万州区高中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万州区高中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.若,则等于()
A.B.C.D.
2.下列判断正确的是()
A.①不是棱柱B.②是圆台C.③是棱锥D.④是棱台
3.圆心为(1,1)且过原点的圆的方程是()
A.2=1 B.2=1 C.2=2 D.2=2
4.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()
A.B.y=x2C.y=﹣x|x| D.y=x﹣2
5.在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2﹣c2=3bc,则A等于()A.30°B.60°C.120°D.150°
6.下列式子中成立的是()
A.log0.44<log0.46 B.1.013.4>1.013.5
C.3.50.3<3.40.3D.log76<log67
7.二项式(x2﹣)6的展开式中不含x3项的系数之和为()
A.20 B.24 C.30 D.36
8.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.
9.已知
a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()
A.b>c>a B.b>a>c C.a>b>c D.c>b>a
10.已知函数f(x)
=
,则的值为()
A
.B
.C.﹣2 D.3
11.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()
A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}
12.设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x
二、填空题
13.如图,正方形''''
O A B C的边长为1cm,它是水平放置的一个平面图形的直观图,则原图的
周长为.
1111]
14.设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥﹣5,则p是q的条件.
15.若函数f(x)=3sinx﹣4cosx,则f′()=.
16
.计算:×5﹣1=.
17.已知
1
sin cos
3
αα
+=,(0,)
απ
∈,则
sin cos
7
sin
12
αα
π
-
的值为.
18.设函数f (x )=,则f (f (﹣2))的值为 .
三、解答题
19. 坐标系与参数方程
线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.
20.(本题满分15分)
如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;
(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.
【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.
21.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.
(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.
22.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
23.从5名女同学和4名男同学中选出4人参加演讲比赛,
(1)男、女同学各2名,有多少种不同选法?
(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?24.已知等差数列{a n}的前n项和为S n,公差d≠0,S2=4,且a2,a5,a14成等比数列.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n},记该数列的前n项和为T n,求T n的表达式.
万州区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:∵,
∴,
∴(﹣1,2)=m(1,1)+n(1,﹣1)=(m+n,m﹣n)
∴m+n=﹣1,m﹣n=2,
∴m=,n=﹣,
∴
故选B.
【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.
2.【答案】C
【解析】解:①是底面为梯形的棱柱;
②的两个底面不平行,不是圆台;
③是四棱锥;
④不是由棱锥截来的,
故选:C.
3.【答案】D
【解析】解:由题意知圆半径r=,
∴圆的方程为2=2.
故选:D.
【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.
4.【答案】D
【解析】解:函数为非奇非偶函数,不满足条件;
函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;
函数y=﹣x|x|为奇函数,不满足条件;
函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;
故选:D
【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.
5.【答案】C
【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,
可得a2=7c2,
所以cosA===﹣,
∵0<A<180°,
∴A=120°.
故选:C.
【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.
6.【答案】D
【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立
对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立
对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立
对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D
7.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
8.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
9.【答案】A
【解析】解:∵a=0.50.5,c=0.50.2,
∴0<a<c<1,b=20.5>1,
∴b>c>a,
故选:A.
10.【答案】A
【解析】解:∵函数f(x)=,
∴f()==﹣2,
=f(﹣2)=3﹣2=.
故选:A.
11.【答案】A
【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.
【点评】本题考查交集的运算法则的应用,是基础题.
12.【答案】A
【解析】解:∵2f(x)+xf′(x)>x2,
令x=0,则f(x)>0,故可排除B,D.
如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,
但f(x)>x 未必成立,所以C也是错的,故选A
故选A.
二、填空题
13.【答案】8cm
【解析】
考点:平面图形的直观图.
14.【答案】必要不充分
【解析】解:由题意得f′(x)=e x++4x+m,
∵f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,
∴f′(x)≥0,即e x++4x+m≥0在定义域内恒成立,
由于+4x≥4,当且仅当=4x,即x=时等号成立,
故对任意的x∈(0,+∞),必有e x++4x>5
∴m≥﹣e x﹣﹣4x不能得出m≥﹣5
但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立
∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件
故答案为:必要不充分
15.【答案】4.
【解析】解:∵f′(x)=3cosx+4sinx,
∴f′()=3cos+4sin=4.
故答案为:4.
【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.
16.【答案】9.
【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,
∴×5﹣1=9,
故答案为:9.
17.【答案】17(62)
3
【解析】
7sin
sin sin cos cos sin 124343
43πππππππ⎛⎫
=
+=+ ⎪⎝
⎭
=
,
sin
cos 73
3
sin 12
ααπ-∴==
,
故答案为
3
.
考点:1、同角三角函数之间的关系;2、两角和的正弦公式.
18.【答案】 ﹣4 .
【解析】
解:∵函数f (x )=
,
∴f (﹣2)=4﹣2
=
, f (f
(﹣2))=f ()=
=﹣4.
故答案为:﹣4.
三、解答题
19.【答案】
【解析】解:圆C
:
的标准方程为(x+1)2+(y ﹣2)2
=4
由于圆心C (﹣1,2)到直线l :3x+4y ﹣12=0的距离 d=
=<2
故直线与圆相交 故他们的公共点有两个.
【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.
20.【答案】(1)详见解析;(2. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分 ∵AB 为圆O 的直径,∴AC BC ⊥,…………4分
又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VC
BC C =,∴DE VBC ⊥面;…………7分
(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得11
33
BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得
d =12分 设BE 与平面BCD 所成角为θ,∵8BC =,
BE =sin d BE θ=
=.…………15分 21.【答案】
【解析】解:(Ⅰ)∵全集U=R ,B={x|x <4},
∴∁U B={x|x ≥4},
又∵A={x|x 2
﹣4x ﹣5≤0}={x|﹣1≤x ≤5},
∴A ∩(∁U B )={x|4≤x ≤5}; (Ⅱ)∵A={x|﹣1≤x ≤5},C={x|x ≥a},且A ⊆C ,
∴a 的范围为a ≤﹣1. 【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本
题的关键.
22.【答案】
【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(
﹣1)﹣(﹣1)=,
由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,+∞)上是减函数.
(2)当x <0时,﹣x >0,f (﹣x )=
﹣1=﹣f (x ),∴f (x )=+1.
又f (0)=0,故函数f (x )的解析式为f (x )=.
23.【答案】
【解析】解:(1)男、女同学各2名的选法有C42×C52=6×10=60种;
(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,
故选人种数为C41×C53+C42×C52+C43×C51=40+60+20=120.
男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,故总的选法有C32+C41×C31+C42=21,
故有120﹣21=99.
24.【答案】
【解析】解:(Ⅰ)依题意得:,解得.
∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.
即a n=2n﹣1;
(Ⅱ)由已知得,.
∴T n=b1+b2+…+b n=(22﹣1)+(23﹣1)+…+(2n+1﹣1)
=(22+23+…+2n+1)﹣n=.
【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前n项和的求法,考查了化归与转化思想方法,是中档题.。