中考物理备考之杠杆平衡压轴培优易错试卷篇及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初中物理杠杆平衡条件的应用问题
1.如图所示为建筑工地上常用的吊装工具,物体M是重5000N的配重,杠杆AB的支点为O,已知长度OA∶OB=1∶2,滑轮下面挂有建筑材料P,每个滑轮重100N,工人体重为700N,杠杆与绳的自重、滑轮组摩擦均不计。
当工人用300N的力竖直向下以1m/s的速度匀速拉动绳子时()
A.建筑材料P上升的速度为3m/s B.物体M对地面的压力为5000N
C.工人对地面的压力为400N D.建筑材料P的重力为600N
【答案】C
【解析】
【分析】
【详解】
A.物重由2段绳子承担,建筑材料P上升的速度
v=1
2
v绳=
1
2
×1m/s=0.5m/s
故A错误;
B.定滑轮受向下的重力、3段绳子向下的拉力、杠杆对定滑轮向上的拉力,由力的平衡条件可得
F A′=3F+G定=3×300N+100N=1000N
杠杆对定滑轮的拉力和定滑轮对杠杆的拉力是一对相互作用力,大小相等,即
F A= F A′=1000N
根据杠杆的平衡条件F A×OA=F B×OB,且OA:OB=1:2,所以
F B=F A×OA
OB
=1000N×
2
OA
OA
=500N
因为物体间力的作用是相互的,所以杠杆对物体M的拉力等于物体M对杠杆的拉力,即
F B′=F B=500N
物体M受竖直向下的重力、竖直向上的支持力、竖直向上的拉力,则物体M受到的支持力为
F M支持=
G M− F B′=5000N−500N=4500N
因为物体间力的作用是相互的,所以物体M对地面的压力
F M 压=F M 支持=4500N
故B 错误;
C .当工人用300N 的力竖直向下拉绳子时,因力的作用是相互的,则绳子对工人会施加竖直向上的拉力,其大小也为300N ,此时人受竖直向下的重力G 、竖直向上的拉力F 、竖直向上的支持力F 支,由力的平衡条件可得F +F 支=G ,则
F 支=G−F =700N−300N=400N
因为地面对人的支持力和人对地面的压力是一对相互作用力,大小相等,所以工人对地面的压力
F 压=F 支=400N
故C 正确;
D .由图可知n =2,且滑轮组摩擦均不计,由F
=12
(G +G 动)可得,建筑材料P 重 G =2F −G 动=2×300N−100N=500N
故D 错误。
故选C 。
2.如图所示为等刻度轻质杠杆,A 处挂4牛的物体,若使杠杆在水平位置平衡,则在B 处施加的力( )
A .可能为0.5牛
B .一定为2牛
C .一定为3牛
D .可能是4牛
【答案】D
【解析】
【分析】
【详解】 设杠杆每小格的长度为L ,若在B 点用垂直OB 竖直向下的力使杠杆在水平位置平衡,此时所用的力最小,根据杠杆平衡条件1122Fl F l =可得
min 42F L G L ⋅=⋅
则有
min 24N 22N 44
G L F L ⋅⨯=== 若在B 点斜拉使杠杆在水平位置平衡,由杠杆平衡条件1122Fl F l =可知 2211F l F l =
则此时杠杆左边的阻力与阻力臂的乘积不变,动力臂减小,故动力将增大,故若使杠杆在水平位置平衡,在B 点施加的力
2N F ≥
故选D 。
3.如图所示,为提升重物,现选用轻质杠杆,不考虑杠杆支点O 点处的摩擦,每次利用杠杆把同一重物匀速提升相同高度,下列说法正确的是
A .当重物悬挂在A 点,动力作用在C 点时,该杠杆一定是省力杠杆
B .当重物悬挂在
C 点,动力作用在B 点时一定比作用在A 点时要省力
C .无论重物挂在A 点还是B 点时,利用该机械所做的有用功都相等
D .如果动力作用在C 点且方向始终保持与杆保持垂直,则提升重物过程动力大小不变
【答案】C
【解析】
【分析】
灵活运用杠杆平衡公式分析即可;
【详解】
AB .不论重物悬挂在A 点或C 点,也不论动力作用在C 点还是B 点,判断杠杆是省力还是费力,需要根据杠杆平衡公式,不仅与力的作用点有关,还与力的方向有关,因此无法在只知道力的作用点的情况下判断是否省力,故AB 错误;
C .无论重物挂在A 点还是B 点时,由于物体质量相同,上升高度相同,则根据W Gh =可知,该机械所做的有用功都相等,故C 正确;
D .动力作用在C 点且方向始终保持与杆保持垂直时,可得动力臂大小始终不发生变化,但由于物体上升,重物的阻力臂会逐渐减小,则由杠杆平衡公式可知动力会减小,故D 错误。
4.如图,一个长方体木箱,重心在它的几何中心,其高度为H 、正方形底面的边长为L 、重为G 。
想把这个木推倒(木箱较重,不会移动),在其中部的中心最初施加一个水平推力大小是( )
A .
2GHL B .GH L C .HL G
D .GL H 【答案】D
【解析】
【分析】
【详解】
由图示可知,把这个木箱推倒,它右下端与地面的接触点是支点,当小孩水平推木箱时,力臂为2H ,阻力为木箱的重力,阻力臂为2
L ,如图所示:
根据杠杆的平衡条件可得
G ×2
L =F ×2H F =GL H
故选D 。
5.如图所示,在探究“杠杆平衡条件”的实验中,杠杆在力F 作用下在水平位置平衡,现保持杠杆始终在水平位置平衡,将弹簧测力计绕B 点从a 转动到b 的过程中,拉力F 与其力臂的乘积变化情况是( )
A .一直变小
B .一直变大
C .一直不变
D .先变小后变大
【答案】C
【解析】
【分析】
【详解】 将测力计绕B 点从a 位置转动到b 位置过程中,钩码的重力不变,其力臂OA 不变,即阻力与阻力臂的乘积不变;由于杠杆始终保持水平平衡,所以根据杠杆的平衡条件可知,拉力F 与其力臂的乘积也是不变的。
故选C 。
6.如图所示为一轻质杠杆。
机翼模型固定在直杆上,它们总重 6N ,直杆挂在杠杆上并保持与杠杆垂直。
同一弹簧测力计在不同情形下拉杠杆,使杠杆在水平位置平衡。
下列说法中正确的是( )
A .测力计在a 位置时的示数为 1.5N
B .测力计从a 位置转到b 位置后,示数将会变小
C .测力计在a 位置时示数为Fa ,移至c 位置时示数为Fc ,则 Fa ∶Fc =4∶1
D .测力计在c 位置时,对模型水平向右吹风,示数将会变大
【答案】C
【解析】
【分析】
【详解】
A .我们将杠杆左边受到的拉力定义为阻力,右边受到的拉力定义为动力。
因为动力臂为阻力臂的
14
,根据杠杆平衡条件1122Fl F l =我们可以知道,动力应为阻力6N 的4倍,即为24N ,A 选项错误,不符合题意; B .测力计a 位置时,动力臂等于支点到力的作用点的距离;当测力计在b 位置时,动力臂与支点到力的作用点的距离为直角三角形的一条直角边与斜边的关系,即测力计从a 位置转到b 位置,动力臂变小了。
根据杠杆平衡条件1122Fl F l =可以知道,在阻力与阻力臂均不变的情况下,动力臂减小,要使杠杆继续平衡,动力应该增大。
B 选项错误,不符合题意;
C .当测力计从a 位置转到c 位置时,动力臂变为原来的4倍。
由杠杆平衡条件1122Fl F l =可以知道,在阻力与阻力臂均不变的情况下,动力臂变为原来的4倍,要使杠杆继续平衡,动力应变为原来的14
,即Fa ∶Fc =4∶1。
C 选项正确,符合题意; D .对模型向右吹风,根据流体压强与流速的关系可以知道,模型会受到一个向上的升力,即杠杆左边受到的拉力会减小。
根据杠杆平衡条件1122Fl F l =可以知道,在力臂均不变的情况下,阻力减小了,要使杠杆继续平衡,动力也应减小。
D 选项错误,不符合题意。
故选C 。
7.小明做探究杠杆平衡条件的实验时将手中的5个钩码挂成了如图所示的情况,则( )
A.由图可以得到杠杆平衡条件为F1L1=F2L2
B.小明在F1和F2的下方各再挂一个钩码杠杆仍能平衡
C.小明取下F1下的一个钩码并将F2的钩码取下杠杆仍能平衡
D.小明取下F2下的钩码并将F3的钩码向右移至20cm处杠杆仍能平衡【答案】D
【解析】
【分析】
【详解】
A.假设一个钩码的重力为G
F1=2G,F2=G,F3=2G
各力力臂为
L1=20,L2=10,L3=15
F1L1=2G⨯20=40G
F2L2=G⨯10=10G
F3L3=2G⨯15=30G
杠杆平衡的条件为
F1L1=F2L2+F3L3
故A不符合题意;
B.在F1和F2的下方各再挂一个钩码后
F1L1=3G⨯20=60G
F2L2=2G⨯10=20G
F3L3=2G⨯15=30G
F1L1>F2L2+F3L3
杠杆失去平衡,故B不符合题意;
C.取下F1下的一个钩码并将F2的钩码取下后
F1L1=G⨯20=20G
F2L2=0
F3L3=2G⨯15=30G
F1L1<F2L2+F3L3
杠杆失去平衡,故C不符合题意;
D.取下F2下的钩码并将F3的钩码向右移至20cm处后
F1L1=2G⨯20=40G
F2L2=0
F3L3=2G⨯20=40G
F1L1=F2L2+F3L3
杠杆重新平衡,故D符合题意。
故选D。
8.如图所示,杠杆在水平位置处于平衡状态。
下列操作仍能使杠杆在水平位置保持平衡的是()
A.两侧钩码同时向外移一格
B.左侧的钩码向左移一格,右侧增加一个钩码
C.在两侧钩码下方,同时加挂一个相同的钩码
D.在两侧钩码下方,同时减去一个相同的钩码
【答案】B
【解析】
【分析】
【详解】
设一个钩码的重力为G,横梁上一个格的长度为L,原来杠杆处于平衡状态,则有
G L G L
⨯=⨯
2332
A.两边各向外移一格,左边
⨯=
G L GL
248
右边
⨯=
339
G L GL
由于
<
89
GL GL
杠杆右端下沉,故A不符合题意;
B.左侧的钩码向左移一格,右侧增加一个钩码,因左边
⨯
G L
24
右边
⨯
42
G L
因
G L G L
⨯=⨯
2442
故B符合题意;
C.在两侧钩码下方,同时加挂一个相同的钩码,左边
⨯=
G L GL
339
右边
428G L GL ⨯=
因为
98GL GL >
杠杆左端下沉,故C 不符合题意;
D .在两侧钩码下方,同时减去一个相同的钩码,左边
33G L GL ⨯=
右边
224G L GL ⨯=
由于
34GL GL <
杠杆右端下沉,故D 不符合题意。
故选B 。
9.如图所示,体积之比为1∶2的甲、乙两个实心物块,分别挂在杠杆两端,此时杠杆恰好水平平衡,则甲、乙两个物块的密度之比为( )
A .1∶1
B .1∶2
C .4∶3
D .2∶1
【答案】C
【解析】
【分析】
【详解】 由图知道,甲物体挂在左边第3格处,乙物体挂在右边第2格处,由杠杆的平衡条件知道,此时12G l G l =甲乙即
32m g m g ⨯=⨯甲乙 所以23
m m 甲乙=,又因为V 甲/V 乙=1/2,甲、乙两个物块的密度之比是 24133
2m V m V ρρ===甲甲甲乙乙乙
故C 正确。
故选C 。
10.如图所示,杠杆挂上钩码后刚好平衡,每个钩码的质量相同,在下列情况中,杠杆还能平衡的是
A.左右钩码各向支点移一格B.左右各减少一个钩码
C.左右各减少一半钩码D.左右各增加两个钩码
【答案】C
【解析】
设杠杆的分度值为 L,一个钩码的重为G.原来4G×2L=2G×4L;
左、右钩码各向支点移动一格,左边=4G×L=4GL,右边=2G×3L=6GL,左边<右边,杠杆向右端下沉,A不符合题意;
左右各减少一个钩码,左边=3G×2L=6GL,右边=G×4L=4GL,左边>右边,杠杆向左下沉,B 不符合题意;
左、右钩码各减少一半法码,左边=2G×2L=4GL,右边=G×4L=4GL,左边=右边,杠杆平衡;C符合题意;
左右各增加两个钩码,左边=6G×2L=12GL,右边=4G×4L=16GL,左边<右边,杠杆右边下沉,D不符合题意,故选C.
11.如图所示,杠杆恰好处于水平平衡状态,若在B处下方再挂一个钩码,若要使杠杆在水平位置再次平衡,下列可行的操作是______。
(选填字母)
A.减少一个悬挂在A处的钩码B.增加一个悬挂在A处的钩码
C.将悬挂在A处的钩码向左移动一格D.将悬挂A处的钩码向右移动一格
【答案】C
【解析】
【分析】
【详解】
假设一个钩码重力为G,杠杆一格为l,杠杆平衡时
⨯=⨯=
G l G l Gl
32236
若在B处下方再挂一个钩码,则右边为
G l Gl
⨯=
339
A.减少一个悬挂在A处的钩码,则左边为
⨯=
224
G l Gl
左边小于右边,杠杆不能平衡,故A 项不符合题意;
B .增加一个悬挂在A 处的钩码,则左边为
428G l Gl ⨯=
左边小于右边,杠杆不能平衡,故B 项不符合题意;
C .将悬挂在A 处的钩码向左移动一格,则左边为
339G l Gl ⨯=
左边等于右边,杠杆能再次平衡,故C 项符合题意;
D .将悬挂A 处的钩码向右移动一格,则左边为
313G l Gl ⨯=
左边小于右边,杠杆能再次平衡,故D 项不符合题意。
故选C 。
12.一轻质不等臂杠杆AOB 的左右两端分别吊着一实心铝块和铜块,此时杠杆在水平位置平衡。
现将铝块、铜块同时浸没在水中,如图所示。
已知:331.010kg/m ρ=⨯水,332.71k 0g/m ρ=⨯铝,338.910kg/m ρ=⨯铜,则下列判断正确的是( )
A .A 端下降
B .B 端下降
C .仍然平衡
D .无法判断
【答案】B
【解析】
【分析】
【详解】 在轻质不等臂杠杆AOB 两端吊上实心铝块和铜块时,杠杆在水平位置平衡,由图知OB <OA ,据杠杆的平衡条件得
G 铝⋅OA =G 铜⋅OB
即
ρ铝V 铝g ⋅OA =ρ铜V 铜g ⋅OB
而ρ铝<ρ铜,所以
V 铝g >V 铜g
将铝块和铜块同时浸没在水中后,杠杆左、右两边有
(G 铝-F 浮)⋅OA ,(G 铜-F 浮')⋅OB
即
(ρ铝V 铝g -ρ水V 铝g )⋅OA ,(ρ铜V 铜g -ρ铜V 铜g )⋅OB
那么
ρ铝V 铝g ⋅OA -ρ水V 铝g ⋅OA <ρ铜V 铜g ⋅OB -ρ铜V 铜g ⋅OB
所以B 端下沉。
故ACD 错误,B 正确。
故选B 。
13.如图为搬运砖头的独轮车,车箱和砖头所受的总重力G 为1 000 N (车架所受重力忽略不计),独轮车的有关尺寸如图所示,推车时,人手向上的力F 的大小为 ( )
A .200 N
B .300 N
C .400 N
D .500 N
【答案】B
【解析】
【分析】
【详解】
由平衡条件可知 12Gl Fl =
则 1
21000N 0.3=300N m
Gl F l ⨯=
=m1 故选B 。
14.在一个长3米的跷跷板(支点在木板中点)的两端分别放置两个木箱,它们的质量分别为m 1=30kg ,m 2=20kg ,为了使跷跷板在水平位置平衡,以下做法可行的是( )
A .把m 1向右移动0.5米
B .把m 2向左移动0.5米
C .把m 1向右移动0.2米
D .把m 2向左移动0.3米
【答案】A
【解析】
【分析】
【详解】
跷跷板的支点在木板中点,根据图中信息可知,木板左边受到的压力比右边大,为了使跷跷板在水平位置平衡,应该将m 1向右移,则m 2的力臂不变为1.5m ,根据杠杆的平衡条件有
1122m gl m gl '=
代入数据可得m 1向右移后的力臂 22
1120kg 1.5m 1m 30kg
m gl l m g ⨯'=== m 1的力臂由1.5m 变为1m ,为了使跷跷板在水平位置平衡,把m 1向右移动0.5米,所以BCD 项错误,A 项正确。
故选A 。
15.如图所示为建筑工地上常用的吊装工具,物体M 为重5000N 的配重,杠杆AB 的支点为O ,已知OA ∶OB =1∶2,滑轮下面挂有建筑材料P ,每个滑轮重100N ,工人体重为700N ,杠杆与绳的自重、滑轮组摩擦均不计,当工人用300N 的力竖直向下以1m/s 的速度匀速拉动绳子时( )
A .工人对地面的压力为400N
B .建筑材料P 重为600N
C .建筑材料P 上升的速度为3m/s
D .物体M 对地而的压力为4400N
【答案】A
【解析】
【分析】
【详解】
A .当工人用300N 的力竖直向下拉绳子时,绳子对工人会施加竖直向上的拉力,其大小也为300N ,此时人受竖直向下的重力G 、竖直向上的拉力F 、竖直向上的支持力F 支,由力的平衡条件知道
F +F 支=G
即
F 支=G-F =700N-300N=400N
由于地面对人的支持力和人对地面的压力是一对相互作用力,大小相等,所以,工人对地面的压力
F 压=F 支=400N
故A 正确;
B .由图知道,绳子的有效段数是n =2,且滑轮组摩擦均不计,由()12F G G =
+物
动知道,建筑材料P 的重力
G =2F-G 动 =2×300N-100N=500N
故B 错误;
C .因为物重由2段绳子承担,所以,建筑材料P 上升的速度 11=1m/s=0.5m/s 22
v v =⨯绳 故C 错误;
D .以定滑轮为研究对象,定滑轮受向下的重力、3段绳子向下的拉力、杆对定滑轮向上的拉力,由力的平衡条件知道
F A ′=3F +
G 定 =3×300N+100N=1000N
杠杆对定滑轮的拉力和定滑轮对杠杆的拉力是一对相互作用力,大小相等,即
F A =F ′A =1000N
由杠杆的平衡条件知道
F A ×OA =F B ×OB
又因为OA :OB =1:2,所以
A B 1000=5N 00N 2F OA OA F OB OA
⨯⨯== 由于物体间力的作用是相互的,所以,杠杆对物体M 的拉力等于物体M 对杠杆的拉力,即
F B ′=F B =500N
物体M 受竖直向下的重力、竖直向上的支持力、竖直向上的拉力,则物体M 受到的支持力为
F M 支持 =
G M -F B ′=5000N-500N=4500N
因为物体间力的作用是相互的,所以物体M 对地面的压力
F M 压=F M 支持=4500N
故D 错误。
故选A 。
16.能使杠杆OA 水平平衡的最小力的方向为( )
A .AB
B .A
C C .A
D D .AE
【答案】A
【解析】
【分析】
根据杠杆平衡的条件,F1×L1=F2×L2,在杠杆中的阻力、阻力臂一定的情况下,要使所用的动力最小,必须使动力臂最长.由此分析解答.
【详解】
由图知,O为支点,动力作用在A点,连接OA就是最长的动力臂,根据杠杆平衡的条件,要使杠杆平衡动力方向应向上,所以最小力方向为AB.
故选A.
【点睛】
在通常情况下,要使所用的动力最小,必须使动力臂最长,连接杠杆中支点和动力作用点这两点所得到的线段就是最长力臂.
17.如图所示,重力为G的均匀木棒竖直悬于O点,在其下端施一始终垂直于棒的拉力F,让棒缓慢转到图中间虚线所示位置,在转动的过程中()
A.动力臂逐渐变大
B.阻力臂逐渐变大
C.动力F保持不变
D.动力F逐渐减小
【答案】B
【解析】
【分析】
先确定阻力臂、动力臂的变化,然后根据杠杆平衡的条件(动力乘以动力臂等于阻力乘以阻力臂)分析动力的变化。
【详解】
A.由图示可知,木棒是一个杠杆,力F是动力,力F始终垂直与木棒,则木棒的长度是动力臂,木棒长度保持不变,动力臂保持不变,故A不符合题意;
B.木棒的重力是阻力,阻力大小不变,木棒在竖直位置时,重力的力臂为0,转过θ角后,重力力臂(阻力臂)逐渐增大,故B符合题意;
CD.已知G、L保持不变,L G逐渐变大,由杠杆平衡条件有
GL G=FL
动力F逐渐增大,故CD不符合题意。
故选B。
【点睛】
本题考查了杠杆平衡条件的应用,知道杠杆平衡的条件,会熟练应用杠杆平衡的条件分析问题解决问题是关键。
18.如图所示,有一个轻质硬杆,两端分别为A ,D 点,一重物悬挂于B 点,力F 作用在D 点使硬杆平衡,为了使力F 最小,支点O 应选择在( )
A .A 点
B .B 点
C .C 点
D .D 点
【答案】A
【解析】
【详解】
由题意可知,支点O 不会在B 点,否则有力F 的存在,轻质硬杆不能平衡;支点O 也不会在D 点,否则无论力F 大小如何,轻质硬杆也不能平衡;假设支点O 在C 点,那么根据杠杆的平衡原理可知 BC CD Gl Fl =,
变换可得 BC
CD Gl F l =; 假设支点O 在A 位置时,那么根据杠杆的平衡原理可知
AB AD Gl Fl =,
变换可得
AB AD
Gl F l =, 从图中可以看到,动力F 的力臂l AD 最长,那么力F 最小;故选A 。
19.如图所示,直径为50cm 的半球形碗固定在水平面上,碗的端口水平。
一根密度分布均匀,长度为60cm 的光滑杆ABC 搁置在半球碗上,碗的厚度不计,平衡时杆受到的重力与杆在B 点受到的弹力大小之比为( )
A .5 :3
B .6 :5
C .3 :2
D .4 :3
【答案】A
【解析】
【详解】 以AC 棒为研究对象受力如图所示:
根据几何关系可得:
OAB OBA BAD α∠=∠=∠=
设杆在B 点受到的弹力为N ,根据力矩平衡可得:
AB AD NL GL =
则:
25230N cos G cos αα⨯⨯⨯=⨯⨯
解得: 53
G N = 故A 项符合题意;BCD 项不符合题意;
20.如图所示,长1m 的粗细均匀的光滑金属杆可绕O 点转动,杆上套一滑环,用测力计竖直向上拉着滑环缓慢向右移动,并保持金属杆处于水平状态。
则测力计示数F 与滑环离开O 点的距离s 之间的关系图像为( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】
【详解】
由题意可知,测力计竖直向上拉着滑环缓慢向右移动的过程中,金属杆处于水平状态,处于平衡状态,根据杠杆的平衡条件可得 12OA OA G l Fs k ⋅== 金属杆的重力和金属杠的长度大小不变,即k 是定值,那么可得到
1F k s
=⋅ 从上式可知随着距离s 的变大,测力计示数F 在变小,两者是成反比的,两者的关系图像是B 图像。
故选B 。
21.如图所示,轻质均匀杠杆分别挂有重物G A 和G B (G A >G B ),杠杆水平位置平衡,当两端各再加重力相同的物体后,杠杆
A .仍能保持平衡
B .不能平衡,左端下沉
C .不能平衡,右端下沉
D .不能确定哪端下沉
【答案】C
【解析】
【详解】
杠杆原来在水平位置处于平衡状态,此时作用在杠杆上的力分别为G A 和G B ,其对应的力臂分别为l A 和l B ,如图所示:
根据杠杆平衡条件可得:G A l A=G B l B;
已知G A>G B所以l A<l B,当两端各再加重力相同的物体后,设增加的物重为G,此时左边力和力臂的乘积:
(G A+G)⋅l A=G A l A+Gl A
右边力和力臂的乘积:
(G B+G)⋅l B=G B l B+Gl B
由于l A<l B,所以Gl A<Gl B;
所以:
G A l A+Gl A<G B l B+Gl B
即右边力和力臂的乘积较大,所以杠杆不能平衡,向右端下沉。
故选C。
22.如图所示,AOB为一杠杆,O为支点,杠杆重不计,AO=OB.在杠杆右端A处用细绳悬挂重为G的物体,当AO段处于水平位置时,为保持杠杆平衡,需在B端施加最小的力为F1;当BO段在水平位置时保持杠杆平衡,这时在B端施加最小的力为F2,则
A.F1<F2B.F1>F2C.F1=F2D.无法比较
【答案】B
【解析】
【分析】
【详解】
(1)当AO段处于水平位置时,如左图所示最省力,
∵
F1l OB=Gl OA
∴
F 1=OA OB
Gl l =G ; (2)当OB 段处于水平位置时,如右图所示最省力, ∵
F 2l OB =Gl OC ∴
F 2=OC OC OB OB Gl
G l l l ⨯= ∵
l OC <l OB ∴
F 2<
G ∴
F 1>F 2; 故选B .。