从热机到热寂——熵的起源与发展
熵概念发展及衍生综述
![熵概念发展及衍生综述](https://img.taocdn.com/s3/m/a0cd0e34ed630b1c59eeb53a.png)
熵概念发展及衍生综述摘要:1864年Clausius在热力学中引入了熵的概念(称为宏观熵、热力学熵或Clausius熵),1889年Boltzmann又提出了微观熵的概念——Boltzmann 熵。
Boltzmann熵是熵概念泛化的理论基础,在玻尔兹曼熵的影响下,熵概念开始得到泛化,使熵概念以自己崭新的面貌走入各个领域,开辟了一个又一个的研究领域,成为众多学科发展的“关节”和“引线”。
关键词:宏观熵、微观熵、负熵、麦克斯韦妖、信息熵熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中。
是热力学中为了研究热现象的性质和规律而引入的一个描述体系的混乱度的状态函数,其数值由系统的状态唯一确定。
系统处于不同的状态(P、V、T不同),熵值不同。
我们可以通过计算系统在不同平衡态下的熵变情况,来判断系统进行的方向,也即利用熵增加原理判断宏观过程进行的方向。
根据熵在热力学中的定义,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也引申出了更为具体的定义,是各领域十分重要的参量。
因此,本文有必要对熵概念发展及衍生作一综述。
1宏观熵与微观熵在热力学中,克劳修斯定义的熵,称之为宏观熵,而在统计物理学中,玻尔兹曼定义的熵,称之为微观熵。
1864年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius)首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。
一个体系的能量完全均匀分布时,这个系统的熵就达到最大值。
在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。
让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。
克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都适用的一个公式:dS=dQ/dT。
式中,T为物质的热力学温度;dQ为熵增过程中加入物质的热量。
熵之前世今生
![熵之前世今生](https://img.taocdn.com/s3/m/2a33bd1252d380eb62946d5f.png)
1948年,伽莫夫提出了大爆炸理论。
2.玻尔兹曼熵理论 1872年,28岁的奥地利物理学家玻
尔兹曼用概率统计的方法构造了玻
尔兹曼关系式 :
S k ln W
玻尔兹曼的熵理论
pi 1/
玻尔兹曼对熵理论的贡献: (1)建立起了微观的分子运动与宏观的热 力学演化的联系。 (2)用概率统计的思想给出了熵和熵增原
自从克劳修斯提出“熵”概念后, 150年来繁
衍出了一个“熵”丁兴旺的 “熵族”。然而
,熵究竟是什么,至今仍争论不休。整个熵理
论的发展史也可以说是一部关于熵理论的争论
史。
沿着历史的踪迹,追循熵概念的发展,展现 熵理论的论争,将有助于我们思考:
熵究竟是什么?
1.克劳修斯熵理论 1850年,28岁的德国物理学家克 劳修斯首次提出了热力学第二定 律的一种表述: 不可能把热从低温物体传到高温 物体而不留下任何其它变化。
理的解释。
与克劳修斯相比,玻尔兹曼对熵理论 的贡献,具有极其重要和深远的意义。
再回首,荆棘密布 —— 作为科学原子论捍卫者和概率因果论的奠
基人,玻尔兹曼的思想超越他的时代太远
了。先行者注定是孤独的,玻尔兹曼成为
了科学的殉道者。
1895年,以奥斯特瓦尔德为首的“ 唯能论”派,与玻尔兹曼的“原子 论”之间发生了激烈的论战。
dS
Qr
T
Entropy :熵
天道盈亏——能贬熵增 T1 Q1
热机
Q2 Q1 W
w
Q1 Q2 S ( )ir 0 T1 T2
Q2 T2
宇宙“热寂”
挑战热寂——铩羽而归 自19世纪以来,物理学家为拯救宇宙免于热 寂,不断地作出努力,与熵增加原理抗争。
热力学中的熵概念解析
![热力学中的熵概念解析](https://img.taocdn.com/s3/m/f03ba033bb1aa8114431b90d6c85ec3a86c28b7f.png)
热力学中的熵概念解析熵是热力学中一个重要而又神秘的概念,它描述了系统的混乱程度和不可逆性。
本文将对热力学中的熵概念进行解析,探讨其来历、定义以及应用。
一、熵的来历熵最早由德国物理学家鲁道夫·克劳修斯(Rudolf Clausius)于1850年提出,这是他对热力学第二定律的一个重要推论。
熵的引入使得热力学能够描述系统的不可逆性和热的传递过程。
二、熵的定义根据热力学第二定律,总是以熵增加的形式发生的过程是不可逆的。
熵的定义可以通过宏观和微观两个角度来理解。
从宏观角度来看,熵可以理解为对系统混乱程度和无序性的度量。
一个有序的系统具有较低的熵值,而一个无序的系统则具有较高的熵值。
当系统发生变化时,如果由有序状态转变为无序状态,熵将增加;相反,如果由无序状态转变为有序状态,熵将减少。
从微观角度来看,熵可以通过统计力学的方法来定义。
在微观层面,系统中的分子或原子具有不同的状态和运动方式。
当系统处于均衡时,分子或原子的状态和位置是随机的,无法确定。
熵是描述这种随机性的度量,可以通过统计系统的状态数来计算。
三、熵的计算在实际应用中,可以通过熵的计算来分析系统的性质和过程。
根据定义,熵的计算需要知道系统的状态数和能量分布。
对于一个离散的系统,熵的计算可以使用以下公式:S = -kΣPi lnPi其中,S表示系统的熵,k是玻尔兹曼常数,Pi表示系统处于第i个状态的概率。
对于一个连续的系统,熵的计算可以使用积分来表示:S = -k∫p(x) ln p(x)dx其中,p(x)是系统处于状态x的概率密度函数。
四、熵的应用熵的概念在物理学、化学、生物学等领域都有广泛的应用。
以下是其中一些典型的应用:1. 热力学系统的研究:熵可以用于分析热力学系统的平衡态和非平衡态,以及系统的稳定性和不可逆性。
2. 信息理论:熵可以用来度量信息的不确定性和随机性。
在信息传输和编码中,熵被用来衡量信息的容量和效率。
3. 统计力学:熵可以用来解释热力学中的平衡态和非平衡态之间的关系,并推导出热力学规律和统计力学的基本原理。
熵的概念与热力学过程分析
![熵的概念与热力学过程分析](https://img.taocdn.com/s3/m/dc48e228a88271fe910ef12d2af90242a895abd2.png)
熵的概念与热力学过程分析熵是热力学的重要概念之一,用于描述系统的无序度或混乱程度。
通过对熵的理解,我们可以深入认识热力学过程,并从中得到一些有趣的分析结果。
一、熵的定义与热力学第二定律在热力学中,熵(Entropy)是一个统计物理量,描述了系统的无序度。
熵的定义由奥地利物理学家路德维希·博尔兹曼提出,并被热力学第二定律所支持。
熵的定义可以用于宏观系统和微观系统,分别对应着宏观热力学和统计物理学的熵定义。
对于宏观系统,熵的定义可以表示为:$\Delta S = \int\frac{\delta Q}{T}$其中,ΔS表示熵变,ΔQ表示系统吸收或放出的热量,T表示系统的温度。
熵变的正负表示系统熵的增加或减少,正比于系统吸收的热量与温度的比值。
对于微观系统,熵的定义可以表示为:$S = -k \Sigma P_i \ln P_i$其中,S表示系统的熵,$P_i$表示系统处于第i个微观状态的概率,k表示玻尔兹曼常数。
熵的定义与热力学第二定律有着密切关系。
热力学第二定律表明,在一个孤立系统中,熵不会减少,而只能增加或保持不变。
这意味着,自然界中的热力学过程是具有方向性的,总是朝着无序的状态发展。
二、热力学过程与熵变分析熵变可以用于分析热力学过程中的系统状态变化。
通过对熵变的计算,我们可以了解系统在不同条件下的变化趋势,以及热力学过程的方向。
1. 等温过程等温过程是指系统在恒温条件下进行的过程。
在等温过程中,温度保持不变,熵变可以表示为:$\Delta S = \int\frac{\delta Q}{T} = \int\frac{nC_vdT}{T}$由于温度的恒定,熵变可以化简为:$\Delta S = nC_v\ln(\frac{T_2}{T_1})$其中,Cv表示系统的定容摩尔热容量,n表示物质的摩尔数,T1和T2分别表示过程的初、末温度。
2. 绝热过程绝热过程是指系统在没有传热的情况下进行的过程。
熵的起源、历史和发展
![熵的起源、历史和发展](https://img.taocdn.com/s3/m/596cf10d192e45361066f57e.png)
熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius, 1822 – 1888)在提出了热力学第二定律后不久,首次从宏观上提出了熵(Entropy)的概念。
Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”(另有一说译为“转变”,表示热转变为功的能力)。
在中国被胡刚复教授(一说为清华刘先洲教授)译为“熵”,因为熵是Q除以T(温度)的商数。
他发表了《力学的热理论的主要方程之便于应用的形式》一文,在文中明确表达了“熵”的概念式——dS=(dQ/T)。
熵是物质的状态函数,即状态一定时,物质的熵值也一定。
也可以说熵变只和物质的初末状态有关。
克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少(For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.),此即熵增加原理。
克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0。
在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少。
但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态。
热寂说至今仍引发了大量争论,没有得到证明。
二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究。
1872年奥地利科学家玻尔兹曼(L. E. Boltzmann)首次对熵给予微观的解释,他认为:在大量微粒(分子、原子、离子等)所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度(The degree of randomness or disorder in a thermodynamic system.)。
熵的起源、历史和发展
![熵的起源、历史和发展](https://img.taocdn.com/s3/m/4440c5507cd184254b3535b0.png)
熵的起源、历史和发展一、熵的起源1865年,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius, 1822 – 1888)在提出了热力学第二定律后不久,首次从宏观上提出了熵(Entropy)的概念。
Entropy来自希腊词,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”(另有一说译为“转变”,表示热转变为功的能力)。
在中国被胡刚复教授(一说为清华刘先洲教授)译为“熵”,因为熵是Q除以T(温度)的商数。
他发表了《力学的热理论的主要方程之便于应用的形式》一文,在文中明确表达了“熵”的概念式——dS=(dQ/T)。
熵是物质的状态函数,即状态一定时,物质的熵值也一定。
也可以说熵变只和物质的初末状态有关。
克劳修斯用大量的理论和事实依据严格证明,一个孤立的系统的熵永远不会减少(For an irreversible process in an isolated system, the thermodynamic state variable known as entropy is always increasing.),此即熵增加原理。
克劳修斯提出的热力学第二定律便可以从数学上表述为熵增加原理:△S≥0。
在一个可逆的过程中,系统的熵越大,就越接近平衡状态,虽然此间能量的总量不变,但可供利用或者是转化的能量却是越来越少。
但是克劳修斯在此基础上把热力学第一定律和第二定律应用于整个宇宙,提出了“热寂说”的观点:宇宙的熵越接近某一最大的极限值,那么它变化的可能性越小,宇宙将永远处于一种惰性的死寂状态。
热寂说至今仍引发了大量争论,没有得到证明。
二、熵的发展在克劳修斯提出熵后,19世纪,科学家为此进行了大量研究。
1872年奥地利科学家玻尔兹曼(L. E. Boltzmann)首次对熵给予微观的解释,他认为:在大量微粒(分子、原子、离子等)所构成的体系中,熵就代表了这些微粒之间无规律排列的程度,或者说熵代表了体系的混乱度(The degree of randomness or disorder in a thermodynamic system.)。
熵
![熵](https://img.taocdn.com/s3/m/4ff80a64f242336c1eb95ee2.png)
熵增加原理与熵判据
• 熵增加原理
(2-11a) (2-11b) 式(2-11)表明:在绝热可逆过程中熵值不变,在绝热不 可逆过程中熵值增加,这就是熵增加原理
• 熵判据
对于隔离系统发生的任何过程都是绝热的,因此,将 式(1-10)用于隔离系统则有 (1-12a) (1-12b)
式(1-12)表明:隔离系统内实际发生的任何过程都 是不可逆的,都是自发的、熵增加的过程。当系统的 熵增加至最大时,达到平衡状态,此即为熵判据。
对“熵”的简要介绍
Logo
目录
•熵的起源 •熵与热力学第二定律 •熵增加原理与熵判据 •熵的物理意义
熵的起源
• 熵(Entropy)最初是根据热力学第二定律引出的一个反
映自发过程不可逆性的物质状态参量。 首次提出熵的概念,用来表示任 何一种能量在空间中分布的均匀 程度,能量分布的越均匀,熵就 越大。一个体系的能量完全均匀 分布时,这个系统的熵值就达到 最大值。Fra bibliotek(1-3)
• 可逆循环看作是无限个微小的卡诺循环之总和,可以推广
得到下式
(1-4)
• 对于不可逆循环,可用与处理可逆循环类似的方法得到
(1-5) 将式(1-4)、(1-5)合并得 (1-6) 式(1-6)称为克劳修斯不等式。
(1)
• 可逆过程的热温商及熵函数
根据图1. 2及式(1-3)得:
A (2)
• 可逆过程和不可逆过程:
可逆过程:在系统状态变化的过程中,如果逆过程能重 复正过程的每一状态,而不引起其他变化,这样的过程就叫 做可逆过程。 不可逆过程:在不引起其他变化的条件下,不能使逆过程 重复正过程的每一状态,或者虽能重复但必然会引起其他变 化,这样的过程叫做不可逆过程。
熵
![熵](https://img.taocdn.com/s3/m/761429d480eb6294dd886c08.png)
熵熵,指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
熵最早是由鲁道夫·克劳修斯提出,并应用在热力学中,在密闭条件下,系统有从“有序”自发地转变为无序的倾向,所以用熵(S)来量度这种混乱或无序的程度。
在与外界隔离的体系中,自发过程导致体系的熵增大,即熵变大于零。
这个原理即为熵增原理。
由此可以得出克劳修斯和开尔文的热力学第二定律,即:(1)热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的,是克劳修斯对热力学第二定律的表述);(2)不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的,是开尔文对热力学第二定律的表述)。
两种表述相辅相成,具有等价性,假设开尔文的说法不成立,则存在某热机处于状态A,从一低温热源吸热后对外做功,然后即回到状态A,而环境并无变化。
所对外做的功全部用于摩擦生热传给某高温热源(可以设计该热机作功处为绝热材料,与高温热源摩擦)。
则这一过程由低温热源向高温热源传热而无其他变化。
即证明克劳修斯的说法有误了。
要把能量转化为功,一个系统的不同部分之间就必须有能量集中程度的差异(即温差)。
当能量从一个较高的集中程度转化到一个较低的集中程度(或由较高温度变为较低温度)时,它就做了功。
更重要的是每一次能量从一个水平转化到另一个水平,都意味着下一次能再做功的能量就减少了。
比如河水越过水坝流入湖泊。
当河水下落时,它可被用来发电,驱动水轮,或做其他形式的功。
然而水一旦落到坝底,就处于不能再做功的状态了。
在水平面上没有任何势能的水是连最小的轮子也带不动的。
那么,如果把整个世界看做一个系统,就可以说整个世界就是处于熵增的状态的,也就是说从这方面可以说明时间的不可逆,因为世界是不断地熵增的。
热力学中的熵的概念
![热力学中的熵的概念](https://img.taocdn.com/s3/m/aa372b3077c66137ee06eff9aef8941ea66e4b52.png)
热力学中的熵的概念在热力学中,熵是一个重要的概念。
它是描述系统无序程度的物理量,也是热力学第二定律的核心概念之一。
熵的概念源于热力学的发展历程,经过了长期的探索和发展,逐渐形成了今天我们所熟知的概念。
熵最早是由德国物理学家鲁道夫·克劳修斯于1865年提出的。
他将熵定义为热力学系统的无序程度,即系统的混乱程度。
熵的概念在当时引起了物理学界的广泛关注和讨论。
然而,由于熵的概念比较抽象,难以直观理解,因此在当时的物理学界并没有得到普遍的认可。
随着时间的推移,熵的概念逐渐得到了深入的研究和发展。
熵被认为是描述系统无序程度的量,它与系统的状态有关。
当系统的无序程度增加时,熵的值也会增加;相反,当系统的有序程度增加时,熵的值会减小。
这与我们日常生活中的经验相符。
例如,一个房间里的东西堆积如山,看起来非常凌乱,这时系统的熵就比较高;而当我们将房间整理得井井有条时,系统的熵就会减小。
熵的概念在热力学中起着重要的作用。
根据热力学第二定律,任何一个孤立系统的熵都不会减小,而只会增加或保持不变。
这意味着自然界中的过程总是朝着更高的熵方向进行的。
例如,一杯热水放置在室温环境中,水的温度会逐渐降低,而室温则会逐渐升高。
这是因为热量会从高温的物体传递到低温的物体,使得系统的熵增加。
熵的增加与能量的耗散有密切的关系。
能量在系统中的转化和传递过程中,总会伴随着一定程度的熵的增加。
例如,摩擦力会使得机械能转化为热能,并伴随着一定的熵的增加。
这也是为什么摩擦会产生热量的原因。
熵的增加还与系统的微观状态数有关。
当系统的微观状态数增加时,熵的值也会增加。
这可以解释为什么系统的无序程度越高,熵的值就越大。
熵的概念在许多领域都有应用。
在化学反应中,熵的变化可以用来描述反应的进行方向和速率。
在信息论中,熵被用来度量信息的不确定性和无序程度。
在生态学中,熵被用来描述生态系统的稳定性和可持续性。
熵的概念在这些领域的应用为我们理解和解释自然界中的各种现象提供了重要的工具。
进化论系列讲座(二十六)_熵与热寂
![进化论系列讲座(二十六)_熵与热寂](https://img.taocdn.com/s3/m/d4580d6fcec789eb172ded630b1c59eef8c79acf.png)
71化 石2022年 第2期熵与热寂进化论系列讲座(二十六)郭建崴 陶格通其木格前文提到,克劳修斯(R u d o l f J u l i u s Emanuel Clausius ,1822-1888)于1850年提出热力学第二定律的表述——热不可能从低温物体流向高温物体而不产生任何其他的影响,突出了热传导的不可逆性。
在此基础上,他率先发现了当时的同业学者期望找到的以建立一个普适的判据来判断自发过程进行方向的物理量,即后来定名为熵的状态参量。
在1865年发表的《力学的热理论的主要方程之便于应用的形式》论文中,他把这一新的状态参量正式定名为熵。
熵克劳修斯重新研究了卡诺热机、卡诺循环和卡诺原理。
卡诺的理想热机用于作功的热量是,从高温热源吸来的热量Q 1减去低温热源处放掉的热量Q 2,即Q 1-Q 2。
因而理想热机的效率也可以由(Q 1-Q 2)/Q 1=1-Q 2/Q 1来计算,这与前文介绍的用绝对温度表示的热机效率是等价的,因此可由1-Q 2/Q 1推导出1-T 2/T 1,由1-Q 2/Q 1=1-T 2/T 1便可得到Q 1/T 1=Q 2/T 2。
克劳修斯将Q 1/T 1解释为工作物质从温度为T 1的高温热源处吸取热量Q 1,而Q 2/T 2则是工作物质在温度为T 2的低温热源处放掉热量Q 2,发现工作物质的温度T 同它所携带的热量Q 的比值Q /T 是一个同理想热机具体工作过程无关的量,它的变化只决定于初始和终了两个状态。
因此,Q /T 是系统的一个状态参量。
克劳修斯发明了熵这个名词来表示这个状态参量。
理想热机是一种可逆的热机,排除了热机工作过程因摩擦、漏汽、散热等所损耗的热量,工作物质在高温热源和低温热源处的熵完全相等,即Q 1/T 1=Q 2/T 2。
换言之,理想热机工作过程中不发生熵的变化。
因此可以推论,可逆的变化过程是系统的熵不发生改变的过程。
在真实的热机中,由于不可能完全排除摩擦、漏汽、散热等因素,必然会有部分热量在热机工作的过程中被上述因素耗损掉,所以真实热机的工作过程是不可逆的。
热力学知识:热力学中熵的变化和系统的热力学过程
![热力学知识:热力学中熵的变化和系统的热力学过程](https://img.taocdn.com/s3/m/c1fa9474e55c3b3567ec102de2bd960590c6d982.png)
热力学知识:热力学中熵的变化和系统的热力学过程热力学是研究能量转换和物质转移等过程的学科,它关注的是系统的热力学过程和熵的变化。
熵是热力学中的基本概念,它可以用来描述系统的无序程度,表征系统的混乱程度。
在自然界中,系统往往趋向于将有序转化为无序,即熵不断增加。
而在热力学过程中,热和功的相互转化也会导致熵的变化。
下面本文将详细阐述熵的变化和系统的热力学过程。
一、熵的变化1、熵的定义熵是指系统的无序程度,其定义可以归纳为两个方面:一是定义熵为状态函数,即只与系统的初末状态有关,而与中间过程无关;二是定义熵增量永远大于等于零,即熵增。
在实际应用中,熵的变化可以通过以下公式计算:ΔS = Sf - Si ≥ 0其中,Si和Sf分别表示系统的初态和末态的熵值。
可以看出,系统熵的变化永远大于等于零,即热力学第二定律反映的就是系统熵的增加。
2、熵的增加原理熵增加原理包括两个方面,即化学反应和物理过程。
对于化学反应,它是指在化学反应中,原料转化为产物的同时,系统随之发生了改变。
在这个过程中,系统趋向于转化为无序,从而增加熵值,如下所示:CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)在这个过程中,由于气体分子的数目变多,系统随之变得更加无序,从而熵值增加。
对于物理过程,它是指热能从高温区域流动到低温区域的过程中,系统会不断增加熵值。
由于热能的传递是不可逆的,即热量只能从高温区域流向低温区域,从而系统熵值增加,如下所示:高温区域← Q/Th ←低温区域← Q/Tl ←高温区域其中,Q表示热量的传递,Th和Tl分别表示高温和低温的温度。
二、系统的热力学过程系统的热力学过程是指在给定系统状态下,通过外界对其进行热力学操作而引起的相应变化。
热力学过程可以分为四类,即等温过程、等压过程、等体过程和绝热过程。
下面将分别介绍这四类热力学过程。
1、等温过程等温过程是指在恒温条件下发生的热力学过程。
在等温过程中,系统的温度保持不变,从而熵值也保持不变。
热力学熵的变化和热力学过程
![热力学熵的变化和热力学过程](https://img.taocdn.com/s3/m/ccf5399577a20029bd64783e0912a21614797fea.png)
热力学熵的变化和热力学过程热力学熵是热力学中一个重要的概念,它用来描述系统的无序程度或者混乱程度。
熵的变化在热力学过程中起到关键作用,并且与能量转化和系统行为密切相关。
1. 熵的定义和理解熵是一个热力学状态函数,通常用符号S表示。
从微观层面来看,熵可以理解为系统微观粒子的无序程度,越高表示系统越混乱,趋向于均匀分布;反之,越低表示系统趋向于有序状态。
2. 熵的变化在热力学过程中,熵可以增加或者减少,取决于系统的状态变化。
当一个系统向着更高的无序程度发展时,熵会增加;相反,当系统朝着更有序的方向发展时,熵会减少。
2.1 熵的增加在熵增加的过程中,系统的无序性增强,系统变得更加分散和混乱。
例如,当固体熔化为液体时,其微观粒子得到更多的运动自由度,系统的无序性增加,熵也随之增加。
2.2 熵的减少与熵增加相反,熵减少意味着系统向着更有序的状态演化。
例如,当气体被压缩成为液体或固体时,微观粒子的运动受到限制,系统的无序性减少,熵也随之减少。
3. 热力学过程与熵变化关系不同的热力学过程中,系统的熵变化呈现出不同的特征。
3.1 等温过程在等温过程中,系统的温度保持不变。
根据熵的定义,熵变化可以表示为ΔS = Q_rev / T,其中ΔS表示熵的变化,Q_rev表示可逆过程中的热量变化,T表示温度。
对于等温过程来说,ΔS = Q_rev / T成立。
由于熵增加表示系统趋向于更高的无序状态,因此在等温膨胀等过程中,系统会吸收外界热量,使得Q_rev为正,熵增加。
3.2 绝热过程绝热过程中,系统与外界不进行热量交换,只进行功的转换。
由于熵的变化与热量有关,因此在绝热过程中,熵变化主要受到系统的体积变化以及分子排列方式的影响。
当一个系统趋向于更高的无序性状态时,熵增加;相反,当系统趋向于更有序性状态时,熵减少。
3.3 等压过程在等压过程中,系统的压强保持不变。
由于ΔS = Q_rev / T,当保持压强不变时,熵的变化与热量之间存在直接关系。
熵的探讨
![熵的探讨](https://img.taocdn.com/s3/m/b683ef2b0066f5335a81215a.png)
熵的探讨成型091406 栗晴旸 200914030142中学首次接触“熵”这个词以来,一直对这个词充满着好奇,利用这个机会提地对其进行一次包括热力学意思在内的深入了解释义基本释义熵 shang 【拼音】:[shāng]详细释义1:物理学上指热能除以温度所得的商,标志热量转化为功的程度。
2: 科学技术上用来描述、表征体系统不确定程度的函数。
亦被社会科学用以借喻人类社会某些状态的程度。
3:传播学中表示一种情境的不确定性和无组织性。
英文释义:The degree of randomness or disorder in a thermodynamic system.熵函数的来历热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量转换的过程能否自发地进行以及可进行到何种程度。
热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法;克劳修斯的描述①热量不可能自发地从低温物体传到高温物体,即热量不可能从低温物体传到高温物体而不引起其他变化;开尔文的描述②不可能从单一热源取出热量使之全部转化为功而不发生其他影响;因此第二类永动机是不可能造成的。
热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一。
由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度。
可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数。
如果把任意的可逆循环分割成许多小的卡诺循环,可得出∑(δQi/Ti)r=0 (1)即任意的可逆循环过程的热温商之和为零。
其中,δQi为任意无限小可逆循环中系统与环境的热交换量;Ti为任意无限小可逆循环中系统的温度。
上式也可写成∮(δQr/T)=0 (2)克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即dS=δQr/T (3)对于不可逆过程,则可得dS>δQr/T (4)或 dS-δQr/T>0 (5)这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商。
熵概念的产生和发展
![熵概念的产生和发展](https://img.taocdn.com/s3/m/c4663706effdc8d376eeaeaad1f34693daef1027.png)
熵概念的产生和发展
熵是一种物理量,最早是由德国物理学家卡诺提出的概念。
熵是衡量
一个系统的有序程度的,随着系统无序程度的增加,熵的值也会增加。
熵是一个普遍适用于自然界的概念,应用广泛,不仅在物理学和化学
中有应用,还在信息论中有应用。
熵的产生和发展经历了几个阶段。
首先是卡诺提出了热力学第二定律,即任何一个孤立系统都有一个熵的增加的趋势。
随后,克劳修斯和玻
耳兹曼两位物理学家分别将熵的概念引入热力学中,并将其与原子结
构联系起来。
他们发现,分子的热运动越强,系统的无序程度就越高,从而熵的值就越大。
在玻耳兹曼的贡献下,熵逐渐成为一个重要且普遍的物理概念,并渗
透到其他学科中。
信息论的创立者香农也借鉴熵的概念,提出了信息
熵的概念,用来衡量信息的无序度。
信息熵被广泛应用于计算机领域,特别是在信息压缩领域,例如MP3、JPEG等文件格式的压缩就利用了
信息熵的概念。
熵的发展不仅凝聚了众多物理学家的思考,更深化对自然界的认识。
随着对熵的研究深入,人们也逐渐认识到了熵对自然界的影响。
例如
在生态学中,“大自然的熵”被用来描述自然系统中的无序程度,也
即生态系统的稳定性的一个概念。
环境保护、气候变化等领域的研究
也主要基于熵的概念和思路。
总之,熵的产生和发展经历了几个阶段,它已经成为一个普遍适用于
自然界的概念。
熵的概念和方法逐渐渗透到其他学科中,并成为研究
自然界的主要工具之一。
从熵的角度,我们可以更好地理解自然界中
的复杂性和内在的规律性,从而发现并解决一些现实问题。
熵的概念拓展
![熵的概念拓展](https://img.taocdn.com/s3/m/b2ad0bfd9e314332396893e2.png)
熵的概念最早起源于热力学。
热力学第二定律借助于熵的语言来描述,就是孤立系统的熵最大原理。
后来又产生了统计物理熵和信息熵。
热力学第二定律描述了不可逆性,使与外界隔绝的系统自然地走向混乱、表现出明显的时间取向。
这与大多数物理定律的时间反演不变性形成鲜明的对照。
对于熵人们对它的认识经历了一个半世纪的深入泛化过程,在这个泛化的过程中,它涉及到了很多学科领域。
其中有热力学、统计力学、信息论、控制论、数理经济学、数理社会学,乃至哲学等等。
在这个泛用的过程中,熵应用是成功与失败并存,在概念上,应用和对其评价上存在着某些混乱。
除了同种不同的叫法外,至少也有七八十种。
它分布在自然,生命、思维、社会各个领域。
这表明了熵概念的多样复杂和应用的广泛。
被称为是“泛化”。
当然这其中难免有错用、误用,甚至滥用。
这“熵”从热力学走向广阔的世界时难于避免的。
在近年来热力学熵被广泛的应用到了信息领域。
而生物信息学是用信息论的理论和方法研究生物系统的信息发送、传输和接受规律的科学。
1984年Shannon发表的论文,奠定了信息论的理论基础,明确了信息熵和信息两概念的定义,使熵在其它学领域的应用有了很大进展。
1951年,著名的物理学家薛定谔作了一次报告,并写了一本书:“What is Life ? ”指出“一个生命有机体在不断地增加它的熵——你或者可以说是在增加正熵——并趋于接近最大熵值的危险状态,那就是死亡。
要摆脱死亡,就是说要活着,唯一的办法就是从环境中不断吸收负熵……,有机体是赖负熵为生的。
”这里的意思是说有机体吸收负熵去抵消它在生活中产生的熵增加,从而使自身稳定在低熵水平。
薛定谔对“负熵”做了总结,提出:实际上人在每日进食吸取的主要不是物质和能量,而是以物质、能量作为载体的信息,信息量就是“负熵”。
这一论点一直是热心于填充物理学与生物学间鸿沟的许多物理学家和生物学家,发展理论生物物理学,探索生命本质的精神支柱。
“熵”,这个源于热机的物理概念,已经无处不在,任何物质都有熵。
熵综述
![熵综述](https://img.taocdn.com/s3/m/932d272b647d27284b7351ac.png)
1 熵概念的产生约150年前,科学家在发现热力学第一定律(能量守恒定律)之后不久,又在研究热机效率的理论时发现,在卡诺热机完成一个循环时,它不仅遵守能量守恒定律,而且工作物质吸收的热量Q 与当时的绝对温度T (T= t+273.16℃, t 为摄氏温标)的比值之和∑(Q/T)为零(Q, T 均不为零)。
鉴于以上物理量有这一特性,1865年德国科学家克劳修斯就把可逆过程中工质吸收的热量Q 与绝对温度T 之比值称为Entropy (即熵)。
从此,一个新概念伴随着热力学第二定律就在欧洲诞生了,Entropy 很快在热力学和统计力学领域内占据了重要地位。
1923年德国科学家普朗克来我国讲学用时,在我国字典里还找不到与之对应的汉字,胡刚复教授翻译时就在商字的上加了个火字(表示与热有关)来代表Entropy ,从而在我国的汉字库里出现了“熵”字。
11978年改革开放以后,钱三强率领我国科学家访问欧洲,带回了红极一时的耗散结构理论(比利时科学家普里高津((LPrigogine)创立,并因此获得物理诺贝尔奖),此理论对热力学问题、熵概念和热寂论多有涉及。
从此以后,“熵”成为我国学术界的热门议题,各领域的学者也就“熵”概念与熵原理发表了意见。
1987年上海译文出版社出版了美国学者里夫金(J.Rifkin)和霍华德2(THoward)著的书《Entropy, A New World View))(《熵,一种新的世界观》),于是熵这个概念在中国大地上流行起来,大学教授、改革家、哲学家以及许多学者就“熵”概念和理论发表的见解也多了起来,从此熵在我国开始了广泛的研究。
1986年新疆气象研究所的张学文建议各行业都设法把熵概念和熵原理引入到自己的领域,提出了组织跨学科研究熵的想法,并在1987年组织召开了第一届“熵与交叉科学研讨会”,该研讨会每2年开一次,一直延续至今。
国内对熵概念和熵理论的深入研究,极大的推动了熵在气象学、信息科学、股票投资、管理决策以及基础理论等各个领域的拓展,活跃了我国的科学与社会思想。
熵的起源与发展
![熵的起源与发展](https://img.taocdn.com/s3/m/916e2707bdd126fff705cc1755270722182e5957.png)
熵的起源与发展熵的起源与发展摘要:自然界中发生的宏观过程(指不靠外力自然发生的过程——自发过程)都有确定的方向和限度,如水从高处向低处流,热从高温体传向低温体等,对化学反应也是如此。
另外,变化过程与混乱度有关,自发过程往往是由混乱度小到混乱度大的方向进行。
热力学中是用熵来描述系统的混乱度(无序度)的大小的。
关键词:熵的起源;热机;热寂说;热力学第二定律;熵的微观本质人类活动离不开能源。
作为提供能源的主要物质——煤炭和石油资源是有限的。
同时, 煤炭和石油燃烧时会污染空气, 影响人类活动。
地球上四分之三的面积都被水覆盖, 于是, 有人提出这样一个想法: 设想有一个极大的集热器, 可以收集海水温度降低过程中释放的能量, 并在需要能量时释放出来加以利用。
这个想法的确诱人, 因为这并不违反热力学第一定律。
有人测算过, 这个想法若能实现, 只要使整个海水温度下降0. 01摄氏度 , 则对外所做的功可供全世界的工厂上千年之用。
19世纪的科学家对此进行了长时间的探索研究。
然而, 结果却令人遗憾。
为什么这种想法不能实现呢?原来, 热传导是有方向性的, 有条件的。
这就是热力学第二定律给出的答案。
热力学第二定律和熵概念的提出, 是科学史上一个重要的里程碑。
熵唯一地表达了变化和时间方向的普适性特征, 第一次从全域的角度阐述了变化方向的含义, 并将时间表达为变化的内部性质。
以下是熵的发展简史:1.工业革命与内燃机的发明伴随着生产力的发展与物质需求的迅速增长, 人们迫切需要改善现行生产方式以提高生产效率。
蒸汽机的发明引起了一场工业革命, 出现了劳动分工,生产效率明显提高。
然而, 当时蒸汽机的效率非常低,于是众多科学家和工程师开始踏上提高热机效率之路, 其中卡诺的研究引领了后来者前进的方向。
2. 卡诺定理卡诺抓住了问题的关键——“热机做功依赖于两个热源”, 从热力学角度对理想热机的工作原理进行研究, 提出了卡诺循环。
由卡诺循环引出的卡诺热机是一种理想热机, 即效率最大的热机, 实际的热机只能在效率上不断改进以接近卡诺热机。
进化论系列讲座(二十六)熵与热寂
![进化论系列讲座(二十六)熵与热寂](https://img.taocdn.com/s3/m/dcfcc72afd4ffe4733687e21af45b307e871f99c.png)
进化论系列讲座(二十六)熵与热寂
郭建崴;陶格通其木格
【期刊名称】《化石》
【年(卷),期】2022()2
【摘要】前文提到,克劳修斯(Rudolf Julius Emanuel Clausius,1822-1888)于1850年提出热力学第二定律的表述--热不可能从低温物体流向高温物体而不产生任何其他的影响,突出了热传导的不可逆性。
在此基础上,他率先发现了当时的同业学者期望找到的以建立一个普适的判据来判断自发过程进行方向的物理量,即后来定名为熵的状态参量。
在1865年发表的《力学的热理论的主要方程之便于应用的形式》论文中,他把这一新的状态参量正式定名为熵。
【总页数】3页(P71-73)
【作者】郭建崴;陶格通其木格
【作者单位】中国科学院古脊椎动物与古人类研究所;中国科学院大学;内蒙古自治区鄂尔多斯市乌审旗文物保护中心(博物馆)
【正文语种】中文
【中图分类】G63
【相关文献】
1.熵变理论对"热寂论"判据
2.从热机到热寂——熵的起源与发展
3.进化论系列讲座(二十三)
十分钟了解进化论
——进化论系列讲座小结4.生物学、进化论与物理学的结缘进化论系列讲座(二十四)5.后现代文化的热寂——论《熵》的艺术风格
因版权原因,仅展示原文概要,查看原文内容请购买。
什么是“熵”
![什么是“熵”](https://img.taocdn.com/s3/m/4a9eb13b30b765ce0508763231126edb6f1a7680.png)
什么是“熵”露道夫•克劳修斯发现热力第二定律时,定义了熵,提出“自然社会任何时候都是高温自动向低温转移热量,而一个封闭系统最终会达到热平衡,没有了温差,再不能做功。
这个过程叫熵增,最后状态就是熵死,也称热寂。
”作为一个文旅工作者,我对物理学知之甚少,最初了解这两个词时也曾怀揣着无数不解,但等学完了形势与政策的相关课程,突然就对这个词有了新的理解。
当下国际环境与形势复杂而严峻,政治、经济飞速发展,人民日益增长的物质文化需求以及科教文卫事业的新发展都迫使着国民们对于开辟新的发展篇章有了迫切需要。
外交领域也不例外,社会的发展需要广泛的与泱泱大国建交,需要彼此取长补短实现文化交流,需要崭新的活力和经验、技术参与进来;国家的进步需要展现好大国风范,需要让大国工匠精神、使命责任精神、民族荣辱感传播和远扬,需要让国际了解我们,需要让中国走向世界。
那么这条路上,破腐朽、开新篇的创新就不可或缺。
回归到研究的本体上来,面对世界百年未有之大变局,中国外交应当如何应对?一、克服熵增展现民族创新之灵魂熵增在一定程度上模拟了所有体系、机构、组织的发展方向,在这个独特的过程中所有人逐渐失去动力、所有员工失去特色、所有体系失去生机、所有的流程和环节失去推动其运行与发展的势能。
这个过程使得松散的组织趋于密集,无序的状态高度统一,到最后失去了态度与态度碰撞、观点与观点交流、创新与创新竞争的能量交换,奔腾的江海被一滩死水吞噬,喧闹的丛林回归荒芜的寂静。
这是一个封闭系统的末日,亦是一个国家发展的困局,那么外交的一大方向之一就是引领我们打破熵增,为国家和民族注入活力并为它焕发生机的渠道和方法,是迫使一个系统重新回归开放的逆向力量。
“熵增”将每一个组织都视为一个生命体,小到企业、大到国家,借助整体化的运作应对熵增,并利用厚积薄发和开放合作来解决这个生命体内部懈怠、工作消极、流程僵化、创新乏力的情况,实现用制度改进制度、用体系创新体系、用势能助力势能、用工作激励工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与 不可逆 性相 关 的状态 函数 , 以便 用这个 状 态 函数 在 初 、 终两 态 的差 异 , 过程 进 行 的方 向做 出数 学 分 对 析, 定量判 断 过程进行 的方 向和 限度 。这 个新 的状 态 函数就 是熵 ] 。 克劳 修斯 提 出了状 态 函数 熵 的概念 。对 于可 逆循环 , 劳修斯 指 出 ,“ 克 如果 物体 从任 意一 个初 态 开 始, 连续地 经过 任意 的一 系列状 态又 回到初态 时 , 分 积 总 等 于零 , 么积 分号 里 的表 达式 必 定是 那
至此 , 劳修斯 引入 了状态 函数熵 , 克 定名 为 etp 。e 表 eeg ,oy代表 tnfr tn 所 以 nr y n代 o nry t p r r s mao , a o i et p nr y的含义 是 :as r aoa cnet f oy 系统 的转变 容度 , o t nf m tnl ot d( r o i nob 包含 系统热 能和 离散度 两部分 ) ] 。 12 93年 , 朗克来南 京讲学 。胡 刚复教 授为其 翻译 时 , 普 首次 将 “nrp ” 为“ ” et y 译 o 熵 。根据 公 式 d = S
第2 6卷 第 1 期
2 1 年 2月 01
大 学 化 学
UNI ER I Y HEMI T V ST C S RY
Vo _ l26 No. 1 Fe 201 b. l
从 热 机 到 热 寂 — — 熵 的 起 源 与 发 展
尹世 伟 郭 庆伟 李 鑫茹 潘龙
( 陕西师范大学化学与材料科学学 院
机只能在效率上不断改进 以接近卡诺热机。卡诺提 出, 提高热机效率的关键在于两个热源之间的温差 , 温差 越大则 效率 越高 。这 一理论 为改 进热 机 、 提高 热机效 率指 出了研 究 的方 向 。
3 熵 的提 出 热 力学 系统所 进行 的不 可逆 过程 的初 态与终 态 之 间有 很大 差异 性 , 定 了过程 的方 向 , 能 找到 决 应该
工革 旦 蒸 机 业命 汽 警 卡 热 (想 机器 诺 机理 热 ) 筹 熵信的系 与 息关 概 引 信 论 念 入 息
1 工业 革命 与 内燃 机 的发 明
熵念 概
熵 微 本 的观 质
伴随着生产力的发展与物质需求的迅速增长, 人们迫切需要改善现行生产方式以提高生产效率。蒸 汽机的发 明引起 了一场工业革命 , 出现 了劳 动分 工 , 生产效率 明显提 高 。然 而 , 当时蒸汽机 的效率 非常低 ,
摘要 关键词
陕西西安 70 6 ) 10 2
介 绍熵提 出的历史背景及 其 内涵 的简要 发展过程 , 出可能存在 与热耗散相反 的能量重新 聚集 指 熵 的起源 热机 热寂说 热力学第二定律 熵 的微 观本 质
的过程 , 这是有待于人们的探索的“ ” 谜 。
人 类 活动离不 开 能源 。作 为提供 能源 的主 要物 质— — 煤炭 和 石 油 资源 是 有 限 的。 同时 , 煤炭 和 石 油燃烧时会污染空气 , 影响人类活动。地球上四分之三的面积都被水覆盖 , 于是 , 有人提 出这样一个想 法: 设想 有一个 极 大 的集 热器 , 以收集 海水 温度 降低 过 程 中释放 的能量 , 在 需 要 能量 时 释放 出来 加 可 并 以利用 。这个 想法 的确诱 人 , 因为 这并 不违反 热力 学第 一定 律 。有人 测 算 过 , 这个 想 法 若 能实 现 , 要 只 使整个海水温度下降 0O 则对外所做的功可供全世界的工厂上千年之用。1 世纪的科学家对此进 .1 o C, 9 行 了长时 间 的探 索研 究 。然 而 , 结果 却令 人遗 憾 。为什 么这种 想法 不能 实现 呢 ? 原来 , 热传 导是 有方 向性 的 , 条件 的 。这就是 热 力学第 二定 律给 出 的答 案 。 有 热力 学第二 定 律和熵 概念 的提 出 , 学 史上 一个 重 要 的里 程碑 。熵 唯 一 地表 达 了变化 和 时 间方 是科 向的普适性 特征 , 一次从 全域 的角 度 阐述 了变化方 向的含义 , 第 并将 时 间表达 为变 化 的内部性 质 ] 。 以下是 熵 的发展 简史 :
8 6
大 学 化 学
第2 6卷
一
个物 理量 的全微分 , 只与物 体 当时所 处 的状 态 有关 , 它 而与 物 体 到达 这 个 状态 所 经 过 的途 径 无关 。 ”
,n 】
U 1
如果用 s表 示这个 量 , 可 以规 定 :S 。 则 d=
克劳修斯说 : 我有意把它拼为 etp , “ n oy 以便与 ee y 能量) r nr ( g 尽可能相似, 因为这两个字所表示 的 量 , 物理上 都具有 重要 意义 , 在 而且关 系密切 , 以二 者在 名称上 的相 似 , 所 我认 为是 有好处 的”3。 []
_
uE
, U 1
,
S 为热量与温度之商 , 火字旁表明是与热力学有关的物理概念 , 这样就构成 了一个新字“ [ 熵”引。
时至今 日, 熵已经被引入到信息论、 宇宙论乃至社会生活的各个领域 。可以说 , 熵” “ 概念 熵增 加原理
如 克劳 斯不 式 A 一∑ T≥0 到 果将 修 等 S 应用 微小过 程中 则得到: 一 I 。 绝热系 , d > 对于 S 0
于是众多科学 家和工程师开始 踏上提高热机 效率之路 , 中卡诺的研究 引领 了后来者前进 的方 向。 其
2 卡 诺定理
卡诺 抓住 了问题 的关 键一 “ 热机做 功依 赖 于两个 热源 ” 从 热 力学 角 度对 理想 热 机 的工 作原 理进 , 行研 究 , 出了卡诺 循环 。由卡诺 循环 引出 的卡诺 热 机是 一种 理 想热 机 , 提 即效 率最 大 的热机 , 际 的 热 实