初二(下册)数学题精选八年级数学拔高专题训练
初二数学拔高练习题推荐
![初二数学拔高练习题推荐](https://img.taocdn.com/s3/m/2fae7b3603768e9951e79b89680203d8ce2f6ab9.png)
初二数学拔高练习题推荐数学作为一门基础学科,对于中学生的学习非常重要。
通过不断的练习和提高,可以帮助学生更好地理解和掌握数学知识。
在初二阶段,为了能够更好地拔高自己的数学水平,以下是一些数学拔高练习题的推荐。
1. 代数方程练习题1.1 解方程:求解2x + 5 = 17的解。
1.2 模型应用:某图书馆现有图书n本,已借出了8本,还剩下的图书比已借出的图书的3倍多5本,请问图书馆共有多少本图书?1.3 字母代数:如果ab = 12,且a + b = 7,求a和b的值。
2. 几何运算练习题2.1 曲线长度:计算抛物线y = x^2在区间[0, 2]上的弧长。
2.2 三角形相似:已知两个三角形的两角分别相等,另一角对应边的比为3:4,判断这两个三角形是否相似。
3. 概率与统计练习题3.1 概率计算:有5个白球和3个黑球放在一个盒子里,从中随机摸出2个球,求摸出的两个球颜色相同的概率。
3.2 统计分析:在班级的一次数学测验中,40名学生的得分情况如下:60分及以下10人,60-70分15人,70分以上15人,请根据这个数据回答以下问题:- 60分及以下的学生占总人数的百分之几?- 70分以上的学生占总人数的百分之几?- 平均分是多少?4. 数列与函数练习题4.1 等差数列:已知某数列的前四项分别是-5、-2、1、4,请写出该数列的通项公式。
4.2 函数应用:已知函数f(x) = 2x^2 + 3x - 2,请计算f(-1)的值。
5. 实际问题应用练习题5.1 比例问题:某地区有3000名中学生,其中男生占总数的35%,女生占其余的65%,计算男生和女生的人数各是多少。
5.2 利息问题:小明存入银行1000元,年利率为4%,存款时间为3年,请计算存款到期后的总金额。
通过解答以上的练习题,可以帮助初二学生更好地巩固和提高数学知识。
同时,还可以培养学生的思维能力、逻辑思维和问题解决能力。
建议学生在课余时间,结合教材和学校作业,进行这些拔高练习题的练习。
初二数学拔高试卷答案
![初二数学拔高试卷答案](https://img.taocdn.com/s3/m/0626338a48649b6648d7c1c708a1284ac85005af.png)
一、选择题(每题5分,共25分)1. 已知函数f(x) = 2x - 3,则f(2)的值为()A. 1B. 3C. 5D. 7答案:C2. 下列各式中,绝对值最小的是()A. |x-1|B. |x+1|C. |x-2|D. |x+2|答案:B3. 若a、b、c为等差数列,且a+b+c=12,则a+c的值为()A. 6B. 8C. 10D. 12答案:C4. 在直角坐标系中,点A(-3,2)关于原点的对称点为()A.(-3,-2)B.(3,-2)C.(-3,2)D.(3,2)答案:B5. 下列函数中,y=2x-1是y=mx+b的一次函数,其中m和b的值分别为()A. m=2,b=-1B. m=1,b=-1C. m=0,b=-1D. m=2,b=0答案:A二、填空题(每题5分,共25分)6. 若x=3是方程2x-5=0的解,则方程3x+7的解为______。
答案:27. 若a、b、c成等比数列,且a+b+c=27,则b的值为______。
答案:98. 在△AB C中,∠A=45°,∠B=90°,∠C=45°,则△ABC的周长为______。
答案:4√29. 若函数y=kx+b(k≠0)的图象经过点(1,-2),则k和b的值分别为______。
答案:k=-1,b=-110. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(-1,3),则a、b、c的值分别为______。
答案:a=1,b=-2,c=2三、解答题(共50分)11. (15分)已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。
解答:f(x) = x^2 - 4x + 3可以写成f(x) = (x-2)^2 - 1的形式。
因为(x-2)^2总是非负的,所以f(x)的最小值为-1,当x=2时取得。
12. (15分)已知数列{an}的前三项分别为a1=2,a2=4,a3=8,且数列{an}为等比数列,求该数列的通项公式。
2022-2023学年北师大版八年级下册数学期末拔高试题
![2022-2023学年北师大版八年级下册数学期末拔高试题](https://img.taocdn.com/s3/m/6c94e17b777f5acfa1c7aa00b52acfc789eb9fe9.png)
北师大版数学八年级下册 期末拔高试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.如图,在▱ABCD 中,BC=10,AC=8,BD=14,则▱AOD 的周长是( )A .32B .23C .21D .203.下列判断不正确的是( )A .若a b >,则44a b -<-B .若23a a >,则0a <C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A .a=1.5,b=2,c=3B .a=7,b=24,c=25C .a=6,b=8,c=10D .a=0.3,b=0.4,c=0.55.一家工艺品厂按计件方式结算工资.暑假里,大学生小华去这家工艺品厂打工,第一天得到工资60元,第二天比第一天多做了10件,得到工资75元.如果设小华第二天做了x 件,依题意列方程正确的是( ) A .607510x x =- B .607510x x=- C .607510x x =+D .607510x x=+ 6.四边形没有稳定性,当一个四边形的形状发生改变时,发生变化的是( )A .四边形的外角和B .四边形的边长C .四边形的周长D .四边形某些角的大小7.如图,在四边形ABCD 中,90B ∠=︒,3BC =,连接AC ,AC CD ⊥,垂足为C ,并且ACBD ∠=∠,点E 是AD 边上一动点,则CE 的最小值是( )A .1.5B .3C .3.5D .48.边长为a 、b 的长方形周长为12,面积为10,则 22a b ab + 的值为( )A .120B .60C .80D .409.若关于 x 的不等式组 0721x m x -<⎧⎨-≤⎩ 的整数解共有3个,则 m 的取值范围是( ) A .56m <<B .56m <≤C .56m ≤≤D .67m <≤10.若数a 使关于x 的不等式组 2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩ 有且仅有四个整数解,且使关于y 的分式方程2a y - + 22y- =2有非负数解,则所有满足条件的整数a 的值之和是( ) A .3B .1C .0D .﹣311.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动;第一次将点A 向左移动3个单位长度到达点 1A ,第二次将点A 向右移动6个单位长度到达点 2A ,第三次将点 2A 向左移动9个单位长度到达点 3A ,按照这种移动规律移动下去,第n 次移动到点 n A ,如果点 n A 与原点的距离不小于17,那么n 的最小值是( )A .9B .10C .11D .1212.如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE=3 5,且▱ECF=45°,则CF 长为( )A .210B .3 5C .5103D .53二、填空题13.矩形ABCD 的两条对角线相交于点O ,▱AOB =60°,AC =4cm ,则AB= ,矩形ABCD 的面积= .14.因式分解: 244b b -+= . 15.当m +n =1时,代数式 231m m mn m n ⎛⎫+⎪--⎝⎭•(m 2﹣n 2)的值为 . 16.如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A ,D ,B 在同一直线上),若固定▱ABC ,将▱BDE 绕着公共顶点B 顺时针旋转α度(0<α<180),当边DE 与▱ABC 的某一边平行时,相应的旋转角α的值为 .17.甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x ,y (x ,y 均为正整数,且x <y ),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x 的次数最多为 .三、解答题18.某工厂计划在规定时间内生产24000个零件.由于销售商突然急需供货,工厂实际工作效率比原计划提高了50%,并提前5天完成这批零件的生产任务.求该工厂原计划每天加工这种零件多少个?19.当x 满足条件 ()()133114423x x x x +<-⎧⎪⎨-<-⎪⎩ 时,求出方程x 2﹣2x ﹣4=0的根. 20.如图,把一副三角板如图甲放置,其中 90ACB DEC ∠=∠=︒ , 45A ∠=︒ ,30D ∠=︒ ,斜边 6cm AB = , 7cm DC = ,把三角板 DCE 绕点C 顺时针旋转15°得到D CE '' (如图乙).这时 AB 与 CD ' 相交于点O , D E '' 与 AB 相交于点F .求线段 AD ' 的长.21.如图,▱ABC中,点A(﹣2,1)、B(﹣3,4)C(﹣5,2)均在格点上.在所给直角坐标系中解答下列问题:将▱ABC平移得▱A1B1C1使得点B的对应点B1与原点O重合,在所给直角坐标系中画出图形;在图中画出▱ABC关于y轴对称的▱A2B2C2,并写出A2、B2、C2的坐标;在x轴上找一点P,使得▱PAB2的周长最小,请直接写出点P的坐标.22.如图所示,在▱ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm的两部分,求三角形各边的长.23.已知多项式2x-x+m有一个因式(2x+1),求m的值.24.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC ②AB=CD ③▱BAD=▱DCB ④AD▱BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:(1)构造一个真命题,画图并给出证明;(2)构造一个假命题,举反例加以说明.。
适合初二数学拔高的试卷
![适合初二数学拔高的试卷](https://img.taocdn.com/s3/m/184200990d22590102020740be1e650e52eacfcc.png)
一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a与b的关系是:A. a > bB. a < bC. a = bD. a + b = 32. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数是:A. 40°B. 50°C. 60°D. 70°3. 已知一元二次方程x² - 4x + 3 = 0,则该方程的解是:A. x₁ = 1, x₂ = 3B. x₁ = 2, x₂ = 2C. x₁ = -1, x₂ = -3D. x₁ = -2, x₂ = -24. 在直角坐标系中,点P(2, 3)关于y轴的对称点是:A. P'(-2, 3)B. P'(2, -3)C. P'(-2, -3)D. P'(2, 3)5. 若一个正方形的对角线长为10cm,则该正方形的周长是:A. 20cmB. 25cmC. 30cmD. 40cm6. 已知函数y = kx + b,若k > 0,b > 0,则函数图像在以下哪个象限:A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在三角形ABC中,若AB = AC,且∠B = 50°,则∠A的度数是:A. 50°B. 60°C. 70°D. 80°8. 若一个数的平方根是-2,则这个数是:A. 4B. -4C. 16D. -169. 在直角坐标系中,直线y = 2x + 1与y轴的交点坐标是:A. (0, 1)B. (1, 0)C. (0, 2)D. (2, 0)10. 若a² + b² = c²,则a、b、c构成什么三角形?A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形二、填空题(每题5分,共50分)11. 若x² - 5x + 6 = 0,则x的值为______。
八级数学下册同步拔高(综合强化)人教版勾股定理应用折叠专题目
![八级数学下册同步拔高(综合强化)人教版勾股定理应用折叠专题目](https://img.taocdn.com/s3/m/4bda76cff242336c1fb95eab.png)
八级数学下册同步拔高(综合强化)人教版勾股定理应用折叠专题目
八年级数学下册同步拔高(综合+强化)人教版
勾股定理应用-折叠专题
一、单选题(共5道,每道20分)
1.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()
A.
B.
C.4
D.3
2.如图,在矩形ABCD中,AB=12cm,BC=6cm,点
E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则整个阴影部分图形的周长为()
A.18cm
B.36cm
C.40cm
D.72cm
3.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A′处,已知OA=2,AB=1,则点A′的坐标是()
A.
B.
C.
D.
4.如图,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕,AB=8,AD=4,则四边形ECGF的面积为()
A.6
B.10
C.12
D.16
5.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;
④S△FGC=3.其中正确结论的个数是()
A.1
B.2
C.3
D.4。
人教版八年级数学下《正方形》拔高练习
![人教版八年级数学下《正方形》拔高练习](https://img.taocdn.com/s3/m/e98e4ecb185f312b3169a45177232f60ddcce7e1.png)
人教版八年级数学下《正方形》拔高练习《正方形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个2.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A.B.C.2D.13.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM 的长为()A.2B.2C.4﹣D.8﹣44.(5分)如图,有两个正方形A,B,现将B放置在A的内部得到图甲.将A,B并列放置,以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.13B.14C.15D.165.(5分)已知?ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时?ABCD为矩形B.当AB=AD时?ABCD为正方形C.当∠ABC=90°时?ABCD为菱形D.当AC⊥BD时?ABCD为正方形二、填空题(本大题共5小题,共25.0分)6.(5分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为.7.(5分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为.8.(5分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为.9.(5分)如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)10.(5分)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为°.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F 点.已知FG=2,求线段AE的长度.12.(10分)如图,在正方形ABCD中,E为边BC上一点,F 是AE的中点,过点F垂直于AE的直线与边CD的交点为M,与AD 的延长线的交点为N.若AB=12,BE=5,求DN的长.13.(10分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,请判断AE和BF的关系,并说明理由.14.(10分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠F AE,求证:AF=AD+CF.15.(10分)如图1,P为正方形ABCD内一点,且P A:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设P A=x,PB=2x,PC=3x,设法把P A、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,P A:PB:PC=3:4:5,那么∠APB=度.请写出推理过程.《正方形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD 的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,∴△BCE≌△CDF,(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=CD=AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选:D.【点评】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A.B.C.2D.1【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,再求出AH,MH,MB,然后证明∠BNM=∠BMN,BN =BM=1.【解答】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∵AM=,∴AH=MH=1,∵CM平分∠ACB,∠ACB=45°,∠MBC=90°∴∠ACM=∠BCM=22.5°,BM=MH=1,∵∠BAC=45°,∴∠BMC=45°+22.5°=67.5°,∵∠BNM=∠ONC=90°﹣22.5°=67.5°,∴∠BNM=∠BMN,∴BN=BM=1,故选:D.【点评】本题考查了正方形的性质,角平分线的性质,根据角平分线的性质作辅助线是解决问题的关键.3.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM 的长为()A.2B.2C.4﹣D.8﹣4【分析】过点M作MF⊥AC于点F,根据角平分线的性质可知FM=BM,再由四边形ABCD为正方形,可得出∠F AM=45°,在直角三角形中用∠F AM的正弦值即可求出FM与AM的关系,最后由AM+BM=4列方程求解即可..【解答】解:过点M作M F⊥AC于点F,如图所示.∵MC平分∠ACB,四边形ABCD为正方形,∴∠CAB=45°,FM=BM.在Rt△AFM中,∠AFM=90°,∠F AM=45°,AM=2,∴BM=FM=AM?sin∠F AM=AM.又∵AM+BM=4,∴AM+AM=4,解得:AM=8﹣4.故选:D.【点评】本题考查了正方形的性质以及角平分线的性质,解题的关键是求出FM 的长度与AM的关系.本题属于基础题,难度不大,解决该题型题目时,根据角平分的性质及正方形的特点找出边角关系,再利用解直角三角形的方法即可得以解决.4.(5分)如图,有两个正方形A,B,现将B放置在A的内部得到图甲.将A,B并列放置,以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.13B.14C.15D.16【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故选:A.【点评】本题主要考查了正方形的性质,完全平方公式的几何背景,解题的关键是根据图形得出数量关系.5.(5分)已知?ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时?ABCD为矩形B.当AB=AD时?ABCD为正方形C.当∠ABC=90°时?ABCD为菱形D.当AC⊥BD时?ABCD为正方形【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到?ABCD为矩形,故此选项正确;B、当AB=AD时?ABCD为菱形,故此选项错误;C、当∠ABC=90°时?ABCD为矩形,故此选项错误;D、当AC⊥BD时?ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为9.【分析】过O作OF⊥BC,过A作AM⊥OF,根据正方形的性质得出∠A OB=90°,OA=OB,求出∠BOF=∠OAM,根据AAS证△AOM≌△BOF,推出AM=OF,OM=FB,求出四边形ACFM为矩形,推出AM=CF,AC=MF=3,得出等腰三角形三角形OCF,根据勾股定理求出CF=OF=6,求出BF,即可求出答案.【解答】解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵∠ACB=90°,∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,∴四边形ACFM是矩形,∴AM=CF,AC=MF=3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=6,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点评】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,有一定的难度.7.(5分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为16.【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC =∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2=7+9=16,即S b=16,则b的面积为16,故答案为16【点评】本题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB ≌△DCE.8.(5分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为9.【分析】根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB=∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC,AB=CD.∵正方形①、②的面积分别27cm2和54cm2,∴AE2=27,CD2=54.∴AB2=27.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=27+54=81,∴BE=9.故答案为:9.【点评】本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.9.(5分)如图,有两个正方形夹在AB与CD 中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为70度(正方形的每个内角为90°)【分析】如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.利用四边形内角和36°,求出∠HMF,再根据∠KME=∠MKG+∠MEH,求出∠MKG即可解决问题;【解答】解:如图,延长KH交EF的延长线于M,作MG⊥AB 于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,故答案为70.【点评】本题利用正方形的四个角都是直角,直角的邻补角也是直角,四边形的内角和定理和两直线平行,内错角相等的性质,延长正方形的边构造四边形是解题的关键.10.(5分)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为150°.【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣60°﹣∠2=120°﹣∠2,∠ABC=180°﹣90°﹣∠1=90°﹣∠1,∠ACB=180°﹣60°﹣∠3=120°﹣∠3,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2+∠3=150°.故答案为:150.【点评】本题考查了正方形的性质、等边三角形的性质、三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F 点.已知FG=2,求线段AE的长度.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AB∥CD,可得,即可得AE=2AG=12.【解答】解:∵G为CD边中点,∴CG=DG=CD∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=6.∵AB∥DC∴∴AE=2GE=2(AE﹣AG)∴AE=2AG=12【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键12.(10分)如图,在正方形ABCD中,E为边BC上一点,F 是AE的中点,过点F垂直于AE的直线与边CD的交点为M,与AD 的延长线的交点为N.若AB=12,BE=5,求DN的长.【分析】根据正方形的性质得到AB=AD,∠B=90°,AD∥BC,根据平行线的性质得到∠AEB=∠F AN,根据新的数据线的性质和勾股定理得到AN=16.9,根据线段的和差即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AEB=∠F AN,∵FN⊥AE,∴∠AFN=90°,∴∠B=∠AFN,∴△ABE∽△NF A,∴,在Rt△ABE中.AE===13,∵F是AE的中点,∴AF=AE=6.5,∴=,∴AN=16.9,∵AB=AD=12,∴DN=AN﹣AD=4.9.【点评】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.13.(10分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,请判断AE和BF的关系,并说明理由.【分析】根据正方形的性质得到AD=CD=AB=BC,∠ADE=∠BAF=90°,证明△BAF≌△ADE,根据全等三角形的性质证明.【解答】解:AE=BF,AE⊥BF,理由如下:∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠ADE=∠BAF=90°,∵CE=DF,∴AF=DE,在△BAF和△ADE中,,∴△BAF≌△ADE(SAS),∴AE=BF,∠ABF=∠DAE,∵∠DAE+∠BAE=90°,∴∠ABF+∠BAE=90°,即AE⊥BF.【点评】本题考查的是正方形的性质,全等三角形的判定和性质,掌握正方形的四条边相等,四个角都是90°是解题的关键.14.(10分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠F AE,求证:AF=AD+CF.【分析】过E点作EG⊥AF,垂足为G,根据题干条件首先证明Rt△AEG≌Rt △AED,即可得AG=AD,同理证明出CF=GF,于是结论可以证明AF=AD+CF.【解答】解:过E点作EG⊥AF,垂足为G,∵∠DAE=∠EAF,∠B=∠AGE=90°,即AE为角平分线,ED⊥AD,EG⊥AG,∴DE=EG,在Rt△AEG和Rt△AED中,,∴Rt△AEG≌Rt△AED(HL),∴AG=AD,∵E是CD的中点∴DE=EC=EG同理可知CF=GF,∴AF=AG+FG=AD+CF.【点评】本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质,此题难度不大.15.(10分)如图1,P为正方形ABCD内一点,且P A:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设P A=x,PB=2x,PC=3x,设法把P A、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=135度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,P A:PB:PC=3:4:5,那么∠APB=150度.请写出推理过程.。
八年级下平行四边形拔高训练含答案
![八年级下平行四边形拔高训练含答案](https://img.taocdn.com/s3/m/277d46ace518964bce847c85.png)
八年级下平行四边形拔高训练(含答案)初中数学组卷(平行四边形)一.选择题(共12小题)1.(2015•温州模拟)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9 2.(2015•闸北区二模)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形3.(2014•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.B.1C.D.7 4.(2014•武汉模拟)如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC 的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()A.①②③④B.①②③ C.①②④ D.②③④5.(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5C.4.5 D.4 6.(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.B.C.3D.4 7.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8 8.(2013•湘西州)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:59.(2013•无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7 B.7、8 C.6、7、8 D.6、8、9 10.(2013•达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2B.3C.4D.5 11.(2010•泉州)如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°12.(2010•綦江县)如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二.填空题(共10小题)13.(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S △BEC=2S△CEF;④∠DFE=3∠AEF.14.(2014•福州)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.15.(2014•江汉区二模)如图,在四边形ABCD 中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC=.16.(2013•滨州)在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=.17.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H 分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.18.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.19.(2013•荆州)如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.20.(2013•宁波自主招生)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=10cm2,S△BQC=20cm2,则阴影部分的面积为.21.(2013•南岗区校级一模)如图,AD、BE为△ABC的中线交于点O,∠AOE=60°,OD=,OE=,则AB=.22.(2013•灌云县模拟)在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F分别是边AB、CD的中点,则EF=.三.解答题(共8小题)23.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME 的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.24.(2013•南充)如图,在平行四边形ABCD 中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.25.(2013•新疆)如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC 的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.26.(2013•重庆)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.27.(2013•郴州)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF 是平行四边形.28.(2013•沙坪坝区模拟)如图,▱ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E.(1)若∠ADB=25°,求∠BAE的度数;(2)求证:AB=2OE.29.(2013•江北区校级模拟)如图,已知▱ABCD 中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.30.(2013•重庆模拟)如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.初中数学组卷(平行四边形)参考答案与试题解析一.选择题(共12小题)1.(2015•温州模拟)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需( )个五边形.A . 6B . 7C . 8D . 9考点: 多边形内角与外角. 专题: 应用题;压轴题. 分析: 先根据多边形的内角和公式(n ﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解答: 解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选B .点评: 本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.2.(2015•闸北区二模)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形( )A . 是轴对称图形,但不是中心对称图形B . 是中心对称图形,但不是轴对称图形C . 既是轴对称图形,又是中心对称图形D . 既不是轴对称图形,也不是中心对称图形考点: 中心对称图形;轴对称图形. 专题: 几何图形问题;综合题;压轴题. 分析: 先根据旋转对称图形的定义得出这个正多边形是正八边形、再根据轴对称图形和中心对称图形的定义即可解答.解答: 解:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C .点评:本题综合考查了旋转对称图形的概念,中心对称图形和轴对称图形的定义.根据定义,得一个正n 边形只要旋转 的倍数角即可.奇数边的正多边形只是轴对称图形,偶数边的正多边形既是轴对称图形,又是中心对称图形.3.(2014•枣庄)如图,△ABC 中,AB=4,AC=3,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .B . 1C .D . 7考点: 三角形中位线定理;等腰三角形的判定与性质. 专题: 几何图形问题;压轴题. 分析: 由等腰三角形的判定方法可知△AGC 是等腰三角形,所以F 为GC 中点,再由已知条件可得EF 为△CBG 的中位线,利用中位线的性质即可求出线段EF 的长.解答: 解:∵AD 是其角平分线,CG ⊥AD 于F ,∴△AGC 是等腰三角形,∴AG=AC=3,GF=CF ,∵AB=4,AC=3,∴BG=1,∵AE 是中线,∴BE=CE ,∴EF 为△CBG 的中位线,∴EF=BG=,故选:A .点评: 本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.(2014•武汉模拟)如图∠A=∠ABC=∠C=45°,E 、F 分别是AB 、BC 的中点,则下列结论,①EF ⊥BD ,②EF=BD ,③∠ADC=∠BEF+∠BFE ,④AD=DC ,其中正确的是( )A . ①②③④B . ①②③C . ①②④D . ②③④考点: 三角形中位线定理;全等三角形的判定与性质. 专题: 压轴题. 分析: 根据三角形的中位线定理“三角形的中位线平行于第三边”同时利用三角形的全等性质求解.解答: 解:如下图所示:连接AC ,延长BD 交AC于点M ,延长AD 交BC 于Q ,延长CD 交AB 于P .∵∠ABC=∠C=45°∴CP ⊥AB∵∠ABC=∠A=45°∴AQ ⊥BC点D 为两条高的交点,所以BM 为AC 边上的高,即:BM ⊥AC .由中位线定理可得EF ∥AC ,EF=AC ∴BD ⊥EF ,故①正确.∵∠DBQ+∠DCA=45°,∠DCA+∠CAQ=45°,∴∠DBQ=∠CAQ ,∵∠A=∠ABC ,∴AQ=BQ ,∵∠BQD=∠AQC=90°,∴根据以上条件得△AQC ≌△BQD ,∴BD=AC ∴EF=AC ,故②正确.∵∠A=∠ABC=∠C=45°∴∠DAC+∠DCA=180°﹣(∠A+∠ABC+∠C )=45°∴∠ADC=180°﹣(∠DAC+∠DCA )=135°=∠BEF+∠BFE=180°﹣∠ABC故③∠ADC=∠BEF+∠BFE 成立;无法证明AD=CD ,故④错误.故选B .点评: 本题考点在于三角形的中位线和三角形全等的判断及应用.5.(2013•铁岭)如果三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )A . 5.5B . 5C . 4.5D . 4考点: 三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系. 专题: 压轴题. 分析: 首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l 的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l 的一半,从而求得中点三角形的周长的范围,从而确定.解答: 解:解方程x 2﹣8x+15=0得:x 1=3,x 2=5,则第三边c 的范围是:2<c <8. 则三角形的周长l 的范围是:10<l <16,∴连接这个三角形三边的中点,得到的三角形的周长m 的范围是:5<m <8.故满足条件的只有A .故选A .点本题考查了三角形的三边关系以及三角形评: 的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.6.(2013•淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC=10,则PQ 的长为( )A .B .C . 3D . 4考点: 三角形中位线定理;等腰三角形的判定与性质. 专题: 几何图形问题;压轴题. 分析: 首先判断△BAE 、△CAD 是等腰三角形,从而得出BA=BE ,CA=CD ,由△ABC 的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ .解答: 解:∵BQ 平分∠ABC ,BQ ⊥AE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD ﹣BC=6,∴PQ=DE=3.故选:C .点评: 本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.7.(2013•泰安)如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )A . 2B . 4C . 4D . 8考点: 平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理. 专题: 计算题;压轴题. 分析: 由AE 为角平分线,得到一对角相等,再由ABCD 为平行四边形,得到AD 与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF ,由F 为DC 中点,AB=CD ,求出AD 与DF 的长,得出三角形ADF 为等腰三角形,根据三线合一得到G 为AF 中点,在直角三角形ADG 中,由AD 与DG 的长,利用勾股定理求出AG 的长,进而求出AF的长,再由三角形ADF 与三角形ECF 全等,得出AF=EF ,即可求出AE 的长.解答: 解:∵AE 为∠DAB 的平分线,∴∠DAE=∠BAE ,∵DC ∥AB ,∴∠BAE=∠DFA ,∴∠DAE=∠DFA ,∴AD=FD ,又F 为DC 的中点,∴DF=CF ,∴AD=DF=DC=AB=2,在Rt △ADG 中,根据勾股定理得:AG=, 则AF=2AG=2,∵平行四边形ABCD ,∴AD ∥BC ,∴∠DAF=∠E ,∠ADF=∠ECF ,在△ADF 和△ECF 中,,∴△ADF ≌△ECF (AAS ),∴AF=EF ,则AE=2AF=4.故选:B点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.8.(2013•湘西州)如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是( )A . 1:2B . 1:3C . 1:4D . 1:5考点: 平行四边形的性质;全等三角形的判定与性质. 专题:压轴题. 分析: 根据平行四边形性质得出AD=BC ,AD ∥BC ,推出△EDF ∽△BCF ,得出△EDF 与△BCF 的周长之比为,根据BC=AD=2DE 代入求出即可.解答: 解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△EDF ∽△BCF ,∴△EDF 与△BCF 的周长之比为,∵E 是AD 边上的中点,∴AD=2DE ,∵AD=BC ,∴BC=2DE ,∴△EDF 与△BCF 的周长之比1:2,故选A .点评: 本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:平行四边形的对边平行且相等,相似三角形的周长之比等于相似比.9.(2013•无锡)已知点A (0,0),B (0,4),C (3,t+4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A . 6、7B . 7、8C . 6、7、8D . 6、8、9考点: 平行四边形的性质;坐标与图形性质. 专题:压轴题. 分分别求出t=1,t=1.5,t=2,t=0时的整数点,析: 根据答案即可求出答案.解答: 解:当t=0时,A (0,0),B (0,4),C (3,4),D (3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A (0,0),B (0,4),C (3,5),D (3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A (0,0),B (0,4),C (3,5.5),D (3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A (0,0),B (0,4),C (3,6),D (3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A 错误,选项B 错误;选项D 错误,选项C 正确;故选:C .点评: 本题考查了平行四边形的性质.主要考查学生的理解能力和归纳能力.10.(2013•达州)如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值是( )A . 2B . 3C . 4D . 5考点: 平行四边形的性质;垂线段最短;平行线之间的距离. 专题: 压轴题. 分析: 由平行四边形的对角线互相平分、垂线段最短知,当OD ⊥BC 时,DE 线段取最小值. 解答: 解:∵在Rt △ABC 中,∠B=90°,∴BC ⊥AB . ∵四边形ADCE 是平行四边形,∴OD=OE ,OA=OC .∴当OD 取最小值时,DE 线段最短,此时OD ⊥BC .∴OD ∥AB .又点O 是AC 的中点,∴OD 是△ABC 的中位线,∴OD=AB=1.5,∴ED=2OD=3.故选B .点评:本题考查了平行四边形的性质,以及垂线段最短.解答该题时,利用了“平行四边形的对角线互相平分”的性质.11.(2010•泉州)如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别是边AB 、AC 上,将△ABC 沿着DE 重叠压平,A与A ′重合,若∠A=70°,则∠1+∠2=( )A . 140°B . 130°C . 110°D . 70°考点:多边形内角与外角.专题:压轴题.分析: 首先根据四边形的内角和公式可以求出四边形ADA ′E 的内角和,由折叠可知∠AED=∠A ′ED ,∠ADE=∠A ′DE ,∠A=∠A ′,又∠A=70°,由此可以求出∠AED+∠A ′ED+∠ADE+∠A ′DE ,再利用邻补角的关系即可求出∠1+∠2.解答: 解:∵四边形ADA ′E 的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A ′ED ,∠ADE=∠A ′DE ,∠A=∠A ′,∴∠AED+∠A ′ED+∠ADE+∠A ′DE=360°﹣∠A ﹣∠A ′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A ′ED+∠ADE+∠A ′DE )=140°.故选:A .点评:本题考查根据多边形的内角和计算公式求和多边形相关的角的度数,解答时要会根据公式进行正确运算、变形和数据处理.12.(2010•綦江县)如图,在▱ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,EF ,则以下四个结论一定正确的是( )①△CDF ≌△EBC ;②∠CDF=∠EAF ;③△ECF 是等边三角形;④CG ⊥AE .A . 只有①②B . 只有①②③C . 只有③④D . ①②③④考点: 平行四边形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定.专题:压轴题.分析: 根据题意,结合图形,对选项一一求证,判定正确选项.解答: 解:∵△ABE 、△ADF 是等边三角形∴FD=AD ,BE=AB ∵AD=BC ,AB=DC∴FD=BC ,BE=DC∵∠B=∠D ,∠FDA=∠ABE∴∠CDF=∠EBC∴△CDF ≌△EBC ,故①正确;∵∠FAE=∠FAD+∠EAB+∠BAD=60°+60°+(180°﹣∠CDA )=300°﹣∠CDA ,∠FDC=360°﹣∠FDA ﹣∠ADC=300°﹣∠CDA ,∴∠CDF=∠EAF ,故②正确;同理可得:∠CBE=∠EAF=∠CDF ,∵BC=AD=AF ,BE=AE ,∴△EAF ≌△EBC ,∴∠AEF=∠BEC ,∵∠AEF+∠FEB=∠BEC+∠FEB=∠AEB=60°,∴∠FEC=60°,∵CF=CE ,∴△ECF 是等边三角形,故③正确;在等边三角形ABE 中,∵等边三角形顶角平分线、底边上的中线、高和垂直平分线是同一条线段∴如果CG ⊥AE ,则G 是AE 的中点,∠ABG=30°,∠ABC=150°,题目缺少这个条件,CG ⊥AE 不能求证,故④错误.故选B .点评: 本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.二.填空题(共10小题)13.(2014•安徽)如图,在▱ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 ①②④ .(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD ;②EF=CF ;③S △BEC =2S △CEF ;④∠DFE=3∠AEF .考点: 平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线. 专题: 几何图形问题;压轴题. 分析: 分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系进而得出答案.解答: 解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC =S △CFM , ∵MC >BE , ∴S△BEC <2S △EFC 故S △BEC =2S △CEF 错误;④设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°﹣x ,∴∠EFC=180°﹣2x ,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x , ∵∠AEF=90°﹣x ,∴∠DFE=3∠AEF ,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DMF 是解题关键.14.(2014•福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF=BC .若AB=10,则EF的长是 5 .考点: 平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理. 专题: 压轴题. 分析:根据三角形中位线的性质,可得DE 与BC的关系,根据平行四边形的判定与性质,可得DC 与EF 的关系,根据直角三角形的性质,可得DC 与AB 的关系,可得答案.解答: 解:如图,连接DC .DE 是△ABC 的中位线,∴DE ∥BC ,DE=,∵CF=BC ,∴DE ∥CF ,DE=CF ,∴CDEF 是平行四边形,∴EF=DC .∵DC 是Rt △ABC 斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.点评: 本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.15.(2014•江汉区二模)如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC=.考点: 三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义. 专压轴题.题:分析: 根据中位线的性质得出EF ∥BD ,且等于BD ,进而得出△BDC 是直角三角形,求出即可.解答: 解:连接BD ,∵E 、F 分别是AB 、AD 的中点,∴EF ∥BD ,且等于BD ,∴BD=4,∵BD=4,BC=5,CD=3,∴△BDC 是直角三角形,∴tan C==, 故答案为:点评: 此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC 是直角三角形是解题关键.16.(2013•滨州)在▱ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,且AB=6,BC=10,则OE= 5 .考点: 三角形中位线定理;平行四边形的性质. 专题: 压轴题. 分析: 先画出图形,根据平行线的性质,结合点E是边CD 的中点,可判断OE 是△DBC 的中位线,继而可得出OE 的长度.解答: 解: ∵四边形ABCD 是平行四变形,∴点O 是BD 中点,∵点E 是边CD 的中点,∴OE 是△DBC 的中位线,∴OE=BC=5.故答案为:5.点评: 本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O 是BD 中点,得出OE是△DBC 的中位线.17.(2013•鞍山)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH的周长是 11 .考点: 三角形中位线定理;勾股定理. 专题: 压轴题. 分析:利用勾股定理列式求出BC 的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD ,EF=GH=BC ,然后代入数据进行计算即可得解.解答: 解:∵BD ⊥CD ,BD=4,CD=3,∴BC===5,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD的中点,∴EH=FG=AD ,EF=GH=BC ,∴四边形EFGH 的周长=EH+GH+FG+EF=AD+BC ,又∵AD=6,∴四边形EFGH 的周长=6+5=11.故答案为:11.点评: 本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.18.(2013•乌鲁木齐)如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=5,AC=2,则DF 的长为.考点: 三角形中位线定理;等腰三角形的判定与性质. 专题: 压轴题. 分析: 延长CF 交AB 于点G ,证明△AFG ≌△AFC ,从而可得△ACG 是等腰三角形,GF=FC ,点F 是CG 中点,判断出DF 是△CBG 的中位线,继而可得出答案.解答: 解:延长CF 交AB 于点G ,∵AE 平分∠BAC , ∴∠GAF=∠CAF ,∵AF 垂直CG ,∴∠AFG=∠AFC ,在△AFG 和△AFC 中, ∵, ∴△AFG ≌△AFC (ASA ),∴AC=AG ,GF=CF ,又∵点D 是BC 中点,∴DF 是△CBG 的中位线,∴DF=BG=(AB ﹣AG )=(AB ﹣AC )=. 故答案为:.点评: 本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,同学们要注意培养自己的敏感性,一般出现即是角平分线又是高的情况,我们就需要寻找等腰三角形.19.(2013•荆州)如图,△ACE 是以▱ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣3),则D点的坐标是 (5,0) .考平行四边形的性质;坐标与图形性质;等边点: 三角形的性质.专题: 压轴题. 分析: 设CE 和x 轴交于H ,由对称性可知CE=6,再根据等边三角形的性质可知AC=CE=6,根据勾股定理即可求出AH的长,进而求出AO 和DH 的长,所以OD可求,又因为D 在x 轴上,纵坐标为0,问题得解. 解答: 解:∵点C 与点E 关于x 轴对称,E 点的坐标是(7,﹣3),∴C 的坐标为(7,3),∴CH=3,CE=6,∵△ACE 是以▱ABCD 的对角线AC 为边的等边三角形,∴AC=6,∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D 点的坐标是(5,0),故答案为(5,0).点评: 本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用.20.(2013•宁波自主招生)如图,E 、F 分别是▱ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S△APD =10cm 2,S △BQC =20cm 2,则阴影部分的面积为30cm 2 .考点: 平行四边形的性质;相似三角形的判定与性质. 专题: 压轴题. 分析: 连接E 、F 两点,由三角形的面积公式我们可以推出S△EFC =S △BCQ ,S △EFD =S △ADF ,所以S△EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .解答: 解:连接E 、F 两点,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S△EFC =S △BCF , ∴S△EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S△EFP =S △ADP , ∵S△APD =10cm 2,S △BQC =20cm 2,∴S 四边形EPFQ =30cm 2,故阴影部分的面积为30cm 2.点评: 本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.21.(2013•南岗区校级一模)如图,AD 、BE 为△ABC 的中线交于点O ,∠AOE=60°,OD=,OE=,则AB= 7 .考点: 三角形中位线定理;含30度角的直角三角形;勾股定理. 专题: 压轴题. 分析: 过点E 作EF ⊥AD 于F ,连接DE ,根据直角三角形30°角所对的直角边等于斜边的一半求出OF ,再利用勾股定理列式求出EF ,然后求出DF ,再利用勾股定理列式求出DE ,然后根据三角形的中位线平行于第三边并且等于第三边的一半解答.解答: 解:如图,过点E 作EF ⊥AD 于F ,连接DE , ∵∠AOE=60°,∴∠OEF=90°﹣60°=30°,∵OE=,。
初二数学练习题拔高
![初二数学练习题拔高](https://img.taocdn.com/s3/m/b6e8821e3a3567ec102de2bd960590c69ec3d8b5.png)
初二数学练习题拔高在学习数学的过程中,练习题是非常重要的一部分。
通过做练习题可以巩固和加深对数学知识的理解,提高解题能力和思维灵活性。
初二数学是一个非常关键的阶段,对于学生来说掌握好基础知识尤为重要。
下面是一些初二数学拔高题目,希望能帮助同学们提高数学水平。
一、选择题1.若3(x - 1) = 4(2x - 3),则x的值是多少?A. -1B. 1C. 2D. 32.下列四个分数中,哪一个是最小的?A. 5/6B. 6/7C. 7/8D. 8/93.已知a:b = 2:3,b:c = 3:4,求a:c的值。
A. 2:4B. 3:8C. 4:6D. 2:74.求下列多项式的值:3x² - 4x + 2,当x = 1时。
A. 1B. 2C. -1D. 35.已知△ABC中,AB = 3,AC = 4,BC = 5,求△ABC的面积。
A. 3B. 6C. 8D. 10二、填空题1.若a + 2b = 3,b - c = 4,则a - c的值为__。
2.根据图形的特点,填写括号中的数字:正方形的周长是( ),矩形的周长是( )。
3.若a:b = 4:5,b:c = 7:8,则a:c的值为( )。
4.若一本书正常价格为60元,打折后为原价的80%,则打折后的价格为( )元。
5.某种商品A的价格是商品B的2/3,商品B的价格是商品C的4/5,那么商品A的价格是商品C的( )。
三、解答题1.计算:12 + 31 - 8 + 172.用长方形的周长表示长和宽的关系,并表示出长和宽的关系式。
3.解方程:4x + 5 = 94.已知△ABC中,∠ABC = 90°,AB = 5,BC = 12,求AC的值。
5.某商品原价为120元,现在打8折出售,请计算打折后的价格。
以上就是一些初二数学拔高题目,希望能对同学们提高数学水平有所帮助。
请同学们尝试独立解答这些题目,并检查答案是否正确。
通过不断地练习和思考,相信你们的数学水平会有明显的提高!。
初二(下册)数学题精选八年级数学拔高专题训练
![初二(下册)数学题精选八年级数学拔高专题训练](https://img.taocdn.com/s3/m/1ce85335b4daa58da0114ae0.png)
初二(下册)数学题精选分式:一:如果abc=1,求证11++a ab +11++b bc +11++c ac =1二:已知a 1+b 1=)(29b a +,则a b +ba等于多少?三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间t 分。
求两根水管各自注水的速度。
四:联系实际编拟一道关于分式方程2288+=xx 的应用题。
要求表述完整,条件充分并写出解答过程。
五:已知M =222y x xy-、N =2222y x y x -+,用“+”或“-”连结M 、N,有三种不同的形式,M+N 、M-N 、N-M ,请你任取其中一种进行计算,化简求值,其中x :y=5:2。
反比例函数:一:一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E ”图案如图1所示.小矩形的长x (cm )与宽y (cm )之间的函数关系如图2所示:(1)求y 与x 之间的函数关系式; (2)“E ”图案的面积是多少?(3)如果小矩形的长是6≤x ≤12cm ,求小矩形宽的范围.二:是一个反比例函数图象的一部分,点(110)A ,,(101)B ,是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.三:如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x的图象上,则图中阴影部分的面积等于 .四:如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1-),且P (1-,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ值.五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式; 勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对图“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S,则第一步:6S=m=k;第三步:分别用3、4、5(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.(二题图)(三题图)二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第4张 B.第5张 C.第6张 D.第7张三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A与甲、乙楼顶B C、刚好在同一直线上,且A与B相距350米,若小明的身高忽略不计,则乙楼的高度是米.四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X同侧,50kmAB A=,、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和1S PA PB=+,图(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X 于点P),P到A、B的距离之和2S PA PB=+.(1)求1S、2S,并比较它们的大小;(2)请你说明2S PA PB=+的值为最小;(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.五:已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE AC=.(1)求证:BG FG=;(2)若2AD DC==,求AB的长.四边形:一:如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1) 当AB≠AC时,证明四边形ADFE为平行四边形;P图(1)图(3)图(2)DCEBGAF(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.二:如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF 。
八年级数学拔高试卷
![八年级数学拔高试卷](https://img.taocdn.com/s3/m/2d021d8f29ea81c758f5f61fb7360b4c2e3f2ab0.png)
一、选择题(每题5分,共25分)1. 若方程 $x^2 - 4x + 3 = 0$ 的两个根为 $a$ 和 $b$,则 $a^2 + b^2$ 的值为:A. 10B. 8C. 6D. 42. 在直角坐标系中,点 $A(2,3)$ 关于 $y$ 轴的对称点为:A. $(-2,3)$B. $(2,-3)$C. $(-2,-3)$D. $(2,3)$3. 下列函数中,是反比例函数的是:A. $y = 2x + 1$B. $y = \frac{1}{x}$C. $y = x^2$D. $y = \sqrt{x}$4. 在等腰三角形 $ABC$ 中,$AB = AC$,$AD$ 是 $BC$ 边上的高,若 $BD = 6$,$AD = 4$,则 $BC$ 的长度为:A. 8B. 10C. 12D. 145. 已知一元二次方程 $x^2 - 5x + 6 = 0$ 的两个根为 $m$ 和 $n$,则 $m +n$ 的值为:A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 若 $a^2 + b^2 = 25$,$ab = 10$,则 $a^4 + b^4$ 的值为______。
7. 在直角坐标系中,点 $P(3, -4)$ 到原点 $O$ 的距离为______。
8. 若 $y = 3x - 2$ 是一次函数,则其斜率 $k$ 和截距 $b$ 分别为______。
9. 在等边三角形 $ABC$ 中,$AB = BC = AC$,则 $\angle A$ 的度数为______。
10. 若 $a$、$b$、$c$ 是等差数列的连续三项,且 $a + b + c = 18$,则$a$ 的值为______。
三、解答题(每题10分,共40分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 1\end{cases}\]12. 已知函数 $y = 2x - 3$,求函数的图像与 $x$ 轴和 $y$ 轴的交点坐标。
八年级数学拔高题试卷
![八年级数学拔高题试卷](https://img.taocdn.com/s3/m/7bc1142b7ed5360cba1aa8114431b90d6c8589ea.png)
一、选择题(每题5分,共25分)1. 若a、b是方程x² - 3x + 2 = 0的两个根,则a² + b²的值为:A. 2B. 4C. 5D. 62. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为:A. (3,2)B. (-2,-3)C. (-3,-2)D. (-3,2)3. 若等比数列{an}的公比q=2,且a₁=1,则前10项和S₁₀为:A. 1023B. 2046C. 4094D. 81924. 在△ABC中,若∠A=60°,∠B=45°,则△ABC的周长与面积的比为:A. 2:1B. 3:1C. 4:1D. 5:15. 已知函数f(x) = x² - 4x + 3,则函数f(x)的图像与x轴的交点个数为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)6. 若方程2x² - 5x + 3 = 0的两根为m和n,则m + n = ______,mn = ______。
7. 在△ABC中,若AB = 5,AC = 6,BC = 7,则△A BC的面积S为 ______。
8. 等差数列{an}的公差d=2,且a₁=3,则第10项a₁₀为 ______。
9. 在平面直角坐标系中,点P(-3,2)到直线2x + 3y - 6 = 0的距离为______。
10. 函数f(x) = 3x² - 2x + 1的顶点坐标为 ______。
三、解答题(共50分)11. (15分)已知函数f(x) = ax² + bx + c(a≠0),且f(1) = 2,f(-1) = 0,f(2) = 5,求a、b、c的值。
12. (15分)在平面直角坐标系中,已知点A(3,4)和点B(-2,-1),求直线AB的方程。
13. (15分)已知等差数列{an}的前n项和为Sn,且S₁₀ = 40,S₁₅ = 90,求等差数列的首项a₁和公差d。
八下期末数学复习拔高
![八下期末数学复习拔高](https://img.taocdn.com/s3/m/ffac3db0a8956bec0875e34d.png)
一、选择题1.下列宣传图案中,既是中心对称图形又是轴对称图形的是A. B. C. D.2.如图,在四边形ABCD中,已知,添加一个条件,可使四边形ABCD是平行四边形.下列错误的是A. B. C. D.3.解分式方程时,去分母变形正确的是A. B.C. D.4.已知关于x的分式方程的解为非负数,则正整数m的所有个数为A. 3B. 4C. 5D. 65.如图,和都是等腰直角三角形,,,的顶点A在的斜边DE上,若,,则两个三角形重叠部分的面积为A. B. C. D.第2题图第5题图第6题图第7题图6.如图,已知点P到AE,AD,BC的距离相等,下列说法:点P在的平分线上;点P在的平分线上;点P在的平分线上;点P在,,的平分线的交点上.其中正确的是A. B. C. D.7.如图,在已知的中,按以下步骤作图:分别以点B,C为圆心,以大于的长为半径作弧,两弧相交于点M,N;作直线MN交AB于点D,连接若,,则的度数为A. B. C. D.8.若一次函数的图象经过点,则不等式的解集为A. B. C. D.9.下列四个判断:其中正确的有若,则;若,则;若,则;若,则,A. 1个B. 2个C. 3个D. 3个10.如图,P是正方形ABCD内一点,将绕着B沿顺时针方向旋转到与重合,若,则的长为A. B. C. 3 D. 无法确定11.如图,在中,,将绕点A按逆时针方向旋转得到若点恰好落在BC边上,且,则的度数为A. B. C. D.12.将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是A. B. C. 8m D.13.对于两个不相等的实数a,b,我们规定符号表示a,b中的较大的值,如,按照这个规定,方程的解是A. B. C. 或 D. 无实数解14.如图,中,对角线AC、BD相交于点O,交AD于点E,连接BE,若的周长为28,则的周长为A.28B. 24C. 21D. 14第第10题图第11题图第14题图第15题图15.如图,中,D是BC边的中点,AE平分,于E,已知,,则DE的长为A. 4B. 5C. 6D. 716.如图,四边形ABCD中.,,BD为的平分线,,,F分别是BD,AC的中点,则EF的长为A. 1B.C. 2D.17.如图,D是内一点,,,,,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为A. 12B. 14C. 24D. 2118.如图,小莉从A点出发,沿直线前进10米后左转,再沿直线前进10米,又向左转,,照这样走下去,她第一次回到出发点A时,一共走的路程是A. 150米B. 160米C. 180米D. 200米第16题图第17题图第18题图第16题图第17题图第18题图二、填空题19.如图,在长方形ABCD中,,,点E为DC边上的一点,将沿直线AE折叠,点D刚好落在BC边上的点F处,则CE的长是.20.如图,在中,,D、E是斜边BC上两点,且,将绕点A顺时针旋转后,得到,连接EF,下列结论:,其中正确的是填序号21.若,,则代数式的值为______.三、计算题22.先化简再求值:,其中,.四、解答题23.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的倍.求A、B两种粽子的单价各是多少?若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?24.如图,已知等腰三角形ABC中,,点D、E分别在边AB、AC上,且,连接BE、CD,交于点F.判断与的数量关系,并说明理由;求证:过点A、F的直线垂直平分线段BC.25.在四边形ABCD中,,,连接AC.如图1,点E,F分别在边BC,CD上,且求证:≌;是等边三角形;若点E在BC的延长线上,则在直线CD上是否存在点F,使是等边三角形?请证明你的结论图2备用.26.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元.A,B两种产品原来的运费和现在的运费单位:元件如下表所示:品种A B原运费45 25现运费30 20求每次运输的农产品中A,B产品各有多少件?由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?27.如图,的边BC在直线m上,,且,的边FE也在直线m上,边DF与边AC重合,且.在图中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系不要求证明当沿直线m向左平移到图所示的位置时,DE交AC于点G,连接AE,猜想与能否通过旋转重合请证明你的猜想.28.如图,在平行四边形ABCD中,E为AD上一点,连接EB并延长到点F,使,连接EC并延长到点M,使,连接FM,N为FM的中点,连接AF、DN求证:四边形AFND为平行四边形;在不添加任何辅助线的情况下,直接写出图中长度为FM的一半的所有线段.29.如图,在ABCD中,点M,N分别在边AD和边BC上,点E,F在线段BD上,且,求证:;四边形MENF是平行四边形.30.如图所示,已知E为▱ABCD中DC延长线上的一点,且,连接AE,分别交BC和BD于点F和G,连接AC交BD于点O,连接试说明:.31.如图,已知四边形ABCD为平行四边形.求证:.32.我们定义:如图,在中,把AB绕点A顺时针旋转得到,把AC绕点A逆时针旋转得到,连接当时,我们称是的“旋补三角形”,的边上的中线AD叫做的“旋补中线”,点A叫做“旋补中心”.特例感知在图中,是的“旋补三角形”,AD是的“旋补中线”.如图,当为等边三角形时,AD与BC的数量关系为如图,当,时,AD长为提示:直角三角形斜边上的中线等于斜边的一半猜想论证在图中,当为任意三角形时,猜想AD与BC的数量关系,并给予证明.33.如图是一伞状图形,已知,点P是平分线上一点,且,,PM与OB交于点F,PN与OA交于点E.如图1,当PN与PO重合时,探索PE,PF的数量关系;如图2,将在的情形下绕点P逆时针旋转度,继续探索PE,PF的数量关系,并求四边形OEPF的面积.34.如图,在中,,,点D,E分别在边AB,AC上,且,连接现将绕点A顺时针方向旋转,旋转角为,如图,连接CE,BD,CD.当时,求证:如图,当时,延长CE交BD于点F,求证:CF垂直平分在旋转过程中,求的面积的最大值,并写出此时旋转角的度数.。
初二下的数学拔高试卷
![初二下的数学拔高试卷](https://img.taocdn.com/s3/m/b6720b44640e52ea551810a6f524ccbff121cadc.png)
一、选择题(每题4分,共40分)1. 已知等差数列{an}的公差为d,若a1=3,a5=11,则d=()A. 2B. 3C. 4D. 52. 在直角坐标系中,点A(1,-2),点B(-3,4),则线段AB的中点坐标为()A. (-1,1)B. (-2,1)C. (-1,2)D. (-2,2)3. 已知函数f(x)=x^2-4x+4,则f(2)=()A. 0B. 4C. 8D. 124. 在等腰三角形ABC中,AB=AC,AD为高,则∠ADB=()A. 30°B. 45°C. 60°D. 90°5. 已知等比数列{an}的公比为q,若a1=2,a3=8,则q=()A. 2B. 4C. 8D. 166. 在△ABC中,∠A=30°,∠B=75°,则sinC=()A. √3/2B. √3/4C. √2/2D. √2/47. 已知函数f(x)=x^3-3x^2+2x,则f(-1)=()A. -2B. -1C. 0D. 18. 在平面直角坐标系中,点P(2,3),点Q(-3,-4),则线段PQ的中点坐标为()A. (-1,1)B. (-1,2)C. (1,-1)D. (1,2)9. 已知函数f(x)=2x-1,则f(x+1)=()A. 2x+1B. 2xC. 2x-1D. 2x+210. 在△ABC中,∠A=45°,∠B=60°,则sinC=()A. √3/2B. √3/4C. √2/2D. √2/4二、填空题(每题5分,共50分)11. 已知等差数列{an}的公差为2,若a1=1,则a10=______。
12. 在直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的长度为______。
13. 已知函数f(x)=x^2-4x+4,则f(2)=______。
14. 在等腰三角形ABC中,AB=AC,AD为高,则∠ADB=______。
初二数学拔高练习题
![初二数学拔高练习题](https://img.taocdn.com/s3/m/e30c85a8162ded630b1c59eef8c75fbfc67d945f.png)
初二数学拔高练习题一. 选择题1. 设函数f(x) = 2x - 5,那么f(3)的值等于:A. -1B. 1C. 3D. 72. 若(x + 3)(2x - 1) = 0,那么x的值等于:A. -3B. 1/2C. -1/3D. 33. 已知函数f(x) = 2x + 5,g(x) = 3x - 2,那么f(x)与g(x)的交点的横坐标为:A. 7/5B. -3/5C. 5/7D. -5/74. 若ab = 1,且a ≠ 0,b ≠ 0,那么(a^2 + b^2)(a^2 + 2ab + b^2)的值等于:A. 4B. 2C. 6D. 85. 若x^2 - 5x + 6 = 0,则x的值等于:A. 2和3B. -2和-3C. 2和-3D. -2和3二. 填空题1. 在等差数列1, 3, 5, 7, ...中,公差为_______。
2. 已知等差数列的首项为3,公差为-2,前n项和为4,则n的值为_______。
3. 若4^x = 1/64,那么x的值为_______。
4. 设梯形的上底长为5 cm,下底长为8 cm,高为4 cm,面积为_______。
5. 设α是锐角,sinα = 5/13,则cosα的值为_______。
三. 解答题1. 用解析法求解方程2x + 3 = 7。
2. 将分数1⅔转换为小数。
3. 计算:3 + (-4) × 7 ÷ (-2) - 1。
4. 已知一个等差数列的首项为a,公差为d,若第5项为12,第9项为24,求首项a和公差d的值。
5. 计算:(\sqrt{5} + 3)^2 - 2(\sqrt{5} + 3)。
四. 应用题某班级共有男生和女生,男生人数占总人数的1/3。
如果该班级有30名女生,求该班级总人数。
参考答案:一. 选择题1. C2. B3. B4. A5. C二. 填空题1. 22. 23. -34. 265. 12/13三. 解答题1. 通过移项得到2x = 4,再除以2得到x = 2。
八年级数学下册同步拔高(综合 强化)人教版 勾股定理应用-折叠专题(含答案)
![八年级数学下册同步拔高(综合 强化)人教版 勾股定理应用-折叠专题(含答案)](https://img.taocdn.com/s3/m/684133513968011ca30091d1.png)
八年级数学下册同步拔高(综合+强化)人教版勾股定理应用-折叠专题一、单选题(共5道,每道20分)1.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.B.C.4D.3答案:A解题思路:因为BC=4,AD为BC边的中线,所以BD=CD=2,因为△ADC沿AD折叠,使C 点落在C′的位置,所以C′D=CD=2,∠ADC=∠ADC′=30°,∠BDC′=120°,所以在等腰三角形BDC′中,通过作高线可以得到BC′=试题难度:三颗星知识点:勾股定理的应用2.如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则整个阴影部分图形的周长为()A.18cmB.36cmC.40cmD.72cm答案:B解题思路:如图,点G和点H关于EF对称,则可以得到FG=FH,GD1=DH,AE=A1E,AD=A1D1,所以阴影部分的周长刚好等于矩形的周长,等于36cm试题难度:三颗星知识点:勾股定理的应用3.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A′处,已知OA=2,AB=1,则点A′的坐标是()A.B.C.D.答案:A解题思路:如图,因为矩形OABC沿OB对折,使点A落在A′处,所以OA=OA′=2,AB=A′B=1,在直角△OCE 中,设OE=EB=x,则CE=2-x,由勾股定理得,x=,在直角△EBA′中,由等积变换可以得到A′F==,则A′D=,由OA′=2,可以得到OD=,所以点A′的坐标为试题难度:三颗星知识点:勾股定理的应用4.如图,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕,AB=8,AD=4,则四边形ECGF的面积为()A.6B.10C.12D.16答案:D解题思路:因为将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕,所以CE=AE,DF=FG,AD=CG=4,∠AEF=∠CEF,又因为∠CFE=∠FEA,所以CF=CE,在直角△CEB中,设AE=CE=x,则BE=8-x,根据勾股定理得,,解得x=5,即CE=CF=5,DF=FG=3,梯形ECGF的面积就是(3+5)×4÷2=16试题难度:三颗星知识点:勾股定理的应用5.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1B.2C.3D.4答案:C解题思路:因为△ADE沿AE对折至△AFE,所以AD=AF=AB,∠D=∠AFE=90°=∠B,所以在直角△ABG和直角△AFG中,AG=AG,AB=AF,所以△ABG≌△AFG,①正确;因为正方形的边长为6且CD=3DE,可以得到CE=4,DE=2;设BG=GF=x,则CG=6-x,GE=2+x,在直角△CGE中应用勾股定理,可以得到,则x=3,即BG=GC=3,②正确;因为GF=GC,所以∠GCF=∠GFC,即∠FGC+2∠FCG=180°,又因为∠FGC+2∠AGB=180°,所以∠GCF=∠BGA,即AG∥CF,③正确;因为△ECG的面积为6,而△FCG和△FCE的高一样,底之比为3:2,所以△FCG的面积为6÷5×3=3.6,④错误,正确的结论共有3个试题难度:三颗星知识点:勾股定理的应用。
初二数学拔高练习题
![初二数学拔高练习题](https://img.taocdn.com/s3/m/97383d67580102020740be1e650e52ea5418ce11.png)
初二数学拔高练习题题目一:整式简化(1)简化下列代数式:$2a - (3b - 4c)$;(2)简化下列代数式:$2x^2y + 3xy^2 - (4x^2y - xy^2)$;(3)简化下列代数式:$5m - (m^2 - 2mn + n^2) + (4m + 3n)$。
解答:(1)根据括号前面的减号,可以将括号内的代数式中的每一项符号取反。
即:$2a - (3b - 4c) = 2a - 3b + 4c$。
(2)根据括号前面的减号,可以将括号内的代数式中的每一项符号取反。
即:$2x^2y + 3xy^2 - (4x^2y - xy^2) = 2x^2y + 3xy^2 - 4x^2y + xy^2 = -2x^2y + 4xy^2$。
(3)首先,根据括号前面的减号,将括号内的代数式中的每一项符号取反。
然后将各项合并同类项。
即:$5m - (m^2 - 2mn + n^2) + (4m + 3n) = 5m - m^2 + 2mn - n^2 + 4m + 3n$。
题目二:方程求解(1)解方程$2x - 5 = 7$;(2)解方程$3(x - 2) = 4x + 1$;(3)解方程$4(x + 3) - 2(x - 1) = 3(2x - 5)$;解答:(1)将方程中的常数项和系数项分开,得到$2x = 12$。
然后将方程两边都除以2,得到$x = 6$。
所以方程的解为$x = 6$。
(2)首先将方程中的括号展开,得到$3x - 6 = 4x + 1$。
然后将方程两边的4x移到左边,将-6移到右边,得到$3x - 4x = 1 + 6$。
即$x =7$。
所以方程的解为$x = 7$。
(3)首先将方程中的括号展开,并合并同类项,得到$4x + 12 - 2x + 2 = 6x - 15$。
然后将方程中的6x移到左边,将常数项移到右边,得到$4x - 2x - 6x = -15 - 12 - 2$。
八年级数学下册拔高题
![八年级数学下册拔高题](https://img.taocdn.com/s3/m/c5e7a815fad6195f312ba61e.png)
八年级数学下册拔高题1、现用甲、乙两种汽车将46吨抗旱物资运往灾区,甲种汽车载重5吨,乙种汽车载重4吨.若一共安排10辆汽车运送这些物资,则甲种汽车至少应安排____________辆.2、当x=1时,分式2x m x n+-无意义,当x=4分式的值为零,则m n +=______________ 3、若点C 是线段AB 的黄金分割点,且AB=2,则AC=__________________。
4、△ABC 中,BD 是角平分线,过D 作DE ∥AB交BC 于点E ,AB=5cm ,BE=3cm ,则EC :CB= ____________.5、如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是____________6、一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现在站在A 处,则她应至少走____________米才最理想.(精确到0.1米)7、报幕员在台上时,若站在黄金分割点处,会显得活泼而生动,已知舞台长10米,那么报幕员要至少走___________米报幕?8、若k cb a bc a a c b =+=+=+,则k 的值为____________。
9、将一个多边形放大为原来的3倍,则放大后的图形可作 无数 个。
10、若的值为那么分式bb a b b a +=-,352__________ 11、△ABC 的三条边长之比为:2:5:6,与其相似的△A 、B 、C 、的最大边长为15cm ,那么它的最小边长为 ,另一边长为 。
12、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是13、为了解一批圆珠笔笔芯的使用寿命,宜采用 方式进行调查;为了解你们班同学的身高,宜采用 方式进行调查;14、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.15、线段AB=2,点C 是AB 的黄金分割点(AC <BC ),点D (不同于C 点)在AB 上,且AB BD AD ⋅=2,求:AC CD =_________. 16、不等式 (a - b)x>a - b 的解集是x <1,则a 与b 的大小关系是: a b.17、若22(3)16x m x +-+是完全平方式,则m 的值是 ( )A .1-B .7C .1-或7D .5或118、赵强同学借了一本书,共260页,两周借期内读完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二(下册)数学题精选分式:一:如果abc=1,求证11++a ab +11++b bc +11++c ac =1二:已知a 1+b 1=)(29b a +,则a b +b a等于多少?三:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。
向容器中注满水的全过程共用时间t 分。
求两根水管各自注水的速度。
四:联系实际编拟一道关于分式方程2288+=xx 的应用题。
要求表述完整,条件充分并写出解答过程。
五:已知M =222y x xy-、N =2222y x y x -+,用“+”或“-”连结M 、N,有三种不同的形式,M+N 、M-N 、N-M ,请你任取其中一种进行计算,化简求值,其中x :y=5:2。
反比例函数:一:一张边长为16cm 正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E ”图案如图1所示.小矩形的长x (cm )与宽y (cm )之间的函数关系如图2所示:(1)求y 与x 之间的函数关系式; (2)“E ”图案的面积是多少?(3)如果小矩形的长是6≤x ≤12cm ,求小矩形宽的范围.二:是一个反比例函数图象的一部分,点(110)A ,,(101)B ,是它的两个端点.(1)求此函数的解析式,并写出自变量x 的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.三:如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x的图象上,则图中阴影部分的面积等于 .四:如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1-),且P (1-,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ值.五:如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式; 勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,•西安发现了他的数学专著,其中有一文《积求勾股法》,它对图“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,“若直角三角形的三边长分别为3、4、5的整数倍,•设其面积为S,则第一步:6S=m;第三步:分别用3、4、5(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.(二题图)(三题图)二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第4张 B.第5张 C.第6张 D.第7张三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A与甲、乙楼顶B C、刚好在同一直线上,且A与B相距350米,若小明的身高忽略不计,则乙楼的高度是米.四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X同侧,50kmAB A=,、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和1S PA PB=+,图(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X 于点P),P到A、B的距离之和2S PA PB=+.(1)求1S、2S,并比较它们的大小;(2)请你说明2S PA PB=+的值为最小;(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.五:已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE AC=.(1)求证:BG FG=;(2)若2AD DC==,求AB的长.四边形:一:如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1) 当AB≠AC时,证明四边形ADFE为平行四边形;P图(1)图(3)图(2)DCEBGAF(2) 当AB = AC 时,顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.二:如图,已知△ABC 是等边三角形,D 、E 分别在边BC 、AC 上,且CD=CE ,连结DE 并延长至点F ,使EF=AE ,连结AF 、BE 和CF 。
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明。
(2)判断四边形ABDF 是怎样的四边形,并说明理由。
(3)若AB=6,BD=2DC ,求四边形ABEF 的面积。
三:如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.四:在矩形ABCD 中,点E 是AD 边上一点,连接BE ,且∠ABE =30°,BE =DE ,连接BD .点P 从点E 出发沿射线ED 运动,过点P 作PQ ∥BD 交直线BE 于点Q .(1) 当点P 在线段ED 上时(如图1),求证:BE =PD +33PQ ;(2)若 BC =6,设PQ 长为x ,以P 、Q 、D 三点为顶点所构成的三角形面积为y ,求y 与 x 的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P 运动到线段ED 的中点时,连接QC ,过点P 作PF ⊥QC ,垂足为F ,PF 交对角线BD 于点G (如图2),求线段PG 的长。
五:如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图...,并写出它们的周长. EFDABC六:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠七:如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10. (1)当折痕的另一端F 在AB 边上时,如图(1).求△EFG 的面积.(2)当折痕的另一端F 在AD 边上时,如图(2).证明四边形BGEF 为菱形,并求出折痕GF 的长.HA BCDEF G八:(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹) (2)写出你的作法.九:如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB . (1)求证:① PE=PD ; ② PE ⊥PD ; (2)设AP =x , △PBE 的面积为y .图(2)ABCDE FG H (A)(B)A BCDE F G 图(1)(第23题)A B CPDE① 求出y 关于x 的函数关系式,并写出x 的取值范围; ② 当x 取何值时,y 取得最大值,并求出这个最大值. .十:如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =12,求22BE DG +的值.数据的分析:一:为了帮助贫困失学儿童,某团市委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息..捐给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例....分布的扇形统计图,图2是该校学生人均存款....情况的条形统计图.(1)九年级学生人均存款元;(2)该校学生人均存款多少元?(3)已知银行一年期定期存款的年利率是2.25%(“爱心储蓄”免收利息税),且每351元能提供 给一位失学儿童一学年的基本费用,那么该校一学年能帮助多少为贫困失学儿童。
二:如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图。
教练组规定:体能测试成绩70分以上(包括70分)为合格。
⑴请根据图11中所提供的信息填写下表:⑵请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好; ②依据平均数与中位数比较甲和乙, 的体能测试成绩较好。
⑶依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好。
三:如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?2002 2003 2004 2005 20066 5 4 3 2A B。