建平县高中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建平县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π
2. 已知函数,函数
,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )
A .
B .
C .
D .
3. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B 为( )
A.]1,1[-
B.]1,0[
C.]1,0(
D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.
4. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长
棱的长度为( )
A .
B .2
C .
D .3
5. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A .
B .18
C .
D .
6. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅
7. 过点),2(a M -,)4,(a N 的直线的斜率为2
1
-
,则=||MN ( ) A .10 B .180 C .36 D .56
8. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16
B .﹣16
C .8
D .﹣8
9. 对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
10.双曲线E 与椭圆C :x 29+y 2
3=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积
为π,则E 的方程为( ) A.x 23-y 2
3=1 B.x 24-y 2
2=1 C.x 25
-y 2
=1 D.x 22-y 2
4
=1 11.如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )
12.已知2,0
()2, 0
ax x x f x x x ⎧+>=⎨-≤⎩,若不等式
(2)()f x f x -≥对一切x R ∈恒成立,则a
的最大值为( ) A .716- B .916- C .12- D .14
-
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,
则其
表面积为__________2cm .
14.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
16.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=+.其中恒成立的等式序号为_________. 三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本题满分12分)已知数列}{n a 的前n 项和为n S ,2
3
3-=n n a S (+∈N n ).
(1)求数列}{n a 的通项公式;
(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:2
7
<n T (+∈N n ).
【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重
点突出运算、论证、化归能力的考查,属于中档难度.
18.极坐标与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.曲线C 1的极坐标
方程为ρ﹣2cos θ=0,曲线C 1的参数方程为(t 是参数,m 是常数)
(Ⅰ)求C 1的直角坐标方程和C 2的普通方程;
(Ⅱ)若C 2与C 1有两个不同的公共点,求m 的取值范围.
19.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC′,证明:BC′∥面EFG.
20.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设,且,则的最小值为
(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则
21.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.
(1)证明:EF∥平面PAC;
(2)证明:AF⊥EF.
22.(本小题满分12分)求下列函数的定义域:
(1)()
f x=;
(2)()
f x=.
建平县高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
2.【答案】D
【解析】解:∵g(x)=﹣f(2﹣x),
∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),
由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,
设h(x)=f(x)+f(2﹣x),
若x≤0,则﹣x≥0,2﹣x≥2,
则h(x)=f(x)+f(2﹣x)=2+x+x2,
若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,
则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,
若x>2,﹣x<﹣2,2﹣x<0,
则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.
作出函数h(x)的图象如图:
当x ≤0时,h (x )=2+x+x 2=(x+)2
+≥,
当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2
+≥,
故当=时,h (x )=,有两个交点,
当=2时,h (x )=,有无数个交点,
由图象知要使函数y=f (x )﹣g (x )恰有4个零点,
即h (x )=恰有4个根,
则满足<<2,解得:b ∈(,4),
故选:D .
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.
3. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =,故选C.
4. 【答案】 B
【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1,
即AD •
≥1,
因为2=AD+≥2
=2,
当且仅当AD==1时,等号成立,
这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=
,
得BD=
,故最长棱的长为2.
故选B.
【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.
5.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×()+=,
故选:D.
6.【答案】B
【解析】解:∵A={1,2,3,4},B={3,4,5,6},
∴A∩B={3,4},
∵全集I={1,2,3,4,5,6},
∴∁I(A∩B)={1,2,5,6},
故选B.
【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
7.【答案】D
【解析】
考点:1.斜率;2.两点间距离.
8.【答案】B
【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,
∴f (﹣2)﹣g (﹣2)=(﹣2)3﹣2×(﹣2)2
=﹣16.
即f (2)+g (2)=f (﹣2)﹣g (﹣2)=﹣16. 故选:B .
【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.
9. 【答案】B 【解析】由题意,可取,所以
10.【答案】
【解析】选C.可设双曲线E 的方程为x 2a 2-y 2
b
2=1,
渐近线方程为y =±b
a
x ,即bx ±ay =0,
由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即
|6b |b 2
+a
2
=1,
又a 2+b 2=6,∴b =1,a =5,
∴E 的方程为x 25-y 2
=1,故选C.
11.【答案】
【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM
=2sin x
2,
PB =2OM =2OA ·cos ∠AOM =2cos x
2
,
∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π
4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,
故选B.
12.【答案】C
【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.
当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2
y ax x =+图象相切时,916
a =-,切点横坐标为83,函数2
y ax x =+图象经过点(2,0)时,12a =-,
观察图象可得1
2
a ≤-
,选C . 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】20
【解析】
考点:棱台的表面积的求解.
14.【答案】
7
【解析】
15.【答案】 4+ .
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O 的半径为3,球O 1 的半径为1,
则,
在Rt △OMO 1中,OO 1=4,
,
∴
=
,
∴正四棱柱容器的高的最小值为4+.
故答案为:4+
.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
16.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知
sin sin sin a b c
A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】
18.【答案】
【解析】解:(Ⅰ)由ρ﹣2cosθ=0得C1:ρ2﹣2ρcosθ=0,
故x2+y2﹣2x=0,
消去参数得C2:2x﹣y﹣2m﹣1=0;
(Ⅱ)由(Ⅰ)知,C1是圆,C2是直线;
x2+y2﹣2x=0可化为(x﹣1)2+y2=1,
由题意知圆心到直线的距离小于圆的半径,
故d=<1,
解得,<m<.
【点评】本题考查了极坐标方程与参数方程的应用,同时考查了参数法的应用.
19.【答案】
【解析】解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,
V2=••2•2•2=cm3,
∴V=v1﹣v2=cm3
(3)证明:如图,
在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′
因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,
又EG⊂平面EFG,所以BC′∥平面EFG;
2016年4月26日
20.【答案】
【解析】A
B
21.【答案】
【解析】(1)证明:如图,
∵点E,F分别为CD,PD的中点,
∴EF∥PC.
∵PC⊂平面PAC,EF⊄平面PAC,
∴EF∥平面PAC.
(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,
∵PA∩AD=A,∴CD⊥平面PAD.
∵AF⊂平面PAD,∴AF⊥CD.
∵PA=AD,点F是PD的中点,∴AF⊥PD.
又CD∩PD=D,∴AF⊥平面PDC.
∵EF ⊂平面PDC , ∴AF ⊥EF .
【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.
22.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】
考
点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.。