振安区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振安区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知抛物线C :2
4y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .2)
B .2
C .1:
D (1+
2. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在
方向上的投影为( )
A .
B .﹣
C .
D .﹣
3. 在△ABC 中,已知a=2,b=6,A=30°,则B=( )
A .60°
B .120°
C .120°或60°
D .45°
4. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)
5. 已知等比数列{a n }的前n 项和为S n ,若=4,则
=( )
A .3
B .4
C .
D .13
6. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高 杂质低 旧设备 37 121 新设备
22
202
根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低
D .以上答案都不对
7. 将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是( )
A .
B .
C .
D .
8. sin45°sin105°+sin45°sin15°=( )
A .0
B .
C .
D .1
9. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )
A
. B
. C
. D

10.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111] A .)2
2,
0( B .)33,0( C .)55,0( D .)66,0(
11.若a >0,b >0,a+b=1,则
y=
+的最小值是( ) A .2
B .3
C .4
D .5
12.已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪
+-≤⎨⎪≥⎩
则目标函数2z x y =+的最大值为( )
A .3
B .13
2
C .12
D .15
二、填空题
13.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .
14.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 15.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 16.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ; ②若AC ⊥BD ,则四边形EFGH 是 .
17.复数
z=(i 虚数单位)在复平面上对应的点到原点的距离为 .
18.抛物线y 2=4x 的焦点为F ,过F
且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长
为 .
三、解答题
19.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣) (1)当x ∈[2,4]时,求该函数的值域;
(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.
20.已知全集U=R ,函数y=+
的定义域为A ,B={y|y=2x
,1≤x ≤2},求:
(1)集合A ,B ; (2)(∁U A )∩B .
21.(本小题满分12分) 已知函数21
()x f x x +=
,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭
(N n *∈). (1)求数列{}n a 的通项公式;
(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和n T .
【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.
22.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
23.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y 的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
24.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.
振安区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】
考点:1、抛物线的定义;2、抛物线的简单性质.
【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.
2.【答案】D
【解析】解:∵;
∴在方向上的投影为==.
故选D.
【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.
3.【答案】C
【解析】解:∵a=2,b=6,A=30°,
∴由正弦定理可得:sinB===,
∵B∈(0°,180°),
∴B=120°或60°.
故选:C.
4.【答案】C
【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,
∴f(﹣1)f(0)<0,
可知:函数f(x)的零点所在的区间是(﹣1,0).
故选:C.
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.5.【答案】D
【解析】解:∵S n为等比数列{a n}的前n项和,=4,
∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,
∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),
解得=13.
故选:D.
【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.6.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37 121 158
新设备22 202 224
合计59 323 382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
7.【答案】D
【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:
当x=时,sin(2×﹣)=0;
∴(,0)就是函数的一个对称中心坐标.
故选:D.
【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.
8.【答案】C
【解析】解:sin45°sin105°+sin45°sin15°
=cos45°cos15°+sin45°sin15°
=cos(45°﹣15°)
=cos30°
=.
故选:C.
【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
9.【答案】C
【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,
由以上各视图的描述可知其俯视图符合C 选项. 故选:C .
【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.
10.【答案】B 【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a
a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
11.【答案】C
【解析】解:∵a >0,b >0,a+b=1, ∴
y=
+=(a+b

=2+
=4,当且仅当
a=b=时取等号.
∴y=+的最小值是4. 故选:C .
【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.
12.【答案】C
考点:线性规划问题.
【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y 轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.
二、填空题
13.【答案】 (﹣1,﹣1) .
【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).
14.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×9
2×c =200,∴c =4.
答案:4
15.【答案】 (﹣4,0] .
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,
则满足,
即,

解得﹣4<a<0,
综上:a的取值范围是(﹣4,0].
故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
16.【答案】
菱形;
矩形.
【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC ∴四边形EFGH是平行四边形
又∵AC=BD
∴EF=FG
∴四边形EFGH是菱形.
②由①知四边形EFGH是平行四边形
又∵AC⊥BD,
∴EF⊥FG
∴四边形EFGH是矩形.
故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
17.【答案】.
【解析】解:复数z==﹣i(1+i)=1﹣i,
复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.
故答案为:.
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.
18.【答案】4.
【解析】解:由已知可得直线AF的方程为y=(x﹣1),
联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),
由抛物线定义可得:AF=x1+=3+1=4.
故答案为:4.
【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)
=(log2x)2﹣log2x+1,2≤x≤4
令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,
∵2≤x≤4,
∴1≤t≤2.
当t=时,y min=﹣,当t=1,或t=2时,y max=0.
∴函数的值域是[﹣,0].
(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.
∴m<t+﹣对于t∈[2,4]恒成立,
设g (t )
=
t+
﹣,t ∈[2,4], ∴g (t )
=
t+

=(
t+
)﹣, ∵g (t )
=
t+
﹣在[2,4]上为增函数, ∴当t=2时,g (t )min =g (2)=0, ∴m <0.
20.【答案】 【解析】解:(1
)由,解得0≤x ≤3
A=[0,3],
由B={y|y=2x
,1≤x ≤2}=[2,4],
(2))∁U A=(﹣∞,0)∪[3,+∞), ∴(∁U A )∩B=(3,4]
21.【答案】
【解析】(1)∵211
()2x f x x x
+=
=+,∴11()2n n n a f a a +==+.
即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,
∴1()(22)(1)22
n n a a n n n
S n n ++===+, ∴1111(1)1
n S n n n n ==-++. (8分) ∴1231111n n T S S S S =
++++ 11111111()()()()1223341
n n =-+-+-++-+ 111n =-
+1
n
n =+. (12分) 22.【答案】
【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1 f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2, 由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题
因此,1≤m<2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.
23.【答案】
24.【答案】
【解析】解:(1)f'(x)=3ax2+2bx﹣3,依题意,f'(1)=f'(﹣1)=0,
即,解得a=1,b=0.
∴f(x)=x3﹣3x.
【点评】本题考查了导数和函数极值的问题,属于基础题.。

相关文档
最新文档