最新苏科版数学七年级上册 一元一次方程章末练习卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.
(1)求 a,b;A、B 两点之间的距离.
(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.
(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,
∴a+5=0,b﹣7=0,
∴a=﹣5,b=7;
∴A、B两点之间的距离=|﹣5|+7=12;
(2)解:设向左运动记为负数,向右运动记为正数,
依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.
答:点P所对应的数为﹣1015
(3)解:设点P对应的有理数的值为x,
①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,
依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;
②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,
依题意得:7﹣x=3(x+5),
解得:x=﹣2;
③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,
依题意得:x﹣7=3(x+5),
解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.
综上所述,点P所对应的有理数分别是﹣11和﹣2.
所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.
【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
2.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】(1)解:设男生有x人,女生有(x+70)人,
由题意得:x+x+70=490,
解得:x=210,
则女生x+70=210+70=280(人).
故女生得满分人数: (人)
(2)解:不能;
假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:
解得
又∵
∴考生1号与10号不能相遇。
【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。
3.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;
(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.
【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,
解得:t=15°÷3°=5秒;
②是,理由如下:
∵∠CON=15°,∠AON=15°,
∴ON平分∠AOC
(2)解:15秒时OC平分∠MON,理由如下:
∵∠AON+∠BOM=90°,∠CON=∠COM,
∵∠MON=90°,
∴∠CON=∠COM=45°,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON为3t,∠AOC为30°+6t,
∵∠AOC﹣∠AON=45°,
可得:6t﹣3t=15°,
解得:t=5秒
(3)解:OC平分∠MOB
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON为3t,∠AOC为30°+6t,
∴∠COM为(90°﹣3t),
∵∠BOM+∠AON=90°,
可得:180°﹣(30°+6t)= (90°﹣3t),
解得:t=23.3秒;
如图:
【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;
(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;
(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM
为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
4.已知有理数,定义一种新运算:⊙ =(a+1).如:⊙ =(2+1)
(1)计算(-3)⊙的值;
(2)若⊙(-4)=6,求的值.
【答案】(1)解:∵⊙ =(a+1),
∴(-3)⊙ = ,
= ,
= ,
= ;
(2)解:∵⊙(-4)=6,
∴,
即,
解得 .
【解析】【分析】(1)根据⊙ =(a+1),直接代入计算即可;(2)根据新定义可得方程,解方程即可.
5.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?
(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?
(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?
(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?
【答案】(1)解:由题意得:y=80+2x,
答:弹簧的长度是(80+2x)厘米
(2)解:∵y=80+2x,
∴当x=6时,y=80+2×6=92,
答:弹簧的长度是92厘米
(3)解:∵y=80+2x,
∴当y=120时,120=80+2x,
∴x=20,
答:所挂物体的质量是20千克。
(4)解:∵y=80+2x,
∴当x=40时,y=80+2×40=160(厘米)>150(厘米)
∴此弹簧不能挂质量为40千克的物体.
【解析】【分析】(1)由题意,物体的质量每增加1千克可使弹簧增长2厘米,于是可知物体的质量与弹簧的长度有关系.弹簧的长度=弹簧的原长+伸长的长度;弹簧伸长的长度=物体的质量×2厘米;根据这个关系可求解;
(2)把x=6代入(1)中的关系式计算即可求解;
(3)把y=120代入(1)中的关系式计算即可求解;
(4)同理可求解.
6.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.
(1)问甲乙各购书多少本?
(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本
费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?
【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,
根据题意得:[20x+25(15﹣x)]×0.95=323,
解得:x=7,
∴15﹣x=8.
答:甲购书7本,乙购书8本
(2)解:(20×7+25×8)×0.85+20=309(元),
323﹣309=14(元).
答:办会员卡比不办会员卡购书共节省14元钱
【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.
7.某校七年级10个班师生举行文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个.
(1)七年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从开始到结束共用2小时35分钟,问参与的小品类节目有多少个?
【答案】(1)解:设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x﹣4)个,
根据题意,得:x+2x﹣4=10×2,
解得:x=8,
所以2x﹣4=12.
答:七年级师生表演的歌唱类节目有12个,舞蹈类节目有8个
(2)解:设参与的小品类节目有a个,
根据题意,得:12×5+8×6+8a+15=2×60+35,
解得:a=4,
答:参与的小品类节目有4个
【解析】【分析】(1)设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有
(2x-4)个.根据“七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个”列方程求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时=2小时35分钟”列等式求解可得.
8.某服装厂计划购进某种布料做服装,已知米布料能做件上衣,米布料能做件裤子.
(1)一件上衣的用料是一条裤子用料的多少倍;
(2)这种布料是按匹购买的,每匹布料是将这种厚度为布料卷在直径为的圆柱形轴上,卷完布后的圆柱直径为D=20cm,其形状和尺寸如图所示,为使一匹布料所做的上衣和裤子刚好配成套,应分别用多少米的布料生产上衣和裤子(π取3)? (3)在(2)的条件下,一件上衣用料1米,服装厂要生产1000套,则需采购这样的布料多少匹?
【答案】(1)解:由题意可得:• 1.5.
答:一件上衣的用料是一条裤子用料的1.5倍
(2)解:一匹布的长度=100π+100.8π+101.6π+...+200π≈3×(100+100.8+101.6+...+200)=3× =56700mm=56.7m.
设应用x米的布料生产上衣,则用(56.7-x)米的布料生产裤子,根据题意得:
x=1.5 (56.7-x)
解得:x=34.02(米)≈34(米)
当x=34时,56.7-x=22.7(米)
答:应用34米的布料生产上衣,则用22.7米的布料生产裤子.
(3)解:1000÷34≈29.4≈30(匹)
答:需采购这样的布料30匹.
【解析】【分析】(1)求一件上衣的用料是一条裤子用料的多少倍,应先把各自的用料多
少表示出来.一件上衣的用料是:;一条裤子用料是:;将两个式子相除即可;(2)先求出一匹布的长度,然后根据一件上衣的用料是一条裤子用料的 1.5倍列方程求解即可;(3)由(2)可得一匹布生产衣服裤子的套数,用总套数÷一匹布生产衣服裤子的套数即可得到答案.
9.已知数轴上点A、B、C所表示的数分别是-3,+5,x.
(1)请在数轴上标出A、B两点;
(2)若AC=2,求x的值;
(3)求线段AB的中点D所表示的数;
(4)若x<0,用含x的代数式表示线段AC与线段BC的长度和. 【答案】(1)解:如图所示:
(2)解:∵AC=2,A点表示的数为-3,C点表示的数为x,
∴|x+3|=2,
解得:x=-1或x=-5,
∴x的值为-1或-5.
(3)解:设点D表示的数为y(-3<y<5),
∵A点表示的数为-3,B点表示的数为5,C点表示的数为x,
∴AB=8,
又∵D为AB的中点,
∴AD=AB=4,
即|y+3|=4,
解得:y=1或y=-7(舍去),
∴y=1,
∴点D表示的数为1.
(4)解:① 当点C在点A左侧时,
∵A点表示的数为-3,B点表示的数为5,C点表示的数为x,
∴AC=-3-x,BC=5-x,
∴AC+BC=-3-x+5-x=2-2x;
② 当点C在点A右侧时,
∵A点表示的数为-3,B点表示的数为5,C点表示的数为x,
∴AC=x+3,BC=5-x,
∴AC+BC=x+3+5-x=8.
【解析】【分析】(1)根据题意分别在数轴上表示点A、B即可.(2)根据题意可得AC=|x+3|=2,解之即可得出答案.
(3)设点D表示的数为y(-3<y<5),根据中点定义可得AD=|y+3|=4,解之即可得出答案.
(4)结合题意分情况讨论:① 当点C在点A左侧时,② 当点C在点A右侧时,根据题意分别表示出AC、BC的式子,再相加即可得出答案.
10.某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.
买门票能节省多少钱?
(2)问甲、乙两个班各有多少名学生?
(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?
【答案】(1)解:一起购买门票,所需费用为:80×86=6880(元),
能节省8120﹣6880=1240(元),
答:联合起来购买门票能节省1240元钱
(2)解:设甲班有x人,
86×90=7740(元),
7740<8120,
∴35≤x≤40,40<86﹣x≤80,
根据题意得:100x+90(86﹣x)=8120,
解得:x=38,
86﹣x=48,
答:甲班有38人,乙班有48人
(3)解:若0<m<6时,此时总人数大于等于81人,则最省钱的购买门票的方案为:购买(86﹣m)张,
当m≥6时,若90(86﹣m)>81×80,解得:m<14,
即6≤m<14时,最省钱的购买门票的方案是:购买81张,
若90(86﹣m)=81×80,解得:m=14,
即m=14时,最省钱的购买门票的方案是:购买81张或72张,
若14<m<20时,最省钱的购买门票的方案为:购买(86﹣m)张,
综上可知:当0<m<6或14<m<20时,购买(86﹣m)张最省钱,
当m=14时,购买72或81张最省钱,
当6≤m<14时,购买81张最省钱
【解析】【分析】(1)依据表格中的数据计算出联合购票的钱数,与分别购买团体票的钱数之间的差为节省出来的钱;(2)依题意设甲班有x人,并且x≥35,确定x的取值范围,假设两班人数都是41人到80人之间,则方程无解;因为乙班人数多于甲班人数,所以甲班人数在35≤x≤40 乙班人数在40<86﹣x≤80,列方程解方程即可.(3)依据题意分类讨论:①总人数在81人以上时,即0<m<6时,求出(86﹣m)张;②当总人数小于81,当总价款又大于团购81张的总价款时,即6≤m<14时,按81张购买即可;③当总人数小于81,当平均票价为90元的总价款等于团购81张的总价款时,即m=14时,有两种方式购买81张或72张;④当总人数小于81,平均票价为90元是最省钱方式,即14<m<20时,得出(86﹣m)张.
11.如图,在数轴上,点A、B表示的数分别是-4、8(A、B两点间的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n
(1)AB=________个单位长度;若点M在A、B之间,则|m+4|+|m-8|=________
(2)若|m+4|+|m-8|=20,求m的值
(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m=________;n=________
【答案】(1)12;12
(2)解:如果m在-4的左边,则-m-4+8-m=20,
m=-8.
如果m在8的右边,则m+4+m-8=20,
m=12
所以m=-8或12.
(3)11;-9
【解析】【解答】解:(1)12,12.
( 3 )|m+4|+n=6,|n-8|+m=28
当m<-4,n<8时,-m-4+n=6,8-n+m=28,无解.
当m<-4,n>8时,-m-4+n=6,n-8+m=28,n=23,m=13,矛盾.
当m>-4,n<8时,m+4+n=6,8-n+m=28,m=11,n=-9.
当m>-4,n>8时,m+4+n=6,n-8+m=28,无解.
【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值,即可求出AB的长,根据数轴上表示的数,右边的总比左边的大,由点M在A、B之间即可得出-4<m<8,故m+4>0,m-8<0,再根据绝对值的意义,去掉绝对值符号,再合并同类项即可;
(2)分类讨论,①当m在-4的左边,m+4<0,m-8<0,根据绝对值的意义去掉绝对
值符号,再解方程即可;②当m在8的右边,m+4>0,m-8>0根据绝对值的意义去掉绝对值符号,再解方程即可,综上所述即可得出答案;
(3)分①当m<-4,n<8时,②当m<-4,n>8时,③当m>-4,n<8时,④当m>-4,n>8时四类进行讨论,分别根据绝对值的意义去掉绝对值的符号,再解方程即可。
12.如图是一种数值转换机的运算程序
(1)若第1次输入的数为x=1,则第1次输出的数为4,则第10次输出的数为________;若第1次输入的数为12,则第10次输出的数为________.
(2)若输入的数x=5,求第2010次输出的数是多少?
(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出x的值;若不存在,请说明理由.
【答案】(1)4;3
(2)解:第一次输出x+3=5+3=8,
第二次输出x=×8=4,
第三次输出x=×4=2,
第四次输出x=×2=1,
第五次输出x+3=1+3=4,
第六次输出x=×4=2,
第七次输出x=×2=1,
……
∴除去第一次,以4,2,1循环,
∵(2010-1)÷3=669 (2)
∴第2010次输出的数为2.
(3)解:①当输入的数x为偶数时,
∴××x=x,解得:x=0;
×x+3=x,解得:x=4;
×(x+3)=x,解得:x=2;
②当输入的数x为奇数时,
×(x+3)+3=x,解得:x=9;
×x(x+3)=x,解得:x=1;
综上所述:x=9或1,x=0或4或2.
【解析】【解答】解:(1)第一次输出x+3=1+3=4,
第二次输出x=×4=2,
第三次输出x=×2=1,
……
∴以4,2,1循环,
∵10÷3=3……1,
∴第10次输出的数是4;
第一次输出x=×12=6,
第二次输出x=×6=3,
第三次输出x+3=3+3=6,
第四次输出x=×6=3,
……
∴以6,3循环,
∵10÷2=5,
∴第10次输出的数是3;
故答案为:4,3.
【分析】(1)由图知:当输入的数x为偶数时,输出x;当输入的数x为奇数时,输出x+3,按此规律计算找出规律即可求解.
(2)由图知:当输入的数x为偶数时,输出x;当输入的数x为奇数时,输出x+3,按此规律计算找出规律即可求解.
(3)分情况讨论:①当输入的数x为偶数时,②当输入的数x为奇数时,按照图中规律分情况列出方程,解之即可得出答案.。