0708高等数学C(二)
2012-2013学年安徽大学《高等数学 C(二)》(A卷)考试试题及参考答案
![2012-2013学年安徽大学《高等数学 C(二)》(A卷)考试试题及参考答案](https://img.taocdn.com/s3/m/f5dcfe1e657d27284b73f242336c1eb91a3733dc.png)
安徽大学2012—2013学年第二学期 《高等数学C (二)》考试试卷(A 卷)(闭卷 时间120分钟)院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------考场登记表序号_______题 号 一 二 三 四 五 总分 得 分阅卷人得分一、填空题(每小题3分,共15分)1、设,1224311A t−⎛⎞⎜⎟=⎜3⎜⎟−⎝⎠⎟B 为三阶非零矩阵,若0AB =,则__________. t =2、若A 为三阶矩阵,行列式 2A =,2B A =,B ∗为B 的伴随矩阵,则 B ∗=__________.3、若行列式 33 ij D a ×=满足111a =,122a =,130a =,且余子式,31 8M =−32M x =,,则3319M =x =__________.4、已知向量组,,,,若1(1, 0, 2)T α=2(1, 1, 3)T α=3(1,1, 2)T k α=−+(1, 2, 5)T β=β不.能.由12,,3ααα线性表示,则k =__________.5、若阶矩阵n A 的秩为,且1n −A 的各行元素之和均为,则齐次线性方程组00AX =的通解是__________.二、选择题(每小题3分,共15分)得分6、已知A ,B ,C 均为阶矩阵,则下列结论正确的是 ( )n A . 22()2A B A AB B +=++2m B .,其中为正整数 ()m m AB A B =m C .若AB AC =且,则0A ≠B C =D .若,则ABCE =BCA E =,其中E 为n 阶单位矩阵7、设1α,2α均为维向量,向量n 1β,2β,3β均可以由1α,2α线性表示,则下列结论正确的是 ( ) A .1β,2β,3β必线性无关 B .1β,2β,3β必线性相关C .仅当1α,2α线性无关时,1β,2β,3β线性无关D .仅当1α,2α线性相关时,1β,2β,3β线性相关8、设A 为矩阵,则下列结论正确的是 ( ) m n × A .若,则方程组m n <AX b =必有无穷多解B .若,则方程组m n <0AX =必有非零解,且基础解系含有个线性无关解向量 n m −C .若A 有阶子式不为零,则方程组n 0AX =仅有零解D .若A 有n 阶子式不为零,则方程组AX b =有唯一解9、下列选项中,哪个不是..“()ij n n A a ×=为正交矩阵”的充分条件 ( ) A .A 的行向量组与列向量组均为正交向量组 B .1A =,且对任意i j ,1,2,,n ",有ij ij a A = =C .为正交矩阵 T A D .1T A A −=10、若三阶矩阵A 有特征值122λλ==,E 为三阶单位矩阵,且|,则||A E −=0|A 为 ( )A .−B .C .224−D .4三、计算题(每小题9分,共54分)得分11、计算n 阶行列式1211111111n n a a D a ++=+"""""""1,其中.120n a a a ≠"答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------12、若三维向量123(,,)a a a α=,123(,,)b b b β=,且211211211T A αβ⎛⎞⎜⎟==−−−⎜⎟⎜⎟⎝⎠,求:(1)T βα;(2). 2A13、已知矩阵,判断021332121A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠A 是否可逆.如果可逆,求;如果不可逆,请说明理由. 1A −14、求向量组,,,的秩和一个极大线性无关组,并把其余向量用该极大无关组线性表示. 1(1,0,2,0)T α=2(0,1,1,2)T α=−3(1,2,4,4)T α=−4(2,1,4,2)T α=−15、已知,,若20000101A a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠20003402B b ⎛⎞⎜=⎜⎜⎟−⎝⎠⎟⎟A 与B 相似,求a ,b 的值.答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------16、已知方程组有无穷多个解,求123123123112x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=−⎩λ的值及方程组的通解.四、分析计算题(每小题10分,共10分)得分17、设二次型222123123121323(,,)4484f x x x x x x x x x x x x =++−−−,(1)判断二次型是否正定;(2)利用正交变换X QY =化二次型为标准形,并求出相应的正交矩阵. Q得分五、证明题(每小题6分,共6分)18、已知n 阶矩阵A 满足 32A E =,其中E 为阶单位矩阵,若n 2B A A =+,证明B 可逆,并求B 的逆矩阵.安徽大学2012—2013学年第二学期 《高等数学C (二)》考试试卷(A 卷)参考答案与评分标准一、填空题(每小题3分,共15分)1、;2、256;3、;4、3−4−1−;5、,其中为任意常数(1,1,,1)T k "k二、选择题(每小题3分,共15分)6、D ;7、B ;8、C ;9、A ; 10、D三、计算题(每小题9分,共54分)11、解:从第二行起,每行减去第一行,再从第二列起,第i 列的1ia a 倍加到第一列上,得(2,3,,i n =")111221311111110011111100n nna a a a a D a a a a ++−+==−+−""""""""""""""""10a ......(4分) 112212131111001(1)000000ni in n i ina a a a a a a a a a ==++==∑+∑"""""""""".......(9分) 12、解:(1)因为,()111121321232122233313233211211211T a a b a b a b a b b b a b a b a b a a b a ba b αβ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟===−⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠−−+=所以. ()1123211223332(1)12T a b b b a a b a b a b a βα⎛⎞⎜⎟==++=+−⎜⎟⎜⎟⎝⎠......(5分)(2)2422()22422422T T T A A αβαβαβ⎛⎞⎜⎟====−−−⎜⎜⎟⎝⎠⎟. ......(9分)13、解:利用初等变换法可以直接判断A 是否可逆,并求出1A −:()021100,332010121001A E ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠121001021100332010⎛⎞⎜⎟→⎜⎟⎜⎟⎝⎠10010102022613001322⎛⎞⎜⎟−⎜⎟→−−⎜⎟⎜⎟−⎜⎟⎝⎠100101010113001326−⎛⎞⎜⎟→−−⎜⎟⎜⎟−⎝⎠,......(7分)故A 可逆,且1101113326A −−⎛⎞⎜=−−⎜⎜⎟⎟⎟−⎝⎠. ......(9分)(注:若先由02133210121A ==≠判断出A 可逆,则给3分;之后正确求出1A −,则给9分.)14、解:依题意,将向量组按列排成矩阵并作初等行变换()123410120121,, , 21440242αααα⎛⎞⎜⎟−−−⎜⎟=⎜⎟⎜⎟⎝⎠1012012101200242⎛⎞⎜⎟−−−⎜⎟→⎜⎟⎜⎟⎝⎠1012012100010000⎛⎞⎜⎟−−−⎜⎟→⎜⎟−⎜⎟⎝⎠1010012000010000⎛⎞⎜⎟⎜⎟→⎜⎟⎜⎟⎝⎠, ......(5分)故,()1234, , , 3r αααα=124,,ααα为向量组的一个极大无关组,且3122ααα=+. ......(9分)15、解:由相似矩阵的性质,一方面A B =,即381b +=−,得.3b =− ......(5分)另一方面,相似矩阵有相同的特征值,故()()tr A tr B =, 即2,得.5a +=+b 0a =......(9分)16、解:依题意,对方程组的增广矩阵作初等行变换111112111111112111A λλλλλλ−⎛⎞⎛⎞⎜⎟⎜⎟=→⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠2112011301112λλλλλλ−⎛⎞⎜⎟→−−⎜⎟⎜⎟−−+⎝⎠ 112011300(1)(2)2(2)λλλλλλ−⎛⎞⎜⎟→−−⎜⎟⎜⎟−++⎝⎠, 故当2λ=−时,()()2r A r A ==,方程组有无穷多个解. ......(4分)此时对应的同解方程组为1232322333x x x x x +−=−⎧⎨−+=⎩,令自由未知量,得该方程组的一个特解.30x =(1,1,0)T η=−−其对应齐次方程组1232320330x x x x x +−=⎧⎨−+=⎩的基础解系为,(1,1,1)T ξ=因此原方程组的通解为,其中为任意常数. ......(9分)(1,1,1)(1,1,0)T x k k ξη=+=+−−T k四、分析计算题(每小题10分,共10分)17、解:(1)因为二次型的矩阵为124242421A −−⎛⎞⎜⎟=−−⎜⎟⎜⎟−−⎝⎠,2124242(5)(4)421E A λλλλλλ−−=−=−+=−0,所以A 的特征值为125λλ==,34λ=−.由于A 有一个特征值为负数,故A 不正定,该二次型不正定.......(4分)(2)对于方程组(5,)0E A x −=解得基础解系为11(,1,0)2T ξ=−,.2(1,0,1)T ξ=−先正交化,得111(,1,0)2T ηξ==−,2122111(,)42(,,1)(,)55T ξηηξηηη=−=−−,再单位化,得111(T )ηγη==,222(Tηγη==. 对于方程组(4,解得基础解系, )0E A x −−=3(2,1,2)T ξ=单位化得333212(,,333T ξγξ==. ......(6分) 故所求正交矩阵()123,,0Q γγγ⎛⎜⎜⎜==⎜⎜⎜⎜⎝, f 的标准形为221255423f y y y =+−. ......(10分)五、证明题(每小题6分,共6分)18、证明:一方面,由32A E =知,A 可逆且1212A A −=. 另一方面,由32A E =得,33A E E +=,即2()()3A E A A E E +−+=,所以A E +可逆,且121()(3)A E A A −E +=−+. ......(4分)由A ,A E +均可逆知,2()B A A A A E =+=+也可逆,且11(())()11B A A E A E A −−=+=+−−2243111()(3262)A A E A A A A =−+=−+. ......(6分)。
高数C2习题册答案(08年修改)
![高数C2习题册答案(08年修改)](https://img.taocdn.com/s3/m/40fb790702020740be1e9bda.png)
习题一 定积分的概念与性质,微积分的基本公式一、单项选择题1、D2、B3、C4、C *5、D二、填空题1. 0 2.2x e dx -<< 3. 0 4.1x - 6.()()f b f a - 7.4π8. >三、求解题1.求下列函数的导数(1)解:()2x x ϕ'= (2)解:2324262()cos 2cos 3x x x e x x e x x ϕ'=⋅-⋅2.求下列极限:*(1)3x 0x x dt t 22⎰→arcsin lim*(2) )2(1lim22n n n n n +++∞→解:230arcsin limx x x →+⎰解:21limn n→∞ 202arcsin 2lim3x x x x →+=1lim n n →∞=+ 02arcsin 24lim 33x x x →+==11lim nn i n →∞==230arcsin limx x x→-⎰=⎰20arcsin 22lim 3x x x x→-⋅= 23= 02arcsin 24lim33x x x →--==-故极限不存在。
3. 证明:)(x φ=dt t f t x xa2)()(⎰-=22(2)()xax xt t f t dt -+⎰=22()2()()xxxaaaxf t dt x tf t dt t f t dt -+⎰⎰⎰222()2()()2()2()()xxaax x f t dt x f x tf t dt x f x x f x ϕ'=+--+⎰⎰=2⎰-xadt t f t x )()(4. 解:(1)x y e x '=-,令0y '=,得1x =, 当1x <时,0y '<;当1x >时,0y '>,所以,函数y 在(,1)-∞内单调递减,在(1,)+∞单调递增, 在1x =点处取得极小值1(1)(1)ty e t dt =-⎰=2e -.习题二 定积分的换元积分法,分部积分法一、计算题1.计算下列定积分 (1)⎰--323)1(dx x (2)⎰-1212dt tet解:原式=332(1)(1)x d x ---⎰解:原式=2112201()2t ed t ---⎰=4321(1)4x --=654- 2112t e -=-121e -=-(3)⎰-π3)sin 1(dx x(4)41⎰ 解:原式30sin dx xdx ππ=-⎰⎰解:原式41=⎰20(1cos )cos x d x ππ=+-⎰412=⎰301(cos cos )3x x ππ=+-411)=43π=- 32ln 2=(5)⎰+312211dx x x (6)⎰20xdx 2x πsin解:令tan x t = 解:原式201cos 22xd x π=-⎰原式234ππ=⎰ 22001(cos 2cos 2)2x x xdx ππ=--⎰324sec tan t dt t ππ=⎰324cos sin t dt tππ=⎰ 2011(sin 2)222x ππ=---3241sin sin d t tππ=⎰341sin t ππ=-4π==(7)⎰230arccos xdx (8)⎰exdx 1ln sin解:原式0arccos x =- 解:原式111sin ln cos ln ee x x x x dx x =-⋅⎰0162π=- 111sin1cos ln sin ln e ee x x x x dx x =--⋅⎰1122=-⋅ 1sin1cos11sin ln ee e xdx =-+-⎰12=+ 故 11sin ln (1sin1cos1)2exdx e e =+-⎰2. 解:令1x t -=,则⎰-2)1(dx x f 11()f t dt -=⎰01101111tdt dt e t -=+++⎰⎰ 令te u =,则1011111(1)t e dt du e u u --=++⎰⎰1111()1e du u u -=-+⎰11ln 1e uu-=+ln 2ln(1)e =-++11001ln(1)ln 21dt t t=+=+⎰ ⎰-2)1(dx x f ln(1)e =+二、证明题1.证明:令1x t =-,则()111(1)nmm nx x dx t t dt -=--⎰⎰1(1)m n t t dt =-⎰10(1)m n x x dx =-⎰2.证明:令x t =-,则()()bbbbf x dx f t dt --=--⎰⎰()bbf x dx -=-⎰3.证明:令1x t =,则111222111()11x x dx dt x tt -=-++⎰⎰12111x dt t =+⎰12111xdx x =+⎰ 4.证明:0()()xx f t dt ϕ--=⎰,令t u =-,则00()()()xx x f t dt f u du ϕ--==--⎰⎰ 又()f u 是奇函数()xf u du =⎰)x ϕ=(即⎰=xdt t f x 0)()(ϕ是偶函数.习题三 广义积分,定积分的几何应用一、选择题1. B2. C3. D 二、填空题1. 1≤, >1 ,11α-; 1≥, <1 , 11α- 2.6,(1)r -.三、计算题1.判断下列反常积分是否收敛,若收敛计算其值(1)dx x x 1e2⎰+∞ln (2)()dx x 1x 11002⎰∞++ 解:原式21ln ln ed x x +∞=⎰解:原式()21001(1)2(1)11x x dx x +∞+-++=+⎰ 11ln ex+∞=-= ()()()98991001121()(1)111d x x x x +∞=-+++++⎰97111()29798994-=-+⨯ (3)⎰-111dx x(4)⎰1ln xdx解:原式1(1)x =--⎰解:原式10(ln 1)x x =-11202(1)x =--2= 1=-2.解:⎰∞+2)(ln 1dx x x k 21ln (ln )k d x x +∞=⎰212ln ln 11(ln ) 11k x k x k k+∞-+∞⎧=⎪=⎨≠⎪-⎩ 11ln 211k k k k -≤⎧⎪=⎨>⎪-⎩发散 令1(ln 2)()1xf x x -=-,则112(ln 2)ln ln 2(1)(ln 2)()(1)x x x f x x ---⋅--'=-11ln ln 2x =-为驻点,且111ln ln 2x <<-时,()0f x '<;11ln ln 2x >-时,()0f x '>, 所以11ln ln 2k =-时,⎰∞+2)(ln 1dx x x k1(ln 2)1k k -=-取得最小值。
2008年(全国卷II)(含答案)高考文科数学
![2008年(全国卷II)(含答案)高考文科数学](https://img.taocdn.com/s3/m/8ab2da1179563c1ec5da7121.png)
2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。
2008年数学二 考研数学真题及解析
![2008年数学二 考研数学真题及解析](https://img.taocdn.com/s3/m/97c66985ec3a87c24028c4ce.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设2()(1)(2)f x x x x =--,求()f x '的零点个数( )()A 0()B 1 ()C 2()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'()axf x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=.()B 440y y y y ''''''+++=.()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.(4)判断函数ln ()sin (0)1xf x x x x =>-间断点的情况( ) ()A 有1个可去间断点,1个跳跃间断点 ()B 有1个跳跃间断点,1个无穷间断点 ()C 有两个无穷间断点 ()D 有两个跳跃间断点(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛.()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设f 连续,221x y +=,222x y u +=,1u >,则()22,Df u v F u v +=,则Fu∂=∂( ) ()A ()2vf u()B ()vf u()C ()2vf u u()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)()f x 连续,21cos(sin )lim1(1)()x x x e f x →-=-,则(0)f =(10)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (11)求函数23()(5)f x x x =-的拐点______________. (12)已知xyy z x ⎛⎫=⎪⎝⎭,则(1,2)_______z x ∂=∂. (13)矩阵A 的特征值是,2,3λ,其中λ未知,且2A =-48,则λ=_______.(14)设A 为2阶矩阵,12,a a 为线性无关的2维列向量,12120,2Aa Aa a a ==+,则A 的非零特征值为 .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (17)(本题满分10分) 求积分21⎰(18)(本题满分10分)求函数222u x y z =++在在约束条件22z x y =+和4x y z ++=下的最大和最小值. (19)(本题满分10分)曲线()y f x =满足(0)1f =对于任意的t 曲线是严格递增,在x 轴上0t >,该曲线与直线0,(0)x x t t ==>及0y =围成一曲边梯形.该曲边梯形绕x 轴旋转一周得一旋转体,其体积为()V t ,侧面积为()S t .如果()f x 二阶可导,且()2()S t V t =,求曲线()y f x =. (20)(本题满分11分) 求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(21)(本题满分11分) 证明(1)积分中值定理;(2)已知()x ϕ在[1,3]上连续且可导,32(2)(1),(2)()x dx ϕϕϕϕ>>⎰证明至少存在一点(1,3)ξ∈,()0ϕξ'=使得. (22)(本题满分11分)设矩阵2221212n n a a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程AX B =,其中()1,,T n X x x = ,()1,0,,0TB = ,(1)求证()1nA n a =+(2)a 为何值,方程组有唯一解,求1x (3)a 为何值,方程组有无穷多解,求通解(23)(本题满分11分)设A 为3阶矩阵,12,a a 为A 的分别属于特征值1,1-特征向量,向量3a 满足323Aa a a =+,证明(1)123,,a a a 线性无关; (2)令()123,,P a a a =,求1P AP -。
08年全国二卷及答案详解
![08年全国二卷及答案详解](https://img.taocdn.com/s3/m/5b946673f242336c1eb95eb9.png)
2008年普通高等学校招生全国统一考试(全国卷2数学)理科数学(必修+选修Ⅱ)第Ⅰ卷一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.64(1(1的展开式中x 的系数是( ) A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A.B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B .3C .3D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = .15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 19.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年参考答案和评分参考一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C部分题解析:2. 设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )A .223b a =B .223a b =C .229b a =D .229a b =,解:33223()33()()a bi a a bi a bi bi +=+++ (←考查和的立方公式,或二项式定理)3223(3)(3)a a b a b b i =-+- (←考查虚数单位i 的运算性质)R ∈ (←题设条件) ∵a b ∈R ,且0b ≠∴ 2330a b b -=(←考查复数与实数的概念) ∴ 223b a =. 故选A.6. 从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .2029思路1:设事件A :“选到的3名同学中既有男同学又有女同学”,其概率为:211220102010330()C C C C P A C += (←考查组合应用及概率计算公式) 201910910202121302928321⨯⨯⨯+⨯⨯⨯=⨯⨯⨯⨯ (←考查组合数公式) 10191010109102914⨯⨯+⨯⨯=⨯⨯ (←考查运算技能)2029=故选D.思路2:设事件A :“选到的3名同学中既有男同学又有女同学”,事件A 的对立事件为A :“选到的3名同学中要么全男同学要么全女同学”其概率为:()1()P A P A =- (←考查对立事件概率计算公式)3320103301C C C +=- (←考查组合应用及概率计算公式)2019810983213211302928321⨯⨯⨯⨯+⨯⨯⨯⨯=-⨯⨯⨯⨯(←考查组合数公式) 2019181098302928⨯⨯+⨯⨯=⨯⨯ (←考查运算技能)2029=故选D.12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2分析:如果把公共弦长为2的相互垂直的两个截球面圆,想成一般情况,问题解决起来就比较麻烦,许多考生就是因为这样思考的,所以浪费了很多时间才得道答案;但是,如果把公共弦长为2的相互垂直的两个截球面圆,想成其中一个恰好是大圆,那么两圆的圆心距就是球心到另一个小圆的距离3,问题解决起来就很容易了. 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··············································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ················································································································ 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ····························································································· 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ,则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ················································································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =. ······················································································································· 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E a E ηξ=--,······················································ 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯.0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元. ········································································ 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥. 由三垂线定理知,1BD AC ⊥.···························································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G , 由于1AA ACFC CE== AB CD E A 1 B 1 C 1 D 1FH G故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ······································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EF =CE CF CG EF ⨯==3EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB == ,,,,,,11(224)(204)AC DA =--=,,,,,. ······················································································· 3分 (Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分 1AC ,n 等于二面角1A DE B --的平面角,111cos 42AC AC AC ==,n n n . 所以二面角1A DE B --的大小为arccos 42. ······························································ 12分 20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ·························································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ·············································································· 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ········································································· 12分 21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ··············································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+ 化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==····································································· 9分又AB ==AEBF 的面积为121()2S AB h h =+ 12===≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ······························· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ······························································································································ 9分===当222x y =时,上式取等号.所以S 的最大值为·················································· 12分 22.解: (Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. ····································· 2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···································· 6分 (Ⅱ)令()()g x ax f x =-,则第11页(共11页) 22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭. 故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>.因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+. 当0a ≤时,有π1π0222f a ⎛⎫=> ⎪⎝⎭≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ····················································································· 12分。
07-08(2)高等数学(2)答案B卷.08.7.7考试doc
![07-08(2)高等数学(2)答案B卷.08.7.7考试doc](https://img.taocdn.com/s3/m/f28cd1b0a8114431b80dd82e.png)
一 . 选择题 (每题 3 分,共 15 分 )
3xy
1. 二元函数 f x, y
x2 y2
x, y
0,0
在原点处 [
]
0
x, y 0,0
A .连续,偏导数存在 C.偏导数存在且可微
B .不连续,偏导数存在 D .不连续,偏导数也不存在
0
0
考试日期 :2008 年 7 月 7 日星期一 高等数学 (2)期末 试卷答案及评分标准
( 2 分)
120 分钟 第 3 页 共 5 页
a3 0 2
2 a3 。
( 3 分)
4. 计算曲面积分
(xy yz zx)dS , 其中曲面 为锥面 z x 2
所截得的有限部分。 解:曲面 在 xoy 坐标面上的投影区域
dz 2 y x
x
dx
D
3z 1
( 2 分) ( 2 分) ( 2 分)
四.计算下列各题(每题 8 分,共 32 分)
1.计算二重积分 ( x y)2 dxdy,其中 D : x2 y 2 a2 ( a 0) 。
D
解:利用极坐标变换
2
( x y) dxdy ( r cos
D
D
a r 3dr 2 (1 2 sin cos
0
0
1 a4 2
r sin )d
2
) rdrd
(3 分) ( 3 分) ( 2 分)
2.计算由四个平面 x 0 , y 0 , x 1 , y 1所围成的柱体被平面 z 0 及 2x 3 y z 6 截
得的立体的体积。
解 : 由二重积分的几何意义 , 所围的立体的体积
高等数学C(二)09-10真题(A卷)答案
![高等数学C(二)09-10真题(A卷)答案](https://img.taocdn.com/s3/m/cb7c9b08581b6bd97f19ea9d.png)
=
=
方法二:微分法. 方程两端分别求微分得到 2 cos(x + 2y − 3z )(dx + 2dy − 3dz ) = dx + 2dy − 3dz 变形得到 [6 cos(x+2y −3z )−3]dz = [2 cos(x+2y −3z )−1]dx+[4 cos(x+2y −3z )−2]dy. 当6 cos(x + 2y − 3z ) − 3 ̸= 0时,上式可以写为 dz = 所以 ∂z ∂x ∂z ∂y = = 2 cos(x + 2y − 3z ) − 1 6 cos(x + 2y − 3z ) − 3 4 cos(x + 2y − 3z ) − 2 . 6 cos(x + 2y − 3z ) − 3 · · · · · · · · · · · · · · · (6′ ) · · · · · · · · · · · · · · · (8′ ) 2 cos(x + 2y − 3z ) − 1 4 cos(x + 2y − 3z ) − 2 dx + dy 6 cos(x + 2y − 3z ) − 3 6 cos(x + 2y − 3z ) − 3 · · · · · · · · · · · · · · · (4′ ) · · · · · · · · · · · · · · · (3′ ) · · · · · · · · · · · · · · · (2′ )
令x(y ) = C (y ) · y −2 , 代入非齐方程得C ′ (y ) = 1. 故C (y ) = y + C , 其中C 为自由常数. 原微分方程的通解为 x(y ) = (y + C )y −2 . · · · · · · · · · · · · · · · (5′ )
2008年全国硕士研究生入学统一考试数学二试题及答案详解
![2008年全国硕士研究生入学统一考试数学二试题及答案详解](https://img.taocdn.com/s3/m/bcc4ccda50e2524de5187edf.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设2()(1)(2)f x x x x =--,求()f x '的零点个数( )()A 0()B 1 ()C 2()D 3解:()D分析:()()()()()()22221212494f x x x x x x x x x x x '=--+-+-=-+令()0f x '=,则可得()f x '零点的个数为3.(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'()axf x dx ⎰( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.解:()C分析:0()()()()aaaxf x dx xdf x af a f x dx '==-⎰⎰⎰,其中()af a 是矩形面积,0()af x dx⎰为曲边梯形的面积,所以()axf x dx '⎰为曲边三角形的面积。
(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=.()B 440y y y y ''''''+++=. ()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.解:()D .分析;由123cos2sin 2x y C e C x C x =++可知其特征根为12,31,2i λλ==±.故对应的特征方程为 2(1)(2)(2)(1)(4)i i λλλλλ-+-=-+,即32440λλλ-+-=所以所求微分方程为440y y y y ''''''-+-=, 选()D . (4)判断函数ln ()sin (0)1xf x x x x =>-间断点的情况( )()A 有1个可去间断点,1个跳跃间断点 ()B 有1个跳跃间断点,1个无穷间断点 ()C 有两个无穷间断点 ()D 有两个跳跃间断点解:()A分析:()f x 的间断点为1,0x =,而0lim ()0x f x →+=,故0x =是可去间断点;1lim ()sin1x f x →+=,1lim ()sin1x f x →+=-,故1x =是跳跃间断点故选()A 。
2008—数二真题、标准答案及解析
![2008—数二真题、标准答案及解析](https://img.taocdn.com/s3/m/488445280066f5335a812166.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A ''''''440y y y y +--= ()B ''''''440y y y y +++= ()C ''''''440y y y y --+=()D ''''''440y y y y -+-=(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f 连续,若2222(,)uvD F u v dxdy x y =+⎰⎰,其中区域uv D 为图中阴影部分,则F∂= ()A 2()vf u ()B 2()vf u u()C ()vf u()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______. (13)设x yy z x ⎛⎫=⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x→-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0200x t dx te dt x --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式. (20)(本题满分11分)(1) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x d x ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+, (1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 又()f x '中含有因子x ,故0x =也是()f x '的零点, D 正确. 本题的难度值为0.719. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.本题的难度值为0.829.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为0.832. (4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以 0x =是可去间断点,1x =是跳跃间断点.本题的难度值为0.486.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.本题的难度值为0.537. (6)【答案】A【详解】用极坐标得 ()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为0.638. (7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为0.663. (8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==---- 所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. 本题的难度值为0.759. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f = 本题的难度值为0.828. (10)【答案】()xx eC --+【详解】微分方程()20xy x e dx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为0.617.(11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得1x dy dx==,所以切线方程为10y x -=-,即1y x =+本题的难度值为0.759. (12)【答案】(1,6)-- 【详解】5325y xx =-⇒23131351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x--+''=+= 1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为0.501. (13)221)- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yv vy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)21)2z x ∂=-∂本题的难度值为0.575.(14)【答案】-1【详解】||236A λλ =⨯⨯=3|2|2||A A =32648λ∴⨯=- 1λ⇒=- 本题的难度值为0.839.三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x →→--=22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦本题的难度值为0.823. (16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫===⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d ye x dx=+ 本题的难度值为0.742. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈2212222000sin cos 2cos sin ()cos 22t t t t t tdt t tdt dt t πππ===-⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+ 方法二:2121dx x -⎰12201(arcsin )2x d x =⎰121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈1222200011(arcsin )sin 2cos 224x x dx tdt t d t ππ==-⎰⎰⎰ 222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+ 本题的难度值为0.631.(18)【详解】 曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+ 本题的难度值为0.524.(19)【详解】旋转体的体积2()tV f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知2()(ttf x dx f x =⎰⎰上式两端对t 求导得2()(f t f t = 即y '=由分离变量法解得1l n ()y t C +=+, 即t y C e =将(0)1y =代入知1C =,故t y e +=,1()2tt y e e -=+ 于是所求函数为 1()()2x xy f x e e -==+ 本题的难度值为0.497.(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使 32()()(32)()x dx ϕϕηϕη=-=⎰又由32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂本题的难度值为0.719. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为0.486. (22)【详解】(I)证法一:2222122212132101221221122aa a a a a a a a A r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a an a a n a r ar a n a nnn a n--+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a a D aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a=+ 证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+ 1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为 ()()10000100,TTk k + 为任意常数.本题的难度值为0.270. (23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为0.272.。
2008年成人高等学校专升本招生全国统一考试高等数学(二)试题
![2008年成人高等学校专升本招生全国统一考试高等数学(二)试题](https://img.taocdn.com/s3/m/d0165575f46527d3240ce0fe.png)
2008年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上的指定位置,答在试卷上无效。
一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上 1.=-+∞→4312x x iml x【答案】:C【解析】:属于极限基本题,分子,分母同除x ,即得32,选C 【点评】:曾在安通系统班及强化班高数课上,极限部分有过大量相关题型练习。
A .41-B. 0C. 32D. 12. 已知)(x f 在1=x 处可导,且3)1(='f ,则0(1)(1)lim h f h f h→+-=A. 0B. 1C. 3D. 6 【答案】:C【解析】:考核导数定义,或用洛必达法则。
选C【点评】:在安通课上导数部分,有详细讲解导数定义及洛必达法则的应用,在串讲篇有重点强调。
3. 设函数='=y nx y 则,1 A.x 1 B. x1- C. x ln D. xe【答案】:A【解析】: 容易题。
据辅导教材51页导数公式(4)得 【点评】:在安通课上导数部分,有过详细讲解。
4. 已知)(x f 在区间(∞+∞-,)内为单调减函数,且)(x f >)1(f ,则x 的取值范围是A. (1,-∞-)B. (1,∞-)C. (∞+,1)D. (∞+∞-,) 【答案】:D【解析】: 属概念题,选 D 与)(x f >)1(f 无关【点评】:在函数部分,有过详细讲解,在串讲篇有重点强调。
5. 设函数=+=dy e y x则,2A. ()dx e x 2+B. ()dx x e x 2+ B. ()dx e x 1+ D. dx e x【答案】:D【解析】:属于较容易题. 据辅导教材70页微分公式 (1),(4)。
6.⎰=+dx x )1(cosA. C x x ++sinB. C x x ++-sinC. C x x ++cosD. C x x ++-cos 【答案】:A【解析】:属于容易题. 据辅导教材135页微分公式 7.=⎰-dx x 511A. -2B. -1C. 0D. 1 【答案】: C【解析】:容易题. 据”连续奇函数在对称区间上的定积分为0”. 8. 设函数y x z 32+=,则xz∂∂= A. y x 32+ B. x 2 C. 32+x D.23233y x + 【答案】: B【解析】:属于较容易题. 对2x 求导,3y 看作常数即可得B 选项。
高等数学c教材目录
![高等数学c教材目录](https://img.taocdn.com/s3/m/d4d98ae60129bd64783e0912a216147917117e01.png)
高等数学c教材目录1. 高等数学C教材目录本教材旨在为大学高等数学C课程提供全面、系统的教学内容。
通过深入浅出的讲解和丰富的例题,帮助学生建立起扎实的高等数学基础,提高数学分析和推理的能力。
以下是本教材的目录:第一章:数列与极限1.1 数列的概念与性质1.1.1 数列的定义1.1.2 数列的收敛性1.1.3 数列极限的性质1.2 函数极限与极限运算1.2.1 函数极限的定义1.2.2 函数极限的运算法则1.2.3 极限存在准则1.3 极限存在性的证明方法1.3.1 夹逼定理1.3.2 单调有界原理1.3.3 无穷小量的性质与运算第二章:一元函数微分学2.1 导数的概念与性质2.1.1 导数的定义2.1.2 导数的性质与运算法则 2.1.3 高阶导数2.2 导数的几何意义与应用2.2.1 切线与法线方程2.2.2 凹凸与拐点2.2.3 最值与最优化问题2.3 微分与高阶导数2.3.1 微分的概念与性质2.3.2 高阶导数的计算方法2.3.3 泰勒级数与近似计算第三章:一元函数积分学3.1 定积分的概念与性质3.1.1 定积分的定义3.1.2 定积分的性质与运算法则3.1.3 牛顿—莱布尼兹公式 3.2 不定积分与基本积分公式 3.2.1 不定积分的定义与性质 3.2.2 基本积分公式及其应用 3.2.3 分部积分与换元积分法 3.3 定积分的应用3.3.1 曲线长度与曲面面积 3.3.2 弧长与弓高问题3.3.3 物理应用案例分析第四章:常微分方程4.1 常微分方程的基本概念4.1.1 常微分方程的定义4.1.2 解的存在唯一性定理 4.1.3 初值问题与通解4.2 一阶常微分方程4.2.1 可分离变量方程4.2.2 一阶线性微分方程4.2.3 齐次方程与非齐次方程4.3 解的方法与特解形式4.3.1 可降阶的二阶微分方程4.3.2 常系数二阶线性微分方程 4.3.3 模拟解法与特解形式第五章:多元函数微分学5.1 多元函数的导数与偏导数5.1.1 多元函数的导数定义5.1.2 偏导数的概念与性质5.1.3 方向导数与梯度5.2 高阶偏导数与复合函数求导5.2.1 高阶偏导数的计算5.2.2 链式法则与隐函数求导5.2.3 多元函数极值的判定5.3 多元函数微分学的几何应用5.3.1 驻点与极值问题5.3.2 条件极值与拉格朗日乘数法5.3.3 二重积分的几何应用第六章:多元函数积分学6.1 二重积分的概念与性质6.1.1 二重积分的定义6.1.2 二重积分的计算与性质6.1.3 二重积分的应用6.2 三重积分与曲线、曲面积分6.2.1 三重积分的定义与计算6.2.2 三重积分的性质与应用6.2.3 曲线积分与曲面积分的概念 6.3 向量场与曲线、曲面积分6.3.1 向量场的定义与性质6.3.2 曲线积分的计算与应用6.3.3 曲面积分的计算与应用第七章:无穷级数7.1 收敛级数的概念与性质7.1.1 数项级数的定义7.1.2 正项级数的收敛性7.1.3 收敛级数的性质与判别法7.2 幂级数与泰勒级数7.2.1 幂级数的定义与性质7.2.2 幂级数的收敛域7.2.3 泰勒级数与函数展开7.3 函数项级数7.3.1 函数项级数的收敛性7.3.2 傅里叶级数与函数逼近通过本教材的学习,相信学生们能够系统地掌握高等数学C的核心概念和重要知识点,提高数学思维和解决实际问题的能力。
2008年成人高考专升本高等数学二考试真题及参考答案
![2008年成人高考专升本高等数学二考试真题及参考答案](https://img.taocdn.com/s3/m/b080696cba1aa8114431d9b3.png)
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题
参考答案:C
第2题
参考答案:C
第3题
参考答案:A
第4题
参考答案:B
第5题
参考答案:D 第6题
参考答案:A 第7题
参考答案:C 第8题
参考答案:B 第9题
参考答案:A 第10题
参考答案:D
二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第11题
参考答案:1
第12题
参考答案:2
第13题
参考答案:cos x-xsin x
第14题
参考答案:20x3
第15题
参考答案:(1,1/3) 第16题
参考答案:
第17题
参考答案:x3+ x 第18题
参考答案:2
第19题
参考答案:x2+y2≤1第20题
参考答案:
三、解答题:共70分。
解答应写出推理、演算步骤。
第21题
第22题
第23题
第24题
第25题
第26题
第27题
第28题。
2011-2012学年安徽大学《高等数学 C(二)》(A卷)考试试题及参考答案
![2011-2012学年安徽大学《高等数学 C(二)》(A卷)考试试题及参考答案](https://img.taocdn.com/s3/m/d28561e1185f312b3169a45177232f60ddcce780.png)
安徽大学2011—2012学年第二学期《高等数学C(二)》考试试卷(A 卷)院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------(闭卷 时间120分钟)考场登记表序号__________题 号 一 二 三 四 五 总分 得 分阅卷人得分 一、填空题(每小题2分,共10分)1.设A 为矩阵,且||33×1A =,把A 按列分块为123(, , )A ααα=,那么行列式3123|, 4, 2|αααα−−==⎜⎜⎟⎝⎠A ___________.2.若矩阵,123045002A ⎛⎞⎜⎟⎟∗为其伴随矩阵,则1()A ∗−=____________.3.若向量组,1(1, 3, 6, 2)T α=2(2, 1, 2, 1)T α=−,线性相关,3(1, 1, , 2)T a α=−−则___________. a =4.若二次型2221231231223(,,)22f x x x x x x x x tx x =++++正定,则t 的取值范围是___________.5. 如果n 阶矩阵A 满足()()r A E r A E n ++−=,且A E ≠,其中E 为阶单位矩阵,n那么矩阵A 必有一个特征值为___________.得分 二、选择题(每小题2分,共10分)6.下列条件中,哪个不能..作为n 阶实矩阵A 可逆的充要条件 ( )A .A 的特征值全为非负实数B .A 可以表示为一些初等矩阵的乘积C .A 的列向量组线性无关D .当0x ≠时,0Ax ≠,其中12(,,,)T n x x x x ="7.设向量组12,,,s αα"α线性无关,则下列说法错误..的是 ( ) A .12,,,s αα"α都不是零向量B .12,,,s αα"α中至少有一个向量可由其余向量线性表示C .12,,,s αα"α中任意两个向量都不成比例D .12,,,s αα"α中任一部分向量组都线性无关8.设A 是矩阵,m n ×B 是n m ×矩阵,对线性方程组()AB x 0=,有 ( ) A .时,方程组仅有零解 n m >B .时,方程组必有非零解 n m >C .时,方程组仅有零解 m n >D .时,方程组必有非零解m n >9.如果两个n 阶矩阵A 与B 相似,那么下列结论一定正确的是 ( ) A .A 与B 都相似于同一个对角矩阵 B .A 与B 的秩可能不相等 C .A 与B 有相同的特征向量 D .A 与B 有相同的行列式10.若A 是矩阵,,,则43×()2r A =102020103B ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠()r AB = ( ) A . B .1 C . D . 023三、计算题(每小题10分,共60分)得分11.计算n 阶行列式12341110000022000003300000011n n n n−−−−−−"""""""" .12.设矩阵,求满足方程101210325A ⎛⎞⎜⎟=⎜⎜⎟−−⎝⎠⎟X A AX −=的矩阵X .答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------13. 求向量组,,,,的秩和一个极大无关组,并把其余向量用此极大无关组线性表示. 1(1,1,2,4)T α=−2(0,3,1,2)T α=3(3,0,7,14)T α=4(1,2,2,0)T α=−−5(2,1,5,10)T α=14.求齐次线性方程组的基础解系.123412345023x x x x x x x x +−−=⎧⎨−++=⎩015.设1α,2α,3α是四元非齐次线性方程组Ax b =的三个解向量,且()3r A =,若,,求方程组1(1, 1, 1, 1)T α=23(2, 3, 4, 5)T αα+=Ax b =的通解.16.已知是矩阵111ξ⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠212512A a b −⎛⎞⎜⎟=⎜⎜⎟3⎟−−⎝⎠的一个特征向量,(1)求参数a ,b 及特征向量ξ所对应的特征值.答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------(2)问A 能否相似于对角矩阵?并说明理由.四、分析计算题(每小题12分,共12分) 得分17.已知二次型22212312312(,,)(1)(1)22(1)f x x x a x a x x a x x =−+−+++的秩为2. (1) 求a 的值.(2) 利用正交变换求出f 的标准形,并写出相应的正交矩阵Q .得分五、证明题(每小题8分,共8分)18.设A ,B 均为n 阶方阵,(1)若,证明:0AB =()()r A r B n +≤.(2)若,且2A =A E 为阶单位矩阵,证明:n ()()r A r A E n +−=.安徽大学2011—2012学年第二学期 《高等数学C (二)》考试试卷(A 卷)参考答案与评分标准一、填空题(每小题2分,共10分)1.; 2.8−12388845882008⎛⎞⎜⎟⎜⎟⎜⎟⎜或⎟⎜⎟⎜⎟⎜⎟⎝⎠18A ; 3.2−; 4.(; 5.1− 二、选择题(每小题2分,共10分)6.A ; 7.B ; 8.; 9.D ; 10.C D三、计算题(每小题10分,共60分)11.从第二列起,每列都加到第一列去,再将行列式按第一列展开得原式=(1)23412010********* 003300000011n n n n n n+−−−−−−"""""""" .....................(5分)=1000022000(1)033002011n n n n−−+−−−"""""""=(1)(1)(2)(1)2n n n +×−×−××−" =1(1)(1)2n n −+−!. .....................(10分)12. 依题意有,()E A X A −=,且001200326E A −⎛⎞⎜⎟−=−⎜⎟⎜⎟−⎝⎠,因为00120040326−−=−−≠,故E A −可逆,且1()X E A −=−A .....................(4分)下求1()E A −−()001100,200010326001E A E −⎛⎞⎜⎟−=−⎜⎟⎜⎟−⎝⎠200010001100326001−⎛⎞⎜⎟→−⎜⎟⎜⎟−⎝⎠ 11000023026012001100⎛⎞−⎜⎟⎜⎟⎜⎟→−⎜⎟⎜⎟−⎜⎟⎜⎟⎝⎠110000231010342001100⎛⎞−⎜⎟⎜⎟⎜⎟→−−⎜⎟⎜⎟−⎜⎟⎜⎟⎝⎠− 故1100231()342100E A −⎛⎞−⎜⎟⎜⎟⎜⎟−=−−−⎜⎟⎜⎟−⎜⎟⎜⎟⎝⎠, .....................(8分)所以11001221013171321034242325100101X ⎛⎞⎛⎞−−⎜⎟⎜⎟⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=−−−=−−−⎜⎟⎜⎟⎜⎟⎜⎟−−⎜⎟⎜⎟⎝⎠−−⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠0−− (也可直接用初等变换法求X )......................(10分)13.依题意,将向量组按列排成矩阵并作初等行变换 ()123451031213021,, , , 217254214010ααααα−⎛⎞⎜⎟−−⎜⎟=⎜⎟⎜⎟⎝⎠10312033330114102242−⎛⎞⎜⎟−⎜⎟→⎜⎟⎜⎟⎝⎠1031201111000500060−⎛⎞⎜⎟−⎜⎟→⎜⎟⎜⎟⎝⎠10302011010001000000⎛⎞⎜⎟⎜⎟→⎜⎟⎜⎟⎝⎠.....................(6分)故()12345, , , , 3r ααααα=,124,,ααα为向量组的一个极大无关组,且3132ααα=+,5122ααα=+......................(10分)14.依题意1511151112130724−−−−⎛⎞⎛→⎜⎟⎜−−⎝⎠⎝⎞⎟⎠0,得同解的方程组123423450724x x x x x x x +−−=⎧⎨−++=⎩.....................(5分)取3x ,4x 为自由未知量,得基础解系1372710η⎛⎞−⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠,21374701η⎛⎞−⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠......................(10分)15.依题意,由1A b α=,2A b α=,3A b α=,得23()2A b αα+=,即23()2A b αα+=,故223αα+也是方程组Ax b =的解.于是231130, , 1, 22Tααα+⎛⎞−=⎜⎝⎠2⎟为导出组0Ax =的解. .....................(4分)又因为知,故方程组()3r A =Ax b =的导出组0Ax =的基础解系中含有个向量,所以非零向量1n r −=130, , 1, 22T⎛⎞⎜⎟⎝⎠即为0Ax =的一个基础解系. .....................(8分)由解的结构定理知的通解为Ax b =13(1, 1, 1, 1)0, , 1, 22TT k ⎛⎞+⎜⎟⎝⎠k ,为任意常数......................(10分)16.(1)设ξ是矩阵A 的对应特征值λ的特征向量,由特征值及特征向量的定义,A ξλξ=,即,21211531121a b λ−⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟−−−⎝⎠⎝⎠⎝⎠11−.....................(2分)得方程组2125312a b λλλ−−=⎧⎪+−=⎨⎪−++=−⎩,解得3a =−,0b =,1λ=−......................(5分)(2)由(1)知,由212533102A −⎛⎞⎜⎟=−⎜⎟⎜⎟−−⎝⎠3212533(1)λ102E A λλλλ−−−=−+−=++0=得A 的特征值为1−(三重).由()2r E A −−=知,A 只有一个线性无关的特征向量,故三阶矩阵A 不能相似于对角矩阵......................(10分)四、分析计算题(每小题12分,共12分)17.(1)依题意,二次型的矩阵为,且r A110110002a a A a a −+⎛⎞⎜⎟⎟=+−⎜⎜⎟⎝⎠()2=于是11011002a a a a −++−=0,解得0a =......................(4分)(2)由(1)得,由110110002A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠2110110(2)002E A λλλλλλ−−0−=−−=−=−,得A 的特征值为10λ=,232λλ==......................(6分)对于10λ=,解线性方程组(0)0E A x −=,得线性无关的特征向量,()11, 1, 0Tα=−对于232λλ==,解线性方程组(2)0E A x −=,得线性无关的特征向量,,()21, 1, 0T α=()30, 0, 1Tα=显然1α,2α,3α正交,将1α,2α,3α单位化得1 0T η⎛⎞=⎜⎟⎝⎠,2 0Tη⎞=⎟⎠,. ()30, 0, 1T η=.....................(10分)故f 的标准形为212323(,,)222f x x x y y =+,所用正交变换的矩阵为正交矩阵00001Q ⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠. .....................(12分)五、证明题(每小题8分,共8分) 18.(1)设矩阵B 按列分块可写作()12, , , n B αα="α,由0AB =,得()12,,,0n A ααα=",即0i A α=,1,2,,i n =" ,故i α是齐次方程组的解.0Ax =当时,仅有零解,故()r A n =0Ax =0i α=,1,2,,i n =",即0B = 当时,的基础解系中含有()r A n <0Ax =()n r A −个向量,故 ()()r B n r A ≤−于是.()()r A r B n +≤.....................(4分)(2)由2A A =,知,由(1)知()A A E −=0()()r A r A E n +−≤ )另一方面,由()(r A E r E A −=−,且()()()()r A r E A r A E A r E n +−≥+−==, 故.()()r A r A E n +−=.....................(8分)5。
2008考研数二真题及解析
![2008考研数二真题及解析](https://img.taocdn.com/s3/m/18c16e45bd64783e09122bca.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 设2()(1)(2)f x x x x =--,求()f x '的零点个数( )()A 0()B 1 ()C 2()D 3(2) 如图,曲线段方程为()y f x =, 函数在区间[0,]a 上有连续导数,则 定积分()axf x dx '⎰等于( )()A 曲边梯形ABOD 面积.()B 梯形ABOD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3) 在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=. ()B 440y y y y ''''''+++=. ()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.(4) 判断函数ln ()sin (0)1xf x x x x =>-间断点的情况( ) ()A 有1个可去间断点,1个跳跃间断点 ()B 有1个跳跃间断点,1个无穷间断点 ()C 有两个无穷间断点 ()D 有两个跳跃间断点yC (0, f (a )) A (a , f (a ))y =f (x )O B (a ,0) xD(5) 设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6) 设函数f 连续. 若()()2222,uvD f x y F u v dxdy x y+=+⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂( ) ()A ()2vf u()B ()2vf u u()C ()vf u()D ()vf u u(7) 设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若3A O =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8) 设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) ()f x 连续,21cos(sin )lim1(1)()x x x e f x →-=-,则(0)f =(10) 微分方程2()0xy x e dx xdy -+-=的通解是y =O xvx 2+y 2=u 2 x 2+y 2=1 D uvy(11) 曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12) 求函数23()(5)f x x x =-的拐点______________. (13) 已知xyy z x ⎛⎫=⎪⎝⎭,则(1,2)_______z x ∂=∂. (14) 矩阵A 的特征值是,2,3λ,其中λ未知,且248A =-,则λ=_______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求极限()4sin sin sin sin limx x x x x →-⎡⎤⎣⎦.(16) (本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题 020|0xt dx te dtx -=⎧-=⎪⎨⎪=⎩的解. 求22d y dx .(17)(本题满分9分)计算212arcsin 1x x dx x-⎰(18)(本题满分11分)计算{}max ,1,Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[0,)+∞上具有连续导数的单调增加函数,且(0)1f =. 对于任意的[0,)t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成曲边梯形绕x 轴旋转一周生成一旋转体. 若该旋转体的侧面面积在数值上等于其体积的2倍,求函数()f x 的表达式.(20)(本题满分11分)(I) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰;(II) 若函数()x ϕ具有二阶导数,且满足,32(2)(1),(2)()x dx ϕϕϕϕ>>⎰,则至少存在一点(1,3)ξ∈,()0ϕξ''<使得.(21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大和最小值.(22)(本题满分12分)设n 元线性方程组Ax b =,其中2221212n n a a a A a a ⨯⎛⎫ ⎪⎪= ⎪⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,100b ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(I) 证明行列式()1nA n a =+(II) 当a 为何值时,该方程组有唯一解,并求1x (III) 当a 为何值时,该方程组有无穷多解,并求通解(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足323A ααα=+,(I) 证明123,,ααα线性无关; (II) 令()123,,P ααα=,求1P AP -2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 由于()f x '是三次多项式,三次方程()0f x '=的实根不是三个就是一个,故D 正确.(2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是440y y y ''''''-+-=(4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 111ln lim ()lim lim sin sin11x x x xf x x x --+→→→=⋅=--所以 0x =是可去间断点,1x =是跳跃间断点.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.(6)【答案】A【详解】用极坐标得 ()()222()22211,()vu uf r r Df u v F u v dudv dv rdr v f r dr u v +===+⎰⎰⎰⎰⎰所以()2Fvf u u∂=∂(7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆.(8) 【答案】D 【详解】记1221D -⎛⎫=⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确.二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f =(10)【答案】()xx eC --+【详解】微分方程()20xy x edx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x xx x y e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰(11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得01x dy dx==,所以切线方程为10y x -=-,即1y x =+(12)【答案】(1,6)-- 【详解】53235y xx =-⇒23131351010(2)333x y x x x -+'=-=⇒134343101010(1)999x y x x x--+''=+= 1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)--(13)【答案】2(ln 21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yv vy u y y u ux y x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)2(ln 21)2z x ∂=-∂(14)【答案】-1【详解】||236A λλ =⨯⨯= 3|2|2||A A =32648λ∴ ⨯=- 1λ⇒=-三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦(16)【详解】方法一:由20x dx te dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2l n (1)x t =+所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dx te dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2l n (1)x t =+所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d ye x dx=+(17)【详解】 方法一:由于221arcsin lim 1x x x x-→=+∞-,故212arcsin 1x x dx x-⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈22122222000arcsin sin cos 2cos sin ()cos 221x x t t t t t dx tdt t tdt dt t x πππ===--⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+ 方法二:212arcsin 1x x dx x -⎰12201(arcsin )2x d x =⎰ 121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈12222200011(arcsin )sin 2cos 224x x dx t tdt t d t ππ==-⎰⎰⎰ 222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+(18)【详解】 曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积22()1()tS f x f x dx π'=+⎰,由题O 0.5 2 xD 1D 3 D 2设条件知220()()1()ttf x dx f x f x dx '=+⎰⎰上式两端对t 求导得 22()()1()f t f t f t '=+, 即 21y y '=-由分离变量法解得 21l n (1)y y t C+-=+, 即 21t y y C e+-= 将(0)1y =代入知1C =,故21t y y e +-=,1()2t t y e e -=+于是所求函数为 1()()2t ty f x e e -==+(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使32()()(32)()x dx ϕϕηϕη=-=⎰又由 32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂(21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6.(22)【详解】(I)证法一:2222122212132101221221122a a a a a a aa aA r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a a n a a n ar ar a n a nnn a n--+-=⋅⋅⋅=++ 证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立.当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a aD aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102*********n n n nn n a a a aa aa aD na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +为任意常数.(23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3) 因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.。
2008年河北专接本高等数学答案02
![2008年河北专接本高等数学答案02](https://img.taocdn.com/s3/m/ee1b8536a32d7375a417803f.png)
河北省2008年普通专科接本科教育考试一单项选择题。
1、B 评注:[][]0,1x 1,01x -∈⇒∈+2、D 评注:本题考察的是左右导数与导数的关系3、A 评注:本题考察的是隐函数的求导。
4、D 评注:本题由拉格朗日公式可计算出a b a f b f f --=)()()('ξ 5、A 评注:边际收入是总收入的导数。
6、C 评注:⎰+==C xx f dx x x f 1)(ln )(ln ' 7、D 评注:本题考察的是定积分的计算。
8、A 评注:本题考察的是二元函数的偏导数。
9、B 评注:本题考察的是关于-p 级数的敛散性。
10、C 评注:本题考察的是矩阵的性质。
二、填空题11、3e 评注:本题考察的是函数的连续性。
12、1=-y x 评注:本题考察的是函数的导数。
13、2,[)1,3-14、1三、计算题 15、解:221lim cos 1)1ln(lim sin )1ln(lim 220000==-+=-+→→→⎰x x x x x x x dt t t x x x x 评注:本题考察的是罗必塔法则及积分上限函数的导数。
16、解:=-⎰dx e x x x )(cos 22评注:本题考察的是分部积分法求不定积分。
17、解:111)1(22-+=--xx x x f 2)1(1)1(x x x x f -=-- ,即1)(2+=t t f 。
故[]38)1(2)(2)(2cos 10210113=+==+⎰⎰⎰-dx x dx x f dx x f x x 评注:本题考察的是利用函数的奇偶性计算定积分。
18、解: 由⎩⎨⎧==12x y x 可得焦点(1,-1)和(1,1)⎰⎰-=∴10x x dy dx A =34 ⎰⎰⎰=⇒===-a a x x a dx x dy dx A 0304123221 19、解:dy f x xf dx f x y yf dv f du f dz v u v u v u )1()(2++-=+= 20、解:x xe x q x p 2)(,1)(=-=⎰⎰+-=-=C x dx dx x p 1)())(()()(⎰+⎰⎰=∴-C e x q e y dx x p dx x p)(2C x e x +=评注:本题考察的是一阶线性微分方程的通解。
2008年考研数学二试题答案与解析
![2008年考研数学二试题答案与解析](https://img.taocdn.com/s3/m/46eb6425ed630b1c59eeb50c.png)
1+ t2
= (1+ t2 ) ⎡⎣ln (1+ t2 ) +1⎤⎦
(17)(本题满分 9 分)
∫ 计算 1 x2 arcsin xdx
0 1− x2
NBF 考研辅导,全程包过,不过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!
∫ 解 由于 lim x2 arcsin x = +∞ ,故 1 x2 arcsin xdx 是反常积分.
0
0
上式两端对 t 求导,得 f 2 (t ) = f (t ) 1+ f '2 (t )
即
y' = y2 −1
由分离变量法解得
( ) ln y + y2 −1 = t + C1
即
y + y2 −1 = Cet
将 y (0) = 1代入知 C = 1,故
( ) y + y2 −1 = et , y = 1 et + e−t , 2 于是所求函数为
=
(A) vf (u2 ) .
(C) vf (u) .
(B) v f (u2 ) . u
(D) v f (u) . u
[A]
(7) 设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵.若 A3 = 0 ,则
(A) E − A 不可逆, E + A不可逆. (C) E − A 可逆, E + A可逆.
( ) y = f ( x) = 1 ex + e−x 2 (20)(本题满分 11 分)
(Ⅰ)证明积分中值定理:若函数 f ( x) 在闭区间[a,b] 上连续,则至少存在一点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南大学2007-2008学年第二学期试卷( A 卷)
课 程 经济数学(下) 授课教师 考试时间 08年4月22日 考试班级 姓名 学号
一、 填空题(本题共5小题,每题4分,满分20分)
1. 函数⎪⎩
⎪
⎨⎧=+≠+++=0
20)(2sin ),(2
2
222222y x y x y x y x y x f 在原点处的极限是_________.
2. 函数232x x y x -=的二阶差分=x y 2∆_____________.
3. 将二次积分
⎰
⎰--+2
112
21
)(x x
dy y x f dx 表示成极坐标形式的二次积分为_____ .
4. 一阶差分方程0521=++x x y y 在初始条件30=y 下的特解为____ .
5. 某公司的净资产W 因资产本身产生利息而以5%的年利率增长,同时公司每年还
必须以每年200万元的数额连续支付职工工资,给出描述该公司净资产W (单位:万元)的微分方程_______________.
二、选择填空(本题共5小题,每题4分,满分20分)
1. 若函数),(0y x f 及),(0y x f 在点()00,y x 处都取得极值,则),(y x f 在()00,y x 处
A . 不一定取得极值;
B . 取得极值;
C . 取得最值;
D .不取得极值. ( )
2. 函数)1ln(22y x z ++=,当2,1==y x 时的全微分dz 为 ( )
A .
dy dx 3132+;B . dy dx 3231+; C . dy dx 2321+; D . dy dx 2
123+. 3. 设)(x f y =是满足微分方程0sin =-'-''x e y y 的解,且0)(0='x f 则)(x f 在
A . 在0x 的某邻域内单调增加;
B . 在0x 的某邻域内单调减少; ( )
C . 在0x 处取得极小值;
D . 在0x 处取得极大值.
4. 设),(y x f 为连续函数,且(,)(,)D
f x y xy f x y d σ=+
⎰⎰,其中积分区域D 由曲线
0=y ,2x y =与1=x 所围成,则),(y x f 等于 ( )
A . 31+
+y x ; B . 23x y x ++; C . 81+xy ; D .8
131+xy . 5. 设dxdy y
x
I D
⎰⎰++=
2
2
11
,其中D :12
2≤+y x ,则I = ( ) A . 2ln +π; B . 2ln ; C . 2ln π; D .π.
三 、求偏导数(本题满分10分) 求函数),2(y
x x f z =的二阶偏导数.(其中f 具有二阶连续偏导数)
四、求解方程(本题满分20分)
1. 求微分方程x e y y y =+'-''2的通解.
2.设)(x f 可微且满足关系式1)(]1)(2[0
-=
-⎰x
x f dt t f ,求)(x f .
五、计算积分(本题满分20分)
1. 计算
dxdy y x xf y D
⎰⎰++)](1[2
2,其中积分区域D 由曲线 2
x y =与1=y 所围成.( 画出积分区域草图),
2. 计算dx e dy dx e dy y
y
x
y y
x
y ⎰⎰
⎰⎰
+12
1214
12
1. (画出积分区域草图)
六、(本题满分10分)
求函数22y x z -=在闭区域4422≤+y x 上的最大值和最小值.。