBQ ∆∆≌,求得43CQ AO ==43QN =
,再利用直角三角形中30度角的性质即可求得答案.
【详解】
(1)∵点B 、C 关于y 轴对称, ∴12
OB OC BC ==, ∴AB AC =,
∵60BAC ∠=︒,
∴ABC ∆为等边三角形,
∴8AB BC AC ===, ∴142
OC BC ==, ∴点C 的坐标为:()4,0C ;
(2)连接AP ,
∵1122
APC S AC PD PC OA ∆=⋅=⋅, ∴AC PD PC OA ⋅=⋅,
∵(0,43A ,
∴43OA =
∵2BP t =,
∴82PC t =-,
∵8AC =, ∴433PC OA PD t AC
⋅==, 即:433d t =;
(3)∵点P 到AC 的距离为33
∴43333d t ==
∴1t =,
∴2BP =,
延长CN 交AB 于点Q ,过点N 作NE x ⊥轴于点E ,连接PQ 、BN ,
∵CQ 为ACB ∠的角平分线,ABC ∆为等边三角形, ∴1302
BCQ ACB ∠=∠=︒,CQ AB ⊥, ∵1302BAO BAC ∠=
∠=︒,AB BC =, ∴ABO CBQ ∆∆≌, ∴43CQ AO ==
设2QN a =,
在Rt CNE ∆中,30QCB ∠=︒, ∴11(432)2322
NE CN a a ===, ∵ABP ABN BPN S S S ∆∆∆=+, ∴111222
BP OA AB QN BP NE ⋅=⋅+⋅, ∴111243822(23)222
a a ⨯⨯=⨯⨯+⨯⨯, ∴23a = ∴43QN =
, ∵60ACB ∠=︒,90PDC ∠=︒,
∴30DPC ∠=︒,
∵30BCQ ∠=︒,
∴PM CM =,
在Rt CDM ∆中,90MDC ∠=︒,30MCD ∠=︒, ∴12
MD MC =,
∴12MD PM =,PD =
∴PM CM ==
∴MN CQ QN CM =--== 【点睛】
本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.
10.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析
【解析】
【分析】
(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;
(2)同(1)方法即可;
(3)利用平角的定义和三角形的内角和即可得出结论;
(4)利用三角形的内角和和外角的性质即可得出结论.
【详解】
解:(1) ∵∠1+∠CDP=180°,
∴∠CDP=180°-∠1,
同理:∠CEP=180°-∠2,
根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,
∵∠C=90°,
∴180°-∠1+α+180°-∠2+90°=360°,
∴∠1+∠2=90°+α=90°+60°=150°,
故答案为:150;
(2) ∵∠1+∠CDP=180°,
∴∠CDP=180°-∠1,
同理:∠CEP=180°-∠2,
根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,
∵∠C=90°,
∴180°-∠1+α+180°-∠2+90°=360°,
∴∠1+∠2=90°+α,
故答案为:∠1+∠2=90°+α;
(3)∠1=90°+∠2+∠α.理由如下:如图3,
设DP与BE的交点为F,
∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,
∴∠1=∠C+∠2+∠α=90°+∠2+∠α.
(4)∠2=90°+∠1-∠α,理由如下:如图4,
设PE与AC的交点为G,
∵∠PGD=∠EGC,
∴∠α+180°-∠1=∠C+180°-∠2,
∴∠2=90°+∠1-∠α.
故答案为∠2=90°+∠1-∠α.
【点睛】
此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.
t=时,使得△ODP与△ODQ的面积相等;(3)11.(1)6;8;24;(2)存在 2.4
∠GOD+∠ACE=∠OHC,见解析
【解析】
【分析】
(1)利用非负性即可求出a,b即可得出结论,即可求出△ABC的面积;
(2)先表示出OQ,OP,利用那个面积相等,建立方程求解即可得出结论;
(3)先判断出∠OAC=∠AOD,进而判断出OG∥AC,即可判断出∠FHC=∠ACE,同理
∠FHO=∠GOD,即可得出结论.
【详解】
--=,
解:(1) 解:(1)∵a6b80
∴a-6=0,b-8=0,
∴a=6,b=8,
∴A (0,6),C (8,0);
∴S △ABC=6×8÷2=24,
故答案为(0,6),(8,0); 6;8;24
(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322
ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =
∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等
(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:
∵x 轴⊥y 轴,
∴∠AOC=∠DOC+∠AOD=90°
∴∠OAC+∠ACO=90°
又∵∠DOC=∠DCO
∴∠OAC=∠AOD
∵y 轴平分∠GOD
∴∠GOA=∠AOD
∴∠GOA=∠OAC
∴OG ∥AC ,
如图,过点H 作HF ∥OG 交x 轴于F ,
∴HF ∥AC
∴∠FHC=∠ACE
同理∠FHO=∠GOD ,
∵OG ∥FH ,
∴∠GOD=∠FHO ,
∴∠GOD+∠ACE=∠FHO+∠FHC
即∠GOD+∠ACE=∠OHC ,
∴2∠GOA+∠ACE=∠OHC .
∴∠GOD+∠ACE=∠OHC .
【点睛】
此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.
12.(1)见解析;(2)仍然成立,见解析
【解析】
【分析】
(1)根据等腰三角形的性质和互补等对边四边形的定义可利用SAS 证明△ABD ≌△BAC ,
可得∠ADB=∠BCA,从而可推出∠ADB=∠BCA=90°,然后在△ABE中,根据三角形的内角和
定理和直角三角形的性质可得∠ABD=1
2
∠AEB,进一步可得结论;
(2)如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,根据互补等对边四边形的定义可利用AAS证明△AGD≌△BFC,可得AG=BF,进一步即可根据HL证明Rt△ABG≌Rt△BAF,可得∠ABD=∠BAC,由互补等对边四边形的定义、平角的定义和四边形的内角和可得∠AEB+∠DHC=180°,进而可得∠AEB=∠BHC,再根据三角形的外角性质即可推出结论.
【详解】
(1)证明:∵ AE=BE,∴∠EAB=∠EBA,
∵四边形ABCD是互补等对边四边形,
∴AD=BC,
在△ABD和△BAC中,
AD=BC,∠DAB=∠CBA,AB=BA,
∴△ABD≌△BAC(SAS),
∴∠ADB=∠BCA,
又∵∠ADB+∠BCA=180°,
∴∠ADB=∠BCA=90°,
在△ABE中,∵∠EAB=∠EBA=1
2
(180°−∠AEB)=90°−
1
2
∠AEB,
∴∠ABD=90°−∠EAB=90°−(90°−1
2
∠AEB)=
1
2
∠AEB,
同理:∠BAC=1
2
∠AEB,
∴∠ABD=∠BAC=1
2
∠AEB;
(2)∠ABD=∠BAC=1
2
∠AEB仍然成立;理由如下:
如图3所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G,F,∵四边形ABCD是互补等对边四边形,
∴AD=BC,∠ADB+∠BCA=180°,
又∠ADB+∠ADG=180°,
∴∠BCA=∠ADG,
又∵AG⊥BD,BF⊥AC,
∴∠AGD=∠BFC=90°,
在△AGD 和△BFC 中,
∠AGD=∠BFC ,∠ADG=∠BCA ,AD=BC
∴△AGD ≌△BFC (AAS ),
∴AG=BF ,
在Rt △ABG 和Rt △BAF 中,
AB BA AG BF =⎧⎨=⎩
∴Rt △ABG ≌Rt △BAF (HL ),
∴∠ABD=∠BAC ,
∵∠ADB+∠BCA=180°,
∴∠EDB+∠ECA=180°,
∴∠AEB+∠DHC=180°,
∵∠DHC+∠BHC=180°,
∴∠AEB=∠BHC .
∵∠BHC=∠BAC+∠ABD ,∠ABD=∠BAC ,
∴∠ABD=∠BAC=
12
∠AEB . 【点睛】
本题以新定义互补等对边四边形为载体,主要考查了全等三角形的判定与性质、等腰三角形的性质、三角形的内角和定理与三角形的外角性质以及四边形的内角和等知识,正确添加辅助线、熟练掌握上述知识是解题的关键.
13.(1)70°,40°,BC +DC =CE ;(2)①α=β;②当点D 在BC 上移动时,α=β或α+β=180°;(3)∠ACB =60°.
【解析】
【分析】
(1)证△BAD ≌△CAE ,推出∠B=∠ACE ,根据三角形外角性质和全等三角形的性质求出即可;
(2)①证△BAD ≌△CAE ,推出∠B=∠ACE ,根据三角形外角性质求出即可;
②分三种情况:(Ⅰ)当D 在线段BC 上时,证明△ABD ≌△ACE (SAS ),则
∠ADB=∠AEC ,∠ABC=∠ACE ,推出∠DAE+∠DCE=180°,即α+β=180°;
(Ⅱ)当点D 在线段BC 反向延长线上时,α=β,同理可证明△ABD ≌△ACE (SAS ),则∠ABD=∠ACE ,推出∠BAC=∠DCE ,即α=β;
(Ⅲ)当点D 在线段BC 的延长线上时,由①得α=β;
(3)当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°;当D在线段BC上时,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°.【详解】
(1)如图1所示:
∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE.
在△BAD和△CAE中,
AB AC
BAD CAE AD AE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B
1
2
=(180°﹣40°)=70°,BD=CE,
∴BC+DC=CE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,
∴∠BAC=∠DCE.
∵∠BAC=40°,
∴∠DCE=40°.
故答案为:70°,40°,BC+DC=CE;
(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由如下:∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
∴∠BAD=∠CAE.
在△BAD和△CAE中,
AB AC
BAD CAE AD AE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BAD≌△CAE(SAS),
∴∠B=∠ACE.
∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,
∴∠BAC=∠DCE.
∵∠BAC=α,∠DCE=β,
∴α=β;
②分三种情况:
(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下:
同理可证明:△ABD≌△ACE(SAS),
∴∠ADB=∠AEC,∠ABC=∠ACE.
∵∠ADC+∠ADB=180°,
∴∠ADC+∠AEC=180°,
∴∠DAE+∠DCE=180°.
∵∠BAC=∠DAE=α,∠DCE=β,
∴α+β=180°;
(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下:
同理可证明:△ABD≌△ACE(SAS),
∴∠ABD=∠ACE.
∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,
∴∠ACD+∠DCE=∠ACD+∠BAC,
∴∠BAC=∠DCE.
∵∠BAC=α,∠DCE=β,
∴α=β;
(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;
综上所述:当点D在BC上移动时,α=β或α+β=180°;
(3)∠ACB=60°.理由如下:
∵当点D 在线段BC 的延长线上或在线段BC 反向延长线上移动时,α=β,
即∠BAC =∠DCE .
∵CE ∥AB ,
∴∠ABC =∠DCE ,
∴∠ABC =∠BAC .
∵AB =AC ,
∴∠ABC =∠ACB =∠BAC ,
∴△ABC 是等边三角形,
∴∠ACB =60°;
∵当D 在线段BC 上时,α+β=180°,
即∠BAC +∠DCE =180°.
∵CE ∥AB ,
∴∠ABC +∠DCE =180°,
∴∠ABC =∠BAC .
∵AB =AC ,
∴∠ABC =∠ACB =∠BAC ,
∴△ABC 是等边三角形,
∴∠ACB =60°;
综上所述:当CE ∥AB 时,若△ABD 中最小角为15°,∠ACB 的度数为60°.
【点睛】
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质和多边形内角和等知识.本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.
14.(1)AE DB =,理由详见解析;(2)AE DB =,理由详见解析;(3)3或1
【解析】
【分析】
(1)根据等边三角形的性质、三线合一的性质证明即可;
(2)根据等边三角形的性质,证明△EFC ≌△DBE 即可;
(3)注意区分当点E 在AB 的延长线上时和当点E 在BA 的延长线上时两种情况,不要遗漏.
【详解】
解:(1)AE DB =,理由如下:
ED EC =,
EDC ECD ∴∠=∠
∵△ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,
点E 为AB 的中点,
1302
ECD ACB ∴︒∠=∠=,30EDC ∠=︒∴,30D DEB ∠=∠=︒∴, DB BE ∴=,。