集成电路(IC)设计完整流程详解及各个阶段工具简介
ic设计流程
![ic设计流程](https://img.taocdn.com/s3/m/45e6b835773231126edb6f1aff00bed5b9f37334.png)
IC设计流程介绍集成电路(Integrated Circuit, IC)设计流程是将电子电路设计转化为实际物理器件的过程。
它涵盖了从需求分析、设计规划、电路设计、布局布线、验证测试等一系列步骤。
本文将详细介绍IC设计流程的各个阶段及其重要性。
需求分析在进行IC设计之前,首先需要进行需求分析。
这一阶段的目标是明确设计的目标和约束条件,包括电路功能、性能指标、功耗、面积、成本等。
通过与客户、市场调研和技术评估,确定设计的需求。
需求分析是整个设计流程的基础,对后续的设计和验证都有重要影响。
需求分析流程1.客户需求收集和分析:与客户进行沟通,了解客户的需求和期望。
2.市场调研:了解市场的需求和竞争情况,为产品定位提供依据。
3.技术评估:评估技术可行性,包括电路、工艺、制程等方面的考虑。
设计规划在需求分析完成后,进行设计规划是非常重要的。
设计规划决定了整个设计流程的方向和目标,包括设计策略、设计流程、工具选择等。
一个好的设计规划可以提高设计效率和质量。
设计规划步骤1.系统级设计:确定整个系统的架构和功能划分,以及各个子系统之间的接口和通信方式。
2.芯片级设计:在系统级设计的基础上,进行芯片级功能划分和接口定义。
3.电路级设计:根据芯片级设计,完成电路的设计,包括电路框图设计、模拟电路设计等。
4.数字电路设计:根据系统需求和电路设计,进行数字电路设计,包括逻辑设计、时序设计等。
电路设计电路设计是IC设计流程中的核心环节,它将整个电路的功能通过逻辑、模拟电路转化为物理电路。
电路设计流程1.逻辑设计:将电路的功能描述为逻辑电路,使用HDL(HardwareDescription Language)进行描述。
2.逻辑综合:将逻辑电路转化为门级电路和电路层次结构,优化电路结构以满足时序、面积等要求。
3.时序设计:根据时序要求,对电路进行时序约束和时序优化,确保电路在时序上正确工作。
4.模拟电路设计:设计和优化模拟电路,包括模拟前端设计、放大器设计等。
IC芯片设计制造到封装全流程
![IC芯片设计制造到封装全流程](https://img.taocdn.com/s3/m/5b28cb461611cc7931b765ce050876323112742f.png)
IC芯片设计制造到封装全流程IC(Integrated Circuit)芯片是一种集成电路,将多个电子元件(晶体管、电容器、电阻器等)以及互连线路集成到一个硅片上,从而实现多个电子元件之间的功能互联。
芯片制造过程包括设计、加工制造、封装测试三个主要阶段。
首先是IC芯片设计阶段。
这个阶段主要包括功能设计、电路设计、物理设计和验证等步骤。
功能设计是根据芯片应用场景和需求,确定芯片的功能、性能和特性要求。
电路设计是根据功能设计的要求,使用逻辑门和基本电子元件组成电路,并进行仿真验证。
物理设计是将电路设计转化为硅片上的布图,包括电路布局、布线、填充等步骤。
验证阶段是对设计的功能和性能进行仿真和验证,确保芯片可以满足要求。
接下来是IC芯片加工制造阶段。
这个阶段主要包括晶圆加工和工序加工两个部分。
晶圆加工是将硅片进行切割和清洗,然后在表面涂覆一层绝缘层。
工序加工是在绝缘层上逐层添加金属、半导体等材料,通过光刻、薄膜沉积、离子注入、扩散等工艺步骤,形成多层电路的结构。
每个层次的电路都会进行检测和测试,确保加工质量和性能。
最后是IC芯片封装测试阶段。
这个阶段主要包括封装、测试和分选三个环节。
封装是将加工好的晶圆切割成单个芯片,并通过焊接等方式固定在封装底座上,形成完成的芯片。
测试是对封装完成的芯片进行功能和性能测试,以确保芯片的质量和性能符合设计要求。
最后,对测试合格的芯片进行分选,按照不同的要求和规格进行分级和分批。
整个IC芯片的设计制造到封装全流程,需要多个部门和环节的紧密协作。
设计部门负责芯片功能设计和物理设计,加工制造部门负责硅片加工和工序加工,封装测试部门负责芯片的封装和测试。
在整个流程中,还需要严格的质量控制和管理,确保产品的稳定性和可靠性。
随着科技的不断发展,IC芯片的设计与制造流程也在不断演进和改进。
更高集成度、更小尺寸、更高性能的芯片正在不断涌现,为各行各业的发展提供了强大的技术支持。
IC设计流程及各阶段典型软件
![IC设计流程及各阶段典型软件](https://img.taocdn.com/s3/m/46711ecd82d049649b6648d7c1c708a1284a0af8.png)
IC设计流程及各阶段典型软件IC设计流程是指整个集成电路设计的整体过程,包括需求分析、系统设计、电路设计、物理设计、验证与测试等阶段。
每个阶段都有其典型的软件工具用于支持设计与开发工作。
本文将详细介绍IC设计流程的各个阶段及其典型软件。
1.需求分析阶段需求分析阶段是集成电路设计的起点,主要目的是明确设计目标和规格。
在这个阶段,设计团队与客户进行沟通和讨论,确定设计的功能、性能、功耗、面积等要求。
常用软件工具有:- Microsoft Office:包括Word、Excel、PowerPoint等办公软件,用于编写设计需求文档、文档整理和汇报。
2.系统设计阶段系统设计阶段主要是将需求分析阶段得到的设计目标和规格转化为可实现的电路结构和算法设计。
常用软件工具有:- MATLAB/Simulink:用于算法设计和系统级模拟,包括信号处理、通信系统等。
- SystemVerilog:一种硬件描述语言,用于描述电路结构和行为。
- Xilinx ISE/Vivado:用于FPGA设计,进行电路逻辑设计和Verilog/VHDL代码的仿真和综合。
3.电路设计阶段电路设计阶段是将系统级设计转化为电路级设计。
常用软件工具有:- Cadence Virtuoso:用于模拟和布局设计,包括原理图设计、电路模拟和布局与布线。
- Mentor Graphics Calibre:用于DRC(Design Rule Checking)和LVS(Layout vs. Schematic)设计规则检查和布局与原理图的对比。
4.物理设计阶段物理设计阶段主要是将电路级设计转化为版图设计,并进行布局布线。
常用软件工具有:- Cadence Encounter:用于逻辑综合、布局和布线。
- Cadence Innovus:用于布局布线和时钟树设计。
- Mentor Graphics Calibre:用于DRC和LVS设计规则检查和验证。
集成电路(IC)设计完整流程详解及各个阶段工具简介
![集成电路(IC)设计完整流程详解及各个阶段工具简介](https://img.taocdn.com/s3/m/26a775f25022aaea998f0f40.png)
IC设计完整流程及工具IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。
前端设计的主要流程:1、规格制定芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2、详细设计Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3、HDL编码使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4、仿真验证仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Mentor 公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL 级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。
该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。
5、逻辑综合――Design Compiler仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真)逻辑综合工具Synopsys的Design Compiler,仿真工具选择上面的三种仿真工具均可。
什么是集成电路如何设计集成电路
![什么是集成电路如何设计集成电路](https://img.taocdn.com/s3/m/d955c11376232f60ddccda38376baf1ffc4fe32e.png)
什么是集成电路如何设计集成电路什么是集成电路?如何设计集成电路集成电路(Integrated Circuit,简称IC)是将多个电子元件和电子器件(如晶体管、二极管等)集成在一块半导体材料上,并通过金属线路进行互连的电路。
集成电路的出现极大地推动了电子技术的发展,使得电子设备更加小型化、高性能、低功耗。
作为现代电子系统中的核心组件之一,集成电路广泛应用于计算机、手机、家电、通信设备等各个领域。
它们被用来存储、处理和传输数据,为各种功能提供支持。
设计集成电路需要经过多个阶段。
下面将介绍集成电路设计的基本流程及要点。
阶段一:需求分析在设计集成电路之前,首先需要明确电路的功能和需求。
这可以通过与客户、市场调研、技术分析等途径来获取。
仔细分析需求可以为后续的设计提供明确的方向和目标。
阶段二:高层设计高层设计是对电路进行整体规划和概念设计的阶段。
在这个阶段,设计人员考虑电路的功能划分、主要模块的设计和整体结构的确定。
设计人员可以使用硬件描述语言(HDL)来描述电路的功能和行为。
阶段三:逻辑设计逻辑设计是根据高层设计的要求,将电路划分为更小的逻辑单元,并设计各个逻辑单元之间的连接和控制关系。
在这个阶段,设计人员需要选择适当的逻辑门、触发器等元件,并进行逻辑电路的仿真和验证。
阶段四:物理设计物理设计是将逻辑电路映射到具体的物理平面上的过程。
在这个阶段,设计人员需要考虑电路的布局、连线、供电与接地等问题。
同时还需要考虑电路的噪声、功耗和热耗散等方面。
阶段五:制造与测试设计完成后,需要将电路发送给制造工厂进行芯片的制造。
制造过程包括层刻、掩膜制作、掺杂、电镀等多个步骤。
制造完成后,还需要进行芯片的测试和封装工作。
总结设计集成电路是一项复杂而精细的工作。
它需要设计人员具备扎实的电子学知识和技术,同时还需要掌握相应的设计工具和方法。
随着半导体技术的不断发展,集成电路的设计也在不断演进和创新,为各个行业的发展提供了强大的支持。
关于集成电路设计的流程详解
![关于集成电路设计的流程详解](https://img.taocdn.com/s3/m/5ec876f4112de2bd960590c69ec3d5bbfc0ada44.png)
关于集成电路设计的流程详解集成电路设计(英语:Integrated circuit design),根据当前集成电路的集成规模,亦可称之为超大规模集成电路设计(VLSI design),是指以集成电路、超大规模集成电路为目标的设计流程。
集成电路设计通常是以“模块”作为设计的单位的。
例如,对于多位全加器来说,其次级模块是一位的加法器,而加法器又是由下一级的与门、非门模块构成,与、非门最终可以分解为更低抽象级的CMOS 器件。
下面就让我们进一步的了解集成电路设计的相关知识。
集成电路设计介绍集成电路设计的流程一般先要进行软硬件划分,将设计基本分为两部分:芯片硬件设计和软件协同设计。
芯片硬件设计包括:1.功能设计阶段。
设计人员产品的应用场合,设定一些诸如功能、操作速度、接口规格、环境温度及消耗功率等规格,以做为将来电路设计时的依据。
更可进一步规划软件模块及硬件模块该如何划分,哪些功能该整合于SOC 内,哪些功能可以设计在电路板上。
2.设计描述和行为级验证功能设计完成后,可以依据功能将SOC 划分为若干功能模块,并决定实现这些功能将要使用的IP 核。
此阶段间接影响了SOC 内部的架构及各模块间互动的讯号,及未来产品的可靠性。
决定模块之后,可以用VHDL 或Verilog 等硬件描述语言实现各模块的设计。
接着,利用VHDL 或Verilog 的电路仿真器,对设计进行功能验证(functionsimulation,或行为验证 behavioral simulation)。
注意,这种功能仿真没有考虑电路实际的延迟,也无法获得精确的结果。
3.逻辑综合确定设计描述正确后,可以使用逻辑综合工具(synthesizer)进行综合。
综合过程中,需要选择适当的逻辑器件库(logic cell library),作为合成逻辑电路时的参考依据。
硬件语言设计描述文件的编写风格是决定综合工具执行效率的一个重要因素。
事实上,综合工具支持的HDL 语法均是有限的,一些过于抽象的语法只适于作为系统评估时的仿真模型,而不能被综合工具接受。
集成电路中的设计流程和方法
![集成电路中的设计流程和方法](https://img.taocdn.com/s3/m/ea6cc16cec630b1c59eef8c75fbfc77da2699798.png)
集成电路中的设计流程和方法集成电路(Integrated Circuit,IC)是现代电子技术的重要组成部分,也是各种电子设备的核心。
在集成电路的制作过程中,设计流程和方法起着至关重要的作用。
本文将介绍集成电路中常见的设计流程和方法,以及它们的应用。
一、设计前期准备在进行集成电路设计之前,需要进行一系列的准备工作。
首先,需要明确设计目标和需求,包括电路的功能、性能要求等。
然后,需要对所需芯片的规模和复杂度进行评估和确定。
此外,还需要进行市场研究,了解类似产品的市场需求和竞争情况。
最后,要制定详细的设计计划和时间表。
二、电路设计电路设计是集成电路设计的核心环节之一。
在电路设计过程中,需要进行原理图设计、逻辑设计和电路仿真等工作。
原理图设计是将电路的功能和连接关系用图形和符号表示出来,以便于后续的设计和验证。
逻辑设计是根据功能和性能要求,将电路设计为逻辑门电路、寄存器、时序逻辑等。
电路仿真是利用电子设计自动化(EDA)工具对电路进行仿真和验证,以确保电路的功能和性能满足设计要求。
三、物理设计物理设计是将电路设计转化为实际的物理结构和版图。
物理设计主要包括布局设计和布线设计两个阶段。
布局设计是将电路的各个组成部分进行合理的排列和布局,以保证电路的整体性能和可制造性。
布线设计是根据布局设计的结果,将电路中的导线进行布线,并解决导线间的冲突和干扰问题。
物理设计涉及到的技术包括布局规划、布线规划、时钟分配等。
四、验证和测试在集成电路设计完成后,需要进行验证和测试工作,以验证电路的功能和性能是否满足设计要求。
验证主要包括功能验证和时序验证两个方面。
功能验证是通过编写测试程序,对设计的电路进行功能测试,以确认其能够正常工作。
时序验证是通过时序模拟器和时钟分析工具,对电路的时序性能进行分析和验证。
测试是在电路生产过程中对芯片进行测试和筛选,以确保芯片的质量和可靠性。
五、后期调试和优化在完成验证和测试后,可能还需要进行一些后期的调试和优化工作。
集成电路设计流程及相关工具使用教程
![集成电路设计流程及相关工具使用教程](https://img.taocdn.com/s3/m/37dc85526d175f0e7cd184254b35eefdc8d315c5.png)
集成电路设计流程及相关工具使用教程在现代科技发展的浪潮下,集成电路扮演着无可替代的重要角色。
它是电子设备中必不可少的组成部分,也是促进技术进步和创新的关键。
本文将介绍集成电路的设计流程,并介绍一些相关工具的使用教程,以帮助读者更好地理解和使用集成电路设计。
一、集成电路设计流程集成电路设计是一个复杂而系统的过程,包括了从需求分析到电路验证的多个环节。
下面将按照一般的设计流程,逐一介绍。
1. 需求分析需求分析是集成电路设计的第一步,它定义了电路的功能、性能和特性。
在这个阶段,设计工程师需要与客户或用户进行沟通,了解他们的需求和期望。
然后,设计团队会对需求进行综合评估,并确定电路设计的基本参数。
2. 电路设计在电路设计阶段,设计团队将根据需求分析的结果,开始设计电路的架构和电路图。
设计师需要选择合适的器件和元器件,进行电路搭建和模拟仿真。
这个过程中,设计工程师需要有深入的电路知识和丰富的设计经验。
3. 电路验证电路验证是为了确保设计的正确性和可靠性。
设计师会进行电路的功能验证、时序验证和功耗验证等。
同时,他们还需要通过原理图仿真和电路板验证来验证设计的可行性。
4. 电路布局与布线完成电路验证后,设计师需要将电路进行布局和布线。
电路布局是指将电路元件在实际硅片上的物理位置确定下来,而布线则是指将电路元件之间的连线进行布置。
电路布局和布线的优化对电路性能的影响非常大。
5. 物理设计物理设计包括光刻版图设计和物理布局设计。
光刻版图设计是将电路设计信息转化为光刻版图,用于芯片的制造。
物理布局设计是根据光刻版图和设计要求,确定电路元件的具体位置和尺寸。
6. 物理验证在物理验证阶段,设计师会对光刻版图进行物理验证和仿真,以确保物理布局的正确性和可行性。
这个过程中,常用的工具包括DRC(Design Rule Check)和LVS(Layout Versus Schematic)等。
7. 芯片制造最后,设计完成的芯片将被送至芯片制造厂商进行生产。
集成电路设计流程
![集成电路设计流程](https://img.taocdn.com/s3/m/3887502eb94ae45c3b3567ec102de2bd9605de83.png)
集成电路设计流程集成电路设计是一项复杂而关键的任务,它涉及到从概念到实际产品的整个过程。
在这个过程中,需要遵循一系列的设计流程来确保设计的准确性和可行性。
本文将介绍集成电路设计的主要流程,并详细探讨每个流程的关键步骤。
一、需求分析阶段在集成电路设计的起始阶段,需要进行需求分析,明确设计目标和产品的功能要求。
在这个阶段,设计团队与客户密切合作,明确产品的工作原理、性能指标和功能。
这个过程中需要进行详尽的调研和分析,以便确保设计的准确性和可行性。
二、系统级设计阶段在需求分析阶段确定设计目标后,下一步是进行系统级设计。
在这个阶段,设计团队将产品的功能要求转化为具体的电路设计方案。
在设计方案中,需要定义电路的整体架构、模块划分和接口设计。
这个阶段需要综合考虑各种因素,包括功耗、性能、面积和成本等。
三、芯片级设计阶段系统级设计完成后,接下来是进行芯片级设计。
在这个阶段,设计团队将系统级设计中的每个模块进行具体的电路设计和优化。
这个过程中需要使用专业的EDA工具进行电路设计和仿真。
同时,还需要进行逻辑综合、布图和时序分析等步骤,以确保电路的正确性和稳定性。
四、物理设计阶段在芯片级设计完成后,下一步是进行物理设计。
在这个阶段,设计团队将芯片级设计转化为实际的物理布局。
这个过程中需要进行布线规划、功耗优化和时序收敛等步骤。
同时,还需要考虑布局的面积、功耗和产能等因素。
五、验证与测试阶段物理设计完成后,需要对设计进行验证和测试。
这个阶段包括功能验证、时序验证和功耗验证等。
验证工作需要使用专业的验证工具和方法,以确保设计的准确性和稳定性。
同时,还需要进行可靠性测试和产能测试,以确保产品的性能和质量。
六、制造和封装阶段验证和测试通过后,设计团队将进行芯片的制造和封装。
在这个阶段,需要选择合适的制造工艺和封装方式,并进行芯片的批量生产。
制造和封装过程中需要考虑工艺的兼容性和成本的控制,以确保产品的质量和可行性。
七、芯片调试与发布最后一个阶段是芯片调试和发布。
集成电路ic--芯片制造工艺的八大步骤
![集成电路ic--芯片制造工艺的八大步骤](https://img.taocdn.com/s3/m/6d43df5bf08583d049649b6648d7c1c708a10bef.png)
集成电路ic--芯片制造工艺的八大步骤集成电路(Integrated Circuit,IC)是现代电子技术的核心组成部分,广泛应用于计算机、通信、消费电子等领域。
IC的制造工艺涉及多个步骤,以下将详细介绍其八大步骤。
第一步,晶圆制备。
晶圆是IC制造的基础,它通常由高纯度的硅材料制成。
首先,将硅材料熔化,然后在石英坩埚中拉制出大型硅棒。
接着,将硅棒锯成薄片,形成晶圆。
第二步,沉积。
沉积是指在晶圆表面上沉积一层薄膜,用于制作电路的不同部分。
常用的沉积方法包括化学气相沉积和物理气相沉积。
通过这一步骤,可以形成绝缘层、导体层等。
第三步,光刻。
光刻是一种利用光敏物质的特性进行图案转移的技术。
首先,在晶圆表面涂覆光刻胶,然后使用掩膜板将光刻胶进行曝光,形成所需的图案。
接着,用化学液体将未曝光的部分去除,留下所需的图案。
第四步,蚀刻。
蚀刻是指将多余的材料从晶圆表面去除,以形成所需的结构。
蚀刻方法主要有湿法蚀刻和干法蚀刻两种。
通过这一步骤,可以制作出电路的导线、晶体管等元件。
第五步,离子注入。
离子注入是将特定的杂质离子注入晶圆表面,以改变材料的导电性能。
通过控制离子注入的能量和剂量,可以形成导电性能不同的区域,用于制作场效应晶体管等元件。
第六步,金属化。
金属化是将金属材料沉积在晶圆表面,形成电路的导线和连接器。
常用的金属化方法包括物理气相沉积和电镀。
通过这一步骤,可以形成电路的互连结构。
第七步,封装测试。
封装是将晶圆切割成独立的芯片,并封装到塑料或陶瓷封装中,以保护芯片并便于安装和使用。
测试是对封装好的芯片进行功能和可靠性测试,以确保芯片的质量。
第八步,成品测试。
成品测试是对封装好的芯片进行全面测试,以验证其功能和性能是否符合设计要求。
测试包括逻辑测试、温度测试、可靠性测试等。
通过这一步骤,可以筛选出不合格的芯片,确保只有优质的芯片进入市场。
以上就是集成电路IC制造工艺的八大步骤。
每个步骤都至关重要,缺一不可。
集成电路(IC)设计完整流程详解及各个阶段工具简介
![集成电路(IC)设计完整流程详解及各个阶段工具简介](https://img.taocdn.com/s3/m/856ebb51be23482fb4da4cc4.png)
IC设计完整流程及工具IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。
前端设计的主要流程:1、规格制定芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2、详细设计Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3、HDL编码使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4、仿真验证仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Mentor 公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL 级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。
该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。
5、逻辑综合――Design Compiler仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真)逻辑综合工具Synopsys的Design Compiler,仿真工具选择上面的三种仿真工具均可。
数字IC设计流程及工具介绍
![数字IC设计流程及工具介绍](https://img.taocdn.com/s3/m/43fed43accbff121dd368373.png)
数字IC设计流程及工具介绍IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。
前端设计的主要流程:1、规格制定芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2、详细设计Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3、HDL编码使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4、仿真验证仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Mentor公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。
该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。
5、逻辑综合――Design Compiler仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真)逻辑综合工具Synopsys的Design Compiler,仿真工具选择上面的三种仿真工具均可。
ic设计的流程
![ic设计的流程](https://img.taocdn.com/s3/m/057dd0334b7302768e9951e79b89680203d86b99.png)
ic设计的流程IC设计的流程IC(集成电路)设计是指将电子器件、电路和系统集成在一个芯片上的过程。
它是现代电子技术领域的重要组成部分,广泛应用于各个领域。
下面将介绍IC设计的主要流程。
1. 需求分析在IC设计之前,首先需要进行需求分析。
这一阶段主要通过与客户沟通、市场调研等方式,明确设计的目标和要求。
例如,确定芯片的功能、性能参数、功耗要求等。
2. 架构设计在需求分析的基础上,进行架构设计。
架构设计是确定整个芯片的功能模块、电路结构和数据流等的过程。
需要考虑到芯片的性能、功耗、面积等方面的平衡,确保设计的可行性和可靠性。
3. 电路设计在架构设计的基础上,进行电路设计。
电路设计是指具体设计每个功能模块的电路结构和电路参数,包括选择合适的器件、电路拓扑和电路参数等。
需要通过模拟和数字电路设计方法,确保电路的性能和稳定性。
4. 物理设计在电路设计完成后,进行物理设计。
物理设计是指将电路布局和布线,生成最终的版图。
它考虑到电路的布局约束、电路的布线规则、电路的面积利用率等因素。
物理设计需要使用专业的EDA软件,如Cadence等。
5. 验证和仿真在物理设计完成后,进行验证和仿真。
验证和仿真是为了验证设计的正确性和性能。
通过使用仿真工具,对设计进行各种电气特性和时序特性的分析和仿真,确保设计的可靠性和稳定性。
6. 制造和封装在验证和仿真通过后,进行制造和封装。
制造是将设计转化为实际的芯片产品的过程,包括光刻、薄膜沉积、离子注入等工艺步骤。
封装是将芯片封装成实际可用的封装体,如QFP、BGA等。
7. 测试和调试在制造和封装完成后,进行测试和调试。
测试是为了验证芯片的性能和功能是否符合设计要求,通过使用测试仪器对芯片进行各种电气特性和功能特性的测试。
调试是在测试过程中发现问题,并进行修复和调整。
8. 量产和市场推广在测试和调试通过后,进行量产和市场推广。
量产是指将芯片进行大规模生产,确保产品的一致性和可靠性。
ic前端设计流程和使用的工具
![ic前端设计流程和使用的工具](https://img.taocdn.com/s3/m/bd98c80aeffdc8d376eeaeaad1f34693daef10ad.png)
IC前端设计流程和使用的工具概述IC前端设计是集成电路设计的重要环节之一,它涉及到电路的功能逻辑设计、验证与优化,以及物理结构设计和版图绘制等方面。
在IC前端设计的过程中,使用合适的工具可以极大地提升工作效率和设计质量。
本文将介绍IC前端设计的流程,并介绍在不同阶段中常用的工具。
设计流程1. 需求分析首先,设计师需要与客户或产品经理进行沟通,了解设计的需求。
这包括对芯片功能、性能和功耗要求的明确理解。
2. 逻辑设计在逻辑设计阶段,设计师根据需求进行设计,确定电路的功能逻辑。
常用的工具包括:•建模语言:Verilog、VHDL等•逻辑设计工具:Cadence、Synopsys等3. 逻辑仿真和验证设计完成后,需要进行逻辑仿真和验证,以确保设计的正确性和稳定性。
常用的工具包括:•仿真工具:ModelSim、VCS等•验证方法:功能仿真、时序仿真等4. 逻辑综合和优化在逻辑综合和优化阶段,设计师将逻辑描述转化为电路网表,并对电路进行优化,以达到性能和功耗的要求。
常用的工具包括:•综合工具:Design Compiler、Genus等5. 物理设计在物理设计阶段,设计师将电路网表转化为物理结构,包括布局和版图。
常用的工具包括:•布局工具:Innovus、ICC等•版图编辑工具:Virtuoso、Calibre等6. 模拟仿真完成物理设计后,需要进行模拟仿真,验证电路的性能和稳定性。
常用的工具包括:•仿真工具:HSIM、HSPICE等7. 版图优化在版图优化阶段,设计师对版图进行布局和路由优化,以满足电路的性能和功耗需求。
常用的工具包括:•优化工具:Innovus、ICC等8. 验证和验证布局最后,在验证和验证布局阶段,设计师对设计进行全面的验证,以确保电路的性能和稳定性。
常用的工具包括:•验证工具:Calibre、Star-RCXT等工具选择在IC前端设计的过程中,选择合适的工具可以提高工作效率和设计质量。
集成电路设计完整流程详解
![集成电路设计完整流程详解](https://img.taocdn.com/s3/m/36c506d5d15abe23482f4d56.png)
IC设计完整流程及工具IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。
前端设计的主要流程:1、规格制定芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2、详细设计Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3、HDL编码使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4、仿真验证仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Mentor 公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL 级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。
该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。
5、逻辑综合――Design Compiler仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真)逻辑综合工具Synopsys的Design Compiler,仿真工具选择上面的三种仿真工具均可。
IC的生产工序流程以及其结构
![IC的生产工序流程以及其结构](https://img.taocdn.com/s3/m/dec75e723868011ca300a6c30c2259010302f367.png)
IC的生产工序流程以及其结构IC(集成电路)的生产工序流程以及其结构是一个复杂且关键的过程。
本文将详细介绍IC的生产工序流程以及其结构,从设计、制造到测试的全过程。
前端工序是IC生产的设计和制造阶段。
最早的步骤是进行芯片设计。
芯片设计是一个复杂的过程,其中包括需求分析、电路架构设计、逻辑设计、电路设计和版图设计等。
设计完成后,芯片制造的下一个阶段是进行掩膜制造。
掩膜制造是通过光刻和刻蚀技术在硅片上形成芯片结构。
这一步骤产生了一个被称为“晶圆”的硅片,其中包含了成千上万个IC芯片。
中端工序是IC生产的加工和制造阶段。
首先,晶圆需要经过步骤切割成单个的芯片。
然后将这些单个芯片放置到称为支持质层的基板上。
接下来是通过包封工序对芯片进行保护。
封装对芯片进行全方位的保护,以防止损坏和外部环境的影响。
最后,在封装过程中将芯片焊接到引脚上,以便能够与外部电路进行连接。
后端工序是IC生产的测试和封装阶段。
这个阶段主要是对芯片进行测试以确保其质量和功能。
测试是通过应用电压和信号来检查芯片的性能和电气特性。
在测试完成后,将芯片进行分类和分级,然后将其进行封装,以达到保护和便于使用的目的。
封装后的芯片被称为“成品”,可以在下一步骤中被安装到终端产品中。
IC的结构是由各种器件和电路组成的。
通常,一个IC由晶体管、电阻、电容、电感和其他电子器件以及其连接和控制电路组成。
这些器件通过使用P型和N型材料来创建PN结。
集成电路的结构通常以芯片的功能和应用为基础进行设计,并根据需求进行优化。
总结起来,IC的生产工序流程涵盖了设计、制造和测试的各个环节。
前端工序包括芯片设计和掩膜制造,中端工序包括芯片加工和封装,后端工序包括测试和封装。
IC的结构由各种器件和电路组成,根据芯片的功能和应用进行设计和优化。
这些工序和结构的完美配合确保了IC的质量和性能。
简述模拟集成电路设计流程及各阶段所涉及到的工具、方法。
![简述模拟集成电路设计流程及各阶段所涉及到的工具、方法。](https://img.taocdn.com/s3/m/4525875053d380eb6294dd88d0d233d4b14e3fc3.png)
简述模拟集成电路设计流程及各阶段所涉及到的工具、方法模拟集成电路设计是一个复杂而系统的过程,涉及多个阶段和工具。
以下是其一般设计流程及各阶段所涉及到的工具和方法:1. 需求分析阶段:- 确定电路功能和性能规格。
- 工具和方法:与客户或系统需求方沟通、参考类似设计的规格。
2. 概念设计阶段:- 制定初始电路结构和整体架构。
- 使用仿真工具进行初步性能评估。
- 工具和方法:电路模拟软件 如Cadence Virtuoso、Synopsys HSPICE、Keysight ADS等)、数学建模、基于经验的设计原则。
3. 详细设计阶段:- 开始设计电路各个模块的详细电路结构。
- 进行仿真、验证设计是否符合性能要求。
- 工具和方法:电路设计软件、模拟仿真工具、Monte Carlo 分析 用于评估器件参数的变化对电路性能的影响)、敏感度分析等。
4. 物理设计阶段:- 将设计转化为物理布局,考虑版图布线、器件放置等。
- 进行版图设计和验证,确保布局满足性能和可制造性要求。
- 工具和方法:版图设计工具 如Cadence Virtuoso Layout Editor、Synopsys IC Compiler)、版图验证工具、Design RuleChecking (DRC)、LVS (Layout vs. Schematic)验证等。
5. 验证与验证:- 进行电路的验证和调试,确保设计符合预期。
- 可能包括电路级、芯片级和系统级的验证。
- 工具和方法:硬件验证平台、实际电路测试、仿真验证、电路分析仪器等。
6. 制造和生产:- 准备生产所需的设计文件和工艺资料。
- 与制造厂商合作,进行芯片的制造和封装。
- 工具和方法:设计文件生成、工艺文件准备、与制造商的沟通。
总体而言,模拟集成电路设计是一个迭代和交叉验证的过程,需要设计工程师在各个阶段运用合适的工具和方法进行设计、验证和优化,确保最终产品符合要求并可靠稳定地投入生产和使用。
半导体集成电路设计流程
![半导体集成电路设计流程](https://img.taocdn.com/s3/m/8be94db64793daef5ef7ba0d4a7302768e996fd9.png)
半导体集成电路设计流程半导体集成电路(Integrated Circuit,IC)的设计是一项相当复杂的工作,需要经历多个阶段的流程。
以下是一个典型的半导体集成电路设计流程简介,每个阶段都需要经过仔细的规划和执行,以确保电路的正确性和可靠性。
1.需求分析:在该阶段,设计团队将与客户合作,确定集成电路的需求和规格。
这包括电路功能、性能、功耗、面积限制等。
这些信息对后续的设计和验证工作至关重要。
2.架构设计:在这一阶段,设计团队将基于需求分析结果,制定整体电路的架构和功能模块划分。
设计团队需要确定选择何种电路结构和设计方法,以满足性能和功能要求。
3.电路设计:在该阶段,设计团队将根据架构设计,开始逐步设计每个功能模块的电路。
这包括选择和设计适当的电子元器件,如晶体管、电容和电阻等。
设计过程通常使用电路模拟软件完成,以验证和优化电路设计。
4.物理设计:在这一阶段,设计团队将电路设计转化为物理布局。
他们需要决定电路中各个元件的位置和布线,以最小化信号延迟和功耗,并满足电路布局面积的限制。
物理设计还包括芯片封装和引脚分配等任务。
5.设计规则检查(DRC)和布局对齐(LVS):在这个阶段,设计团队需要执行设计规则检查和布局对齐等验证过程,以确保布局的准确性和可制造性。
设计规则检查涉及对设计是否符合制造工艺规则的检查,而布局对齐则是验证原理图和布局之间的一致性。
6.电路模拟和验证:在这个阶段,设计团队将通过使用电路模拟工具,对设计的功能和性能进行验证。
他们需要模拟各种工作条件和电气参数,以确保电路在各种情况下的可靠性和稳定性。
7.物理验证和验证测试:在这个阶段,设计团队将通过制造一批样品芯片,进行物理验证和功能测试,以验证设计的正确性。
他们需要确保芯片在实际使用中的性能和功能都能达到预期。
8.产量制造:一旦设计团队完成了设计和验证,他们将与制造工厂合作,开始大规模生产集成电路。
在整个生产过程中,质量控制和测试是必不可少的,以确保最终产品的性能和一致性。
集成电路设计方法流程和工具概述
![集成电路设计方法流程和工具概述](https://img.taocdn.com/s3/m/4cee39234693daef5ff73d10.png)
2 IC设计流程
IC开发流程
2 IC设计流程
Top-Down设计 系统技术规格和体系结构
IC设计流程
C,MATLAB
Bottom-up 设计
功能算法,数学模型
+
基本逻辑门,RTL
HDL(行为级) HDL(门级)/网表
逻辑 综合
晶体管电路
HDL(开关级) /电原理图
物理器件
G
物理描述
S
D (版图,工艺)
规格的确定
能力与需求的折中
人力、研发成本、制造成本、周期、工具、灵活性等
性能与成本的折中
集成度、工艺、封装、测试、可靠性、速度、芯片尺寸、功耗 等
不同层次的规格必须统一
层次:系统、子系统、板级、模块级、芯片级 规则:下层定义需服从上层定义,否则会导致严重的设计延误
顶层规格定义必须经过系统仿真
10,1000,000010 0.25μm
1,000 1
1000.1
01.001 0.35μm 0.0011
xx x
xx x
x
x
集成规模每年 增长48%
设计能力每年 增长21%
101100,000,,0000000,00,00000 1011,000,,0000000,00,00000 1,110,,0000000,00,00000 101100,000,00000
Signal Integrity:判断有无因时序、 串扰等引入的信号完整性问题
Parasitic Extraction:提取版图上内 部互连所产生的寄生电阻&寄生电容 ,转换成延迟后供STA和后仿真使用 Post-layout Simulation:利用布局布线 完成后获得的精确延迟参数和网表进行 仿真,验证功能和时序的正确性
集成电路设计流程 IC设计流程
![集成电路设计流程 IC设计流程](https://img.taocdn.com/s3/m/a1884cf8aef8941ea76e058a.png)
1.1从RTL到GDSⅡ的设计流程:
这个可以理解成半定制的设计流程,一般用来设计数字电路。
整个流程如下(左侧为流程,右侧为用到的相应EDA工具):
一个完整的半定制设计流程应该是:RTL代码输入、功能仿真、逻辑综合、门级验证、时序/功耗/噪声分析,布局布线(物理综合)、版图验证。
整个完整的流程可以分为前端和后端两部分,
前端的流程图如下:
前端的主要任务是将HDL语言描述的电路进行仿真验证、综合和时序分析,最后转换成基于工艺库的门级网表。
后端的流程图如下,也就是从netlist到GDSⅡ的设计流程:
后端的主要任务是:
(1)将netlist实现成版图(自动布局布线APR)
(2)证明所实现的版图满足时序要求、符合设计规则(DRC)、layout与netlist一致(LVS)。
(3)提取版图的延时信息(RC Extract),供前端做post-layout仿真。
1.2从Schematic到GDSⅡ的设计流程:
这个可以理解成全定制的设计流程,一般用于设计模拟电路和数模混合电路。
整个流程如下(左侧为流程,右侧为用到的相应EDA工具):
一个完整的全定制设计流程应该是:电路图输入、电路仿真、版图设计、版图验证(DRC和LVS)、寄生参数提取、后仿真、流片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IC设计完整流程及工具
IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。
前端设计的主要流程:
1、规格制定
芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。
2、详细设计
Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。
3、HDL编码
使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。
4、仿真验证
仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。
看设计是否精确地满足了规格中的所有要求。
规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。
设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。
仿真验证工具Mentor 公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL 级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。
该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。
5、逻辑综合――Design Compiler
仿真验证通过,进行逻辑综合。
逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。
综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。
逻辑综合需要基于特定的综合库,不同的库中,门电路基本标准单元(standard cell)的面积,时序参数是不一样的。
所
以,选用的综合库不一样,综合出来的电路在时序,面积上是有差异的。
一般来说,综合完成后需要再次做仿真验证(这个也称为后仿真,之前的称为前仿真)逻辑综合工具Synopsys的Design Compiler,仿真工具选择上面的三种仿真工具均可。
6、STA
Static Timing Analysis(STA),静态时序分析,这也属于验证范畴,它主要是在时序上对电路进行验证,检查电路是否存在建立时间(setup time)和保持时间(hold time)的违例(violation)。
这个是数字电路基础知识,一个寄存器出现这两个时序违例时,是没有办法正确采样数据和输出数据的,所以以寄存器为基础的数字芯片功能肯定会出现问题。
STA工具有Synopsys的Prime Time。
7、形式验证
这也是验证范畴,它是从功能上(STA是时序上)对综合后的网表进行验证。
常用的就是等价性检查方法,以功能验证后的HDL设计为参考,对比综合后的网表功能,他们是否在功能上存在等价性。
这样做是为了保证在逻辑综合过程中没有改变原先HDL描述的电路功能。
形式验证工具有Synopsys的Formality。
前端设计的流程暂时写到这里。
从设计程度上来讲,前端设计的结果就是得到了芯片的门级网表电路。
Backend design flow后端设计流程:
1、DFT
Design ForTest,可测性设计。
芯片内部往往都自带测试电路,DFT的目的就是在设计的时候就考虑将来的测试。
DFT的常见方法就是,在设计中插入扫描链,将非扫描单元(如寄存器)变为扫描单元。
关于DFT,有些书上有详细介绍,对照图片就好理解一点。
DFT工具Synopsys的DFT Compiler
2、布局规划(FloorPlan)
布局规划就是放置芯片的宏单元模块,在总体上确定各种功能电路的摆放位置,如IP模块,RAM,I/O引脚等等。
布局规划能直接影响芯片最终的面积。
工具为Synopsys的Astro
3、CTS
Clock Tree Synthesis,时钟树综合,简单点说就是时钟的布线。
由于时钟信
号在数字芯片的全局指挥作用,它的分布应该是对称式的连到各个寄存器单元,从而使时钟从同一个时钟源到达各个寄存器时,时钟延迟差异最小。
这也是为什么时钟信号需要单独布线的原因。
CTS工具,Synopsys的Physical Compiler
4、布线(Place & Route)
这里的布线就是普通信号布线了,包括各种标准单元(基本逻辑门电路)之间的走线。
比如我们平常听到的0.13um工艺,或者说90nm工艺,实际上就是这里金属布线可以达到的最小宽度,从微观上看就是MOS管的沟道长度。
工具Synopsys的Astro
5、寄生参数提取
由于导线本身存在的电阻,相邻导线之间的互感,耦合电容在芯片内部会产生信号噪声,串扰和反射。
这些效应会产生信号完整性问题,导致信号电压波动和变化,如果严重就会导致信号失真错误。
提取寄生参数进行再次的分析验证,分析信号完整性问题是非常重要的。
工具Synopsys的Star-RCXT
6、版图物理验证
对完成布线的物理版图进行功能和时序上的验证,验证项目很多,如LVS (Layout Vs Schematic)验证,简单说,就是版图与逻辑综合后的门级电路图的对比验证;DRC(Design Rule Checking):设计规则检查,检查连线间距,连线宽度等是否满足工艺要求,ERC(Electrical Rule Checking):电气规则检查,检查短路和开路等电气规则违例;等等。
工具为Synopsys的Hercules实际的后端流程还包括电路功耗分析,以及随着制造工艺不断进步产生的DFM(可制造性设计)问题,在此不说了。
物理版图验证完成也就是整个芯片设计阶段完成,下面的就是芯片制造了。
物理版图以GDSII的文件格式交给芯片代工厂(称为Foundry)在晶圆硅片上做出实际的电路,再进行封装和测试,就得到了我们实际看见的芯片。