10命题、定理、证明(2)

合集下载

《命题与证明》教案 (同课异构)2022年冀教版

《命题与证明》教案 (同课异构)2022年冀教版

命题与证明第1课时命题与证明(一)教学目标【知识与技能】1.理解真命题、假命题、公理、原命题、逆命题等概念.2.会判断一个命题的真假,能区分公理、定理和命题.3.理解证明的含义,体验证明的必要性和数学推理的严密性.【过程与方法】1.通过一些简单命题的证明,训练学生的逻辑推理能力.2.根据命题的证明需要,要求学生画出图形,写出、求证,训练学生将命题转化为数学语言的能力.【情感、态度与价值观】1.通过对命题真假的判断,培养学生科学严谨的学习态度和求真务实的作风.2.让学生积极参与数学活动,对数学定理、命题的由来产生好奇心和求知欲,让学生认识数学与人类生活的密切联系,提高学生学习数学的积极性.重点难点【重点】学习命题的概念和命题、公理、定理的区分.【难点】严密完整地写出推理过程.教学过程一、创设情境,导入新知教师多媒体出示:有一根比地球赤道长1m的铜线将地球赤道绕一圈,想一想,铜线与地球赤道之间的空隙有多大?能放进一颗枣吗?能放进一个苹果吗?学生交流讨论后答复.生甲:都放不进去.生乙:枣能放进,苹果放不进.生丙:都能放进.师:我们现在用这个式子来算,设赤道的长为C,那么铜线与地球赤道之间的间隙是-=≈0.26(m),可见,枣和苹果都能放进去.通过这个例子,你们受到了什么启发?生:有些东西想象的或感觉的不一定可靠,要具体分析.师:对,我们要做到有理有据.上一节研究三角形的性质时,我们通过折叠、剪拼、度量等方法得到三角形的内角和是180°,但对这种方法,有的同学提出这样的疑问:在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值;度量三个角,然后相加,不一定能准确地得到180°.这两种情况怎么解释呢?学生思考、交流、讨论.师:是这样的,研究几何图形时,从观察和实验得到的认识,有时会有误差,难以使人确信其结果一定正确.因此,就得在观察的根底上有理有据地说明理由,这就是说,要判断数学命题的真假,需要做必要的逻辑推理.二、共同探究,获取新知师:推理是一种思维活动,人们在思维活动中,常常要对事物的情况做出种种判断.教师多媒体出示:(1)长江是中国第一大河;(2)如果∠1和∠2是对顶角,那么它们相等;(3)2+3≠5;(4)如果一个整数的各位上的数字之和是3的倍数,那么这个数能被3整除.教师找一名学生答复,然后集体订正.师:在逻辑学中,但凡可以判断出真(即正确)、假(即错误)的语句叫做命题.上面的(1)、(2)、(4)都是正确的命题,我们称之为真命题;(3)是错误的命题,我们称之为假命题.如果一个语句没有对某一事件的正确与否作出任何判断,那么它就不是命题,比方感慨句、疑问句、祈使句等.教师多媒体出示:(1)请关上窗户;(2)你明天骑车来上学吗?(3)天真冷啊!(4)今天晚上不会下雨.(5)昨天我们去旅游了.师:请同学们判断一下哪些语句是命题?学生讨论后答复,然后集体订正.师:每个命题都由题设、结论两局部组成,题设是事项,结论是由事项推出的事项.命题常写成“如果……那么……〞的形式.有时我们为了简便,省略关联词“如果〞、“那么〞,如命题“如果两个角是对顶角,那么这两个角相等〞,可以写成“对顶角相等〞.以“如果……那么……〞为关联词的命题的一般形式是“如果p,那么q〞,或者说成“假设p,那么q〞,其中p是这个命题的条件(或假设),q是这个命题的结论(或题断).三、边讲边练教师多媒体出示:【例1】指出以下命题的条件与结论:(1)两条直线都平行于同一条直线,这两条直线平行;(2)如果∠A=∠B,那么∠A的补角与∠B的补角相等.生甲:(1)中“两条直线平行于同一条直线〞是条件,“两条直线平行〞是结论.生乙:“∠A=∠B〞是条件,“∠A的补角与∠B的补角相等〞是结论.四、层层推进,深入探究师:将命题“如果p,那么q〞中的条件与结论互换,便得到一个新命题“如果q,那么p〞,我们把这样的两个命题称为互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.我们在前面学习了命题都可以判断真假,当一个命题是真命题时,它的逆命题也是真命题吗?学生交流讨论后发表意见.师:我们可以看这样一个例子,“如果∠1与∠2是对顶角,那么∠1=∠2”是真命题,它的逆命题是什么?生:它的逆命题是“如果∠1=∠2,那么∠1与∠2是对顶角〞.师:它是真命题还是假命题呢?生:假命题.师:你是怎么判断它是假命题的呢?学生交流讨论后答复.教师多媒体出示以以下列图.师:对.我们可以举一个例子,比方角平分线分成的两个角,∠1=∠2,但显然,这里∠1与∠2就不是对顶角.像这种符合命题条件,但不满足命题结论的例子,我们称之为反例.假设要说明一个命题是假命题,只要举出一个反例即可.五、练习新知,加深讨论师:请同学们看教材中本节例1后练习的第2题.教师找学生答复,然后集体订正得到:(1)假命题.反例:|-1|=|1|,但-1≠1.(2)假命题.反例:(-1)×(-1)>0,但-1是负数.(3)真命题.(4)假命题.假设两条不平行的直线与第三条直线相交,同位角不相等.师:我们来看第3题.教师找学生答复,然后集体订正得到:(1)真命题,(2)真命题,(3)真命题.师:在数学命题的研究中,为了确认某些命题是真还是假,需要对命题的正确性进行论证,在论证过程中,必须追本求源,真理不需要再作论证,其正确性是人们在长期实践中检验所得的真命题,作为判断其他命题真假的依据,这些作为原始根据的真命题称为公理.同学们想一下,我们学过哪些公理?生甲:经过两点有一条直线,并且只有一条直线.生乙:两点之间的所有连线中,线段最短.生丙:经过直线外一点,有且只有一条直线平行于这条直线,师:对,这些都是公理.有些命题,它们的正确性已经过推理得到证实,并被选定作为判断其他命题真假的依据,这样的真命题叫做定理.谁能举几个例子?生甲:对顶角相等.生乙:三角形的三个内角和等于180°.生丙:等角的补角相等.师:对.推理的过程叫做证明.下面,我们来证明一个七年级时用过的定理“内错角相等,两直线平行〞.教师多媒体出示:【例2】:如以下列图,直线c与直线a、b相交,且∠1=∠2.求证:a∥b.师:假设“同位角相等,两直线平行〞这个定理,怎么证明“内错角相等,两直线平行〞这个结论?学生交流讨论,教师巡视指导.学生口述,教师板书推理过程.证明:∵∠1=∠2,()又∵∠1=∠3,(对顶角相等)∴∠2=∠3.(等量代换)∴a∥b.(同位角相等,两直线平行)教师强调:证明中的每一步推理都要有根据,不能想当然.这些根据,可以是条件,也可以是定义、公理、已经学过的定理.【例3】:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.证明:∵OE平分∠AOB,OF平分∠BOC()∴∠1=∠AOB,∠2=∠BOC.(角平分线的定义)又∵∠AOB+∠BOC=180°,()∴∠1+∠2=(∠AOB+∠BOC)=90°.(等式性质)∴OE⊥OF.(垂直的定义)六、课堂小结师:我们今天学习了什么内容?学生答复,教师补充完善.教学反思在这节课上,通过举反例判定一个命题是假命题,培养学生学会从反面思考问题的方法.通过强调正面的严密性,让学生理解证明的必要性和推理过程要步步有据.在教学方法上我主要采用“举一〞,让学生独立思考、自由交流、集思广益,从而到达“反三〞的目的.尽可能地调动更多学生主动参与、交流、沟通,通过自身思维碰撞构建新的认知结构,从而准确地判断命题的真假,对于假命题举出反例.对于命题的证明,要求学生能写出证明的一般步骤并能做到步步有据.第2课时命题与证明(二)教学目标【知识与技能】1.掌握三角形内角和定理及其三个推论.2.熟悉并掌握较简单命题的证明方法及其表述.3.探索并理解三角形的内角和定理.4.会灵活地运用三角形内角和定理的几个推论解决实际问题.【过程与方法】1.经历探索并证明三角形内角和定理的过程.2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论.【情感、态度和价值观】1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.3.通过生动的教学活动,开展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.重点难点【重点】三角形内角和定理的证明,三角形内角和定理及其推理.【难点】三角形内角和定理的证明.教学过程一、创设情境,导入新知师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗?学生答复.师:我们用什么方法证明过这个命题?生:用折叠、剪拼和度量的方法.师:很好!在上节课我们学习了定理的概念,大家还记得吗?生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.二、共同探究,获取新知教师多媒体出示:【例1】证明三角形内角和定理:三角形的三个内角和等于180°.师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;再结合图形,写出、求证.这个命题的条件和结论分别是什么?生:条件是一个三角形,结论是它的内角和等于180°.师:这个命题与图形有关吗?生:有关.师:那我们要画出什么图形?生:一个三角形.教师在黑板上画出一个三角形.师:题目中没有、求证,我们自己要写出来.就是条件,求证的就是要证的结论.应该怎么写?生::△ABC,如以下列图.求证:∠A+∠B+∠C=180°.教师板书.师:以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们以启发,现在我们通过作图来实现这种转化,给出证明.教师边操作边讲解:在剪拼中我们可以把∠B剪下,放在这个位置,在证明中我们可以作出一个角与∠B相等,来代替这种操作.并且为了证明的需要,在原来图形上添画的线,这种线叫做辅助线.同学们看,应该怎样添画辅助线来帮助我们证明这个问题?生:延长BC到D,以点C为顶点、CD为一边作∠2=∠B.教师作图:师:对.如果再知道什么条件就能得到结论了?学生讨论后答复.生:因为∠1+∠2+∠ACB是一个平角,等于180°,如果∠A=∠1,那么就有∠A+∠B+∠C=∠1+∠2+∠ACB=180°,这样就证出了结论.师:对.现在我们看怎样证∠A=∠1?学生交流讨论.教师提示:∠A和∠1是什么角?生:内错角.师:怎么证两个内错角相等?生:两直线平行,内错角相等.师:在题中要证哪两条直线平行?怎么证它们平行?生:证明CE∥BA,因为∠2=∠B,由同位角相等,两直线平行,就可以证出CE∥BA了.师:很好!我们现在来把这个推导过程具体写一下.要注意,我们刚刚是分析,可以由结论推条件,但在书写过程中,要先写条件,再写结论,这个顺序要理清.学生口述,教师板书.师:现在大家想一想,如果一个三角形中一个角是90°,根据三角形内角和定理,另外两个角的和会是多少?生:90°.师:对.两个角的和是90°,我们可以称它们之间是什么关系?生:互余.师:对.由此我们得到三角形内角和定理的第一个推论.教师板书:推论1 直角三角形的两锐角互余.三、边讲边练师:三角形内角和定理的证明有多种方法,课本练习中给出了另外两种证法.大家能不能说出第一题的思路?生:过点A作DE∥BC后,由两直线平行,内错角相等来建立两个相等关系,再由平角的定义就可证出了.师:你们已经理清了思路,现在请大家将书上的证明过程补充完整.学生完成练习第1题.师:第二个练习的思路大家清楚吗?学生交流讨论后答复.生:过三角形一边上一点作两条平行线,然后根据平行线的性质使△ABC的三个内角与组成平角的三个角分别相等,再由平角的定义证明它们的和是180°.师:很好!请同学们把证明过程补充完整.学生补充练习第2题的证明,教师巡视指导,然后集体订正.四、层层推进,深化理解教师多媒体出示:师:在三角形内角和定理的证明中,我们曾经如图中所示那样把△ABC的一边BC延长至点D,得到∠ACD,像这样由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.在上图中,△ABC的外角,也就是∠ACD与它不相邻的内角∠A、∠B有怎样的关系?你能给出证明吗?学生小组交流讨论后答复.生:∠ACD与∠ACB的和是180°,所以∠ACD=180°-∠ACB;根据三角形内角和定理,∠A+∠B+∠C=180°,∠A+∠B=180°-∠C.由等式的性质,得到∠ACD=∠A+∠B.师:很好!除了这个相等关系,还能得到什么大小关系?生:∠ACD>∠A,∠ACD>∠B.师:很好!在证明中主要应用了三角形内角和定理,我们把这两个结论称为这个定理的两个推论.教师板书:推论2 三角形的一个外角等于与它不相邻的两个内角的和.推论3 三角形的一个外角大于与它不相邻的任何一个内角.师:像这样,由公理、定理直接得出的真命题叫做推论.推论2可以用来计算角的大小,推论3可以用来比较两个角的大小.【例2】:如以下列图,∠1、∠2、∠3是△ABC的三个外角.求证:∠1+∠2+∠3=360°.师:这个问题实质上是三角形外角和定理,即三角形三个外角的和是360°.请大家想一下,怎么证明这个命题?学生交流讨论后答复,然后集体订正.证明:∵∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠BAC+∠ABC,(三角形的一个外角等于与它不相邻的两个内角的和)∴∠1+∠2+∠3=2(∠ABC+∠ACB+∠BAC).(等式性质)∵∠ABC+∠ACB+∠BAC=180°,(三角形内角和定理)∴∠1+∠2+∠3=360°.五、课堂小结师:我们今天学习了哪些内容?你有什么收获?学生发言,教师点评.教学反思本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.在证明三角形内角和定理的第一种证法中,我带着他们回忆了以前证明此定理的操作方法,并说明这两种方法的思想是一致的.一方面可以让他们学会把实际问题用数学形式表示出来,另一方面培养了他们建立相关事物之间的联系的意识,促进知识的迁移.在证明三角形内角和定理的练习中,我让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.§27.3 过三点的圆一、课题§27.3 过三点的圆二、教学目标1.经历过一点、两点和不在同一直线上的三点作圆的过程.2.. 知道过不在同一条直线上的三个点画圆的方法3.了解三角形的外接圆和外心.三、教学重点和难点重点:经历过一点、两点和不在同一直线上的三点作圆的过程.难点:知道过不在同一条直线上的三个点画圆的方法.四、教学手段现代课堂教学手段五、教学方法学生自己探索六、教学过程设计〔一〕、新授A画圆,并考虑这样的圆有多少个?A、B画圆,并考虑这样的圆有多少个?A、B、C画圆,并考虑这样的圆有多少个?让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.不在同一直线上的三个点确定一个圆.给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.例:画三角形的外接圆.让学生探索课本第15页习题1.一起探究八年级〔一〕班的学生为老区的小朋友捐款500元,准备为他们购置甲、乙两种图书共12套.甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?分析:带着学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.〔二〕、小结七、练习设计P15习题2、3八、教学后记后备练习:1.一个三角形的三边长分别是6cm8cm10cm,,,那么这个三角形的外接圆面积等于2cm.2. 如图,有A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,那么超市应建在〔〕A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处C。

【初中数学++】定理与证明+课件+华东师大版八年级数学上册

【初中数学++】定理与证明+课件+华东师大版八年级数学上册
第13章 全等三角形
13.1 命题、定理与证明
2.定理与证明
华师大版-数学-八年级上册
教学目标
1.理解和掌握定理的概念,了解证明(演绎推理)的概 念.【重点】 2.掌握证明的基本步骤和书写格式,能运用已学过的 几何知识证明一些简单的几何问题.【难点】 3.感受证明的必要性,培养说理有据,有条理地表达的 良好意识.
( √) ( √) (√)
探索新知
基本事实:数学中这些命题的正确性是人们在长期实践中 总结出来的,并把它们作为判断其他命题真假的原始依据, 即出发点.这样的真命题视为基本事实.
探索新知
例如下列的真命题作为基本事实: 1.两点确定一条直线; 2.两条之间,线段最短; 3.过一点有且只有一条直线与已知直线垂直; 4.过直线外一点有且只有一条直线与这条直线平行; 5.两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行.
试一试:画一个钝角三角形试试看.
探索新知
思考:(3)我们曾经通过计算四边形、五边形、六边 形、七边形等的内角和,得到一个结论:n 边形的内角 和等于(n - 2)×180°. 这个结论正确吗?是否有一个多 边形的内角和不满足这一规律?
实际上,这是一个正确的结论.
掌握新知
上面的几个例子说明了什么问题? 通过特殊的事例得到的结论可能正确,也可能不正确.因此,通 过这种方式得到的结论,还需进一步加以证实.
情境导入
试判断下列句子是否正确: (1)如果两个角பைடு நூலகம்对顶角,那么这两个角相等. (2)两直线平行,同位角相等. (3)同旁内角相等,两直线平行. (4)平行四边形的对角线相等. (5)直角都相等. (6)三角形的内角和等于180°. (7)等腰三角形的两个底角相等 .

10-5.3.2 命题、定理、证明

10-5.3.2 命题、定理、证明

教科书
P22 习题
第 12 、13
选做题:教科书 第
P25 习题5.3
题.
1、判断下列语句是不是命题:
①你喜欢数学吗? 不是
②熊猫没有翅膀; 是
③任何一个三角形一定有直角; 是
测评反馈
④作线段AB=CD;不是
⑤对顶角相等;是
⑥平行用符号“∥”表示。 是
2、指出下列命题的题设和结论: ①如果AB⊥CD,垂足为O,那么∠AOC=90°。
两直线平行,
题设(条件)
同位角相等。
结论
命题的结构 在数学中,许多命题是由题设(或已知条件)、 结论两部分组成的。题设是已知事项;结论是由已知 事项推出的事项。这样的命题常可写成“如果„„, 那么„„”的形式。 用“如果”开始的部分就是题设,而用“那么”开始
的部分就是结论.
(1)如果两个角是对顶角,那么这两个角相等; 题设 结论 (2)如果两个角是直角,那么这两个角相等。 题设
B、不平行的两条直线有一个交点 C、x与y的和等于0吗?
测评反馈 D、对顶角不相等。
公理和定理都可作为判断其他命题真假的依据。
公理举例: 1、直线公理:
经过两点有且只有一条直线。 2、线段公理: 两点的所有连线中,线段最短。 3、平行公理: 教材导读 经过直线外一点,有且只有一条直线与已知直线平行。 4、平行线判定公理: 同位角相等,两直线平行。
5、平行线性质公理:
两直线平行,同位角相等。
于一个平角”是假命题,只需举出一个反例“某一锐
角与某一钝角的和不是180°”即可。 例:锐角30。+钝角120。≠180。
请同学们判断下列命题的真假,并思考如何判断 命题的真假. 命题:相等的角是对顶角. (1)判断这个命题的真假. (2)这个命题题设和结论分别是什么? 题设:两个角相等; 教材导读 结论:这两个角互为对顶角.

定义、命题、定理等概念

定义、命题、定理等概念

定义、命题、证明(1)教学目标1、知识与技能:了解命题、定义的含义;对命题的概念有准确的理解。

会区分命题的条件和结论。

重点与难点 1、重点:找出命题的条件(题设)和结论。

2、难点:命题概念的理解。

教学过程一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。

根据我们已学过的图形特性,试判断下列句子是否准确。

1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。

二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识能够判断出句子1、2、5是准确的,句子3、4水错误的。

像这样能够判断出它是准确的还是错误的句子叫做命题。

教师:在数学中,很多命题是由题设(或已知条件)、结论两部分组成的。

题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。

用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。

例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。

有的命题的题设与结论不十分明显,能够将它写成“如果.........,那么...........”的形式,就能够分清它的题设和结论了。

例如,命题5可写成“如果两个角是直角,那么这两个角相等。

”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。

学生回答后,教师总结:这个命题能够写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。

这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。

2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论。

命题与定理知识点总结

命题与定理知识点总结

命题与定理知识点总结命题和定理是数学中非常重要的概念,它们是推理和证明的基础,也是数学研究的重要工具。

在数学中,命题是一个陈述句,它要么为真,要么为假。

而定理则是已经经过证明的命题,它是数学研究的成果之一。

在数学中,命题与定理的概念有很重要的地位,下面我们将对命题与定理的知识点进行总结。

一、命题1. 命题的定义命题是陈述句,它要么为真,要么为假。

命题是可以判断真假的陈述句,而不能同时为真和假的陈述句不能称为命题。

比如:“1+1=2”、“地球是圆的”等句子都是命题。

2. 命题的类型(1)简单命题简单命题是最基本的命题,它不含有任何连接词或者其他命题,并且可以明确的判断真假。

(2)合取命题合取命题由多个简单命题用“且”连接而成,形式为p,q,r,...,这种形式的合取命题,只有所有的简单命题都为真时,该合取命题才为真,否则为假。

(3)析取命题析取命题是由多个简单命题用“或”连接而成,形式为p,q,r,...,这种形式的析取命题,只有有一个简单命题为真时,该析取命题就为真,否则为假。

(4)否定命题否定命题是由一个简单命题用“非”连接而成,形式为~p,这种形式的否定命题,当原命题为真时,否定命题为假,当原命题为假时,否定命题为真。

二、定理1. 定理的定义定理是数学中已经经过证明的命题,它是数学研究的成果之一。

定理是经过科学验证的,可以用来解决具体问题的命题。

在数学上,定理是通过数学推理和证明得出的数学结论。

2. 定理的特点(1)定理是经过证明的命题定理是经过严格的数学证明和验证的,它是数学研究的成果之一。

(2)定理可以用来解决问题定理是经过科学验证的,可以用来解决具体问题的命题,它是数学研究的重要工具。

(3)定理可以推广和应用定理可以根据特定的条件进行推广和应用,可以在实际问题中得到应用。

三、命题与定理的关系1. 命题与定理的联系命题与定理是数学中非常重要的概念,它们有着密切的联系。

命题是数学研究的基础,而定理则是通过命题推理和证明得出的数学结论。

命题与证明--知识讲解

命题与证明--知识讲解
不一定成立; 3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明.
【要点梳理】 要点一、命题、公理、定理、推论 1.命题
判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫 做假命题.
命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式. 要点诠释:
命题与证明--知识讲解
撰稿:张晓新 审稿:孙景艳 【学习目标】 1.了解命题、定义、公理、定理、证明及推论的含义,会区分命题的题设(条件)和结论,
会在简单情况下判断一个命题的真假,理解证明的必要性,体会证明的过程要步步有据; 2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题
【总结升华】判断逆命题是否正确,能举出反例即可.
举一反三:
【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真 假. (1)对顶角相等; (2)两直线平行,同位角相等; (3)若 a=0,则 ab=0; (4)两条直线不平行,则一定相交; 【答案】(1)对顶角相等(真);相等的角是对顶角(假);
(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真); (3)若 a=0,则 ab=0(真);若 ab=0,则 a=0(假); (4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真); 类型二、证明举例 (1)平行线的性质与判定进行几何证明:
5.已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB 于 H.问 CD 与 AB 有什么关系?
DG DF
∴△EDG≌△EDF(S.A.S) ∴EG=EF
在△FDC 与△GDB 中
CD BD 1 2 DF DG
∴△FDC≌△GDB(S.A.S) ∴CF=BG ∵BG+BE>EG ∴BE+CF>EF 【总结升华】因为 D 是 BC 的中点,按倍长中线法,倍长过中点的线段 DF,使 DG=DF,证明

1.3《证明》(2)教案

1.3《证明》(2)教案

1.3证明(2)教案课题证明(2)单元第一章学科数学年级八年级学习目标情感态度和价值观目标学生在学完证明之后,能够对数学的逻辑推理严密思维有一定的体验和感受,并利用这种思维解决更多的问题。

能力目标通过简单命题的证明,训练学生的逻辑推理能力和自主探究能力知识目标1.掌握三角形的内角和定理及推论,并能进行简单的运用;2.了解证明命题的格式和一般步骤.重点探索三角形内角和定理的证明难点复杂命题的证明,多个定理的运用学法自主探究教法讲授法、引导法教学过程教学环节教师活动学生活动设计意图回忆旧知上节课我们学习了证明的概念,以及平行线性质的相关证明题。

下面来做题巩固练习。

1.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.证明:∵AE平分∠DAC,∴∠1=∠2。

(角平分线的定义)∵AE∥BC,∴∠1=∠B,(两直线平行,同位角相等)∠2=∠C。

(两直线平行,内错角相等)∴∠B=∠C。

∴AB=AC。

(等角对等边)回忆旧知,做练习引导学生回忆所学,通过对比引出新知2.证明“直角三角形斜边上的中线等于斜边的一半”是真命题。

思考:这一题与上一题最大的不同在哪里?上一题已知和求证是给出的,这一题需要将文字转化为数学语言。

讲授新课画:根据题意,画出图形写:找出命题的条件和结论。

“已知”----条件,“求证”----结论.已知:如图,在△ABC中,∠ACB=90°,CD 是斜边AB上的中线求证:CD=AB.证:在“证明”中写出推理过程证明:如图,延长CD到E,使DE=CD,连接AE、BE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形AEBC是平行四边形,∵∠ACB=90°,∴四边形AEBC是矩形,∴AD=BD=CD=DE,∴CD=AB.思考回答问题通过做题来归纳证明的步骤总结归纳证明几何命题的一般格式:思考总结及时总结归纳⑴按题意画出图形;⑵分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;⑶在“证明”中写出推理过程小试牛刀分析下列命题的条件和结论,画出图形,写出做练习做题检测巩固已知和求证1、等腰梯形的对角线相等已知:在梯形ABCD中,AD∥BC,AB=CD.求证:AC=BD.2、在一个三角形中,等角对等边已知:如在△ABC中,∠ABC=∠ACB,求证:AB=AC思考总结及时小结总结归纳证明几何命题的一般步骤:⑴按题意画出图形;⑵分清命题的条件和结论,结合图形,在“已∵∠1+∠2+∠3=180°∴∠A+∠B+∠C=180°总结归纳• 1.辅助线是为了证明需要在原图上添画的线.(辅助线通常画成虚线)• 2.它的作用是把分散的条件集中,把隐含的条件显现出来,起到牵线搭桥的作用.• 3.添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化,但辅助线的添法没有一定的规律,要根据需要而定,平时做题时要注意总结.总结思考让学生明白辅助线的作用以及添加方式讲授新知如图,∠ACD是由△ABC的一条边BC的延长线和另一条相邻的边CA组成的∠ACD,这样的角叫做该三角形的外角。

毕达哥拉斯定理的证明

毕达哥拉斯定理的证明

毕达哥拉斯定理的证明侯昕彤南京大学匡亚明学院摘要:欧几里德的毕达哥拉斯定理证明。

包括其中涉及的4条定义,5条公设,4条公理,25个命题证明,以及主证明(欧几里德《几何原本》第一卷命题47)。

关键词:毕达哥拉斯定理几何原本欧几里德毕达哥拉斯定理:一个直角三角形斜边的平方,等于其两个直角边的平方和。

欲证明该定理,首先给出下列定义,公设以及公理:●定义:【定义1】当一条直线和另一条直横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角。

【定义2】圆是由一条线包围成的平面图形,其内有一点与这条线上的点连接成的所有线段都相等。

【定义3】在四边形中,四边相等且四个角是直角的,叫做正方形。

【定义4】平行直线是在同一平面内的直线,向两个方向无限延长,在不论那个方向它们都不相交。

●公设:【共设1】由任意一点到另外任意一点可以画直线.【共设2】一条有限直线可以继续延长.【共设3】以任意点为心及任意的距离可以画圆。

【共设4】凡直角都彼此相等。

【共设5】同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于二自角的和,则这二直线经无限延长后在这一侧相交●公理:【公理1】等于同量的量彼此相等。

【公理2】等量加等量,其和仍相等。

【公理3】等量碱等量,其差仍相等。

【公理4】彼此能重合的物体是全等的。

根据给出的上述定义,公设,公理,进行下列命题的证明。

证明段落中出现的【】表示该段证明所用的论据。

【命题1】命题:在一个已知有限直线上作一appear个等边三角形。

命题1设AB是已知有限直线。

那么,要求在线段AB上作一个等边三角形。

以A为中心,且以AB为距离画圆【共设3】再以B为心,且以BA为直为距离画圆ACE;【共设3】由两圆的交点C到A,B连线CA,CB .【共设1】因为,点A是圆CDB的圆心,AC等于BA。

【定义2】又点B是圆CAE的圆心,BC等于BA,【定义2】但是,已经证明CA等于AB;所以线段CA,CB都等于AB。

命题、证明及平行线的判定定理(基础)知识讲

命题、证明及平行线的判定定理(基础)知识讲

命题、证明及平行线的判定定理(基础)知识讲解责编:赵炜【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论.【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1.请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】(2),(3),(6)是定义.2.说出下列命题的条件和结论,并判断它是真命题还是假命题:(!)如果,那么;,>>a b b c >a c (2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:;结论:.它是真命题.,>>a b b c >a c(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】(2013•贵港)下列四个命题中,属于真命题的是( ).A ,则B .若a >b ,则am >bm m =a m =C .两个等腰三角形必定相似D .位似图形一定是相似图形【答案】D类型二、公理、定理及证明3.证明:等角的余角相等.【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:∠1=∠2,∠1+∠3=90°,∠2+∠4=90°.求证:∠3=∠4.证明:∵∠1+∠3=90°,∠2+∠4=90°,(已知)∴∠3=90°-∠1,∠4=90°-∠2.(等式的性质)∵∠1=∠2(已知),∴∠3=∠4(等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据.此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).A .定义B .定理C .公理D .不是命题【答案】B类型三、平行线的判定定理4.如图所示,由(1)∠1=∠3,(2)∠BAD =∠DCB ,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD ∥BC (内错角相等,两直线平行);(2)由∠BAD =∠DCB ,∠1=∠3得:∠2=∠BAD -∠1=∠DCB -∠3=∠4(等式性质),即∠2=∠4∴AB ∥CD (内错角相等,两直线平行).综上,由(1)(2)可判定:AD ∥BC ,AB ∥CD .【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.举一反三:【变式1】如图,下列条件中,不能判断直线∥的是( ).1l 2l A .∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=1800【答案】B【高清课堂:平行线及判定 例1】【变式2】已知,如图,BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,求证:AB//CD .【答案】∵ ∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)5.(2015•日照期末)如图,AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AD ∥BC .【答案与解析】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【总结升华】主要考查角平分线的性质以及平行线的判定定理.【高清课堂:平行线及判定例5】举一反三:【变式1】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ-∠1=∠MGE-∠2 (等式性质),即∠3=∠4.∴ AB∥CD (同位角相等,两直线平行).【变式2】(2015•宁城)如图,下列能判定AB∥CD的条件有( )个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.。

人教版数学七年级下册5-3-2命理、定理、证明(第2课时) 课件

人教版数学七年级下册5-3-2命理、定理、证明(第2课时)  课件

①BC平分∠ABE; ②∠BCE+∠D=90°; ③AC∥BE; ④∠DBF=2∠ABC. 其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
12.若a=b,则a2=b2是____真_____命题(选填“真”或“假”), 其中“a=b”是_题__设_______,“a2=b2”是_结__论________.
7.如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1 =∠2,则图中互相平行的直线是__E_F_∥__C_D__,__B_C_∥__D_E___________.
8.如图,给出下面的推理,其中正确的是____①__②__④________. ①因为∠B=∠BEF,所以AB∥EF; ②因为∠B=∠CDE,所以AB∥CD; ③因为∠B+∠BEC=180°,所以AB∥EF; ④因为AB∥CD,CD∥EF,所以AB∥EF.
9.如图,AC⊥BC,垂足为点C,∠BCD是∠B的余角.求证: ∠ACD=∠B.
证明:∵AC⊥BC(已知), ∴∠ACB=90°(______垂__直__的__定__义________), ∴∠BCD是∠ACD的余角. ∵∠BCD是∠B的余角(已知), ∴∠ACD=∠B(____同__角__的__余__角__相__等______).
c
2
a
证明的一般步骤: 1.分清命题的题设和结论,如果与图形有关,应先根 据题意,画出图形,并在图形上标出有关字母与符号; 2.根据题设、结论,结合图形,写出已知、求证; 3.经过分析,找出由已知推出结论的途径,有条理地 写出证明过程.
如何判定一个命题是假命题呢?
只要举出一个例子(反例),它符合命题 的题设,但不满足结论即可.
歌德的话蕴含了什么数学道理?
合作探究

命题定理定义4种常见考法归类(原卷版)

命题定理定义4种常见考法归类(原卷版)

2.1 命题、定理、定义4种常见考法归类1、命题:将可判断真假的陈述句叫作命题.数学中,许多命题可表示为“如果p,那么q”或“若p,则q”的形式,其中p叫作命题的条件,q叫作命题的结论.2、定理、定义(1)有些已经被证明为真的命题可以作为推理的依据而直接使用,一般称之为定理.(2)定义是对某些对象标明符号、指明称谓,或者揭示所研究问题中对象的内涵.例如“两组对边分别平行的四边形叫作平行四边形”.定义的特点是用已知的对象及关系来解释、刻画陌生的对象,并加以区别,如“平行四边形”就是通过“四边形”与两组“对边”分别“平行”来描述的3、判断一个语句是不是命题的三个关键点(1)一般来说,陈述句才是命题,祈使句、疑问句、感叹句等都不是命题.例如:“起立”、“ 是有理数吗?”、“今天天气真好!”等.(2)语句表述的结构可以判断真假,含义模糊不清,无法判断真假的语句不是命题.如“x≥2”、“小高的个子很高”等都不能判断真假,故都不是命题.(3)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假,若能,就是命题;否则就不是命题.4、命题的条件与结论(1)若一个命题有大前提,则在将其改写成“若p,则q”的形式时,大前提仍应作为大前提,不能写在条件中.(2)命题“若p,则q”形式是由条件p和结论q组成的,在写命题时为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.(3)“若p,则q”这种形式是数学中命题的基本结构形式,也有一些命题的叙述比较简洁,并不是以“若p,则q”这种形式给出的,这时,首先要把这个命题补充完整,然后确定命题的条件和结论.5、将命题改写为“若p,则q”形式的方法及原则6、命题真假的判定方法(1)真命题的判定方法:真命题的判定过程实际上就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.考点一 命题的判断考点二 命题真假的判断 考点三 命题的条件与结论 考点四 根据命题的真假求参数考点一 命题的判断1.(2023·江苏·高一假期作业)以下语句:①{}0N ∈;①220x y +=;①2x x >;①{}210x x +=,其中命题的个数是( )A .0B .1C .2D .32.(2023秋·陕西咸阳·高二校考阶段练习)下列语句中是命题的个数为( )①5Z -∈;①π不是实数;①大边所对的角大于小边所对的角;.A .1B .2C .3D .43.(2023秋·高一课时练习)在下列语句中,命题的个数是( )①空集是任何集合的子集;①若x ∈R ,则210x x -+=;①若a b >,则22ac bc >.A .1B .2C .3D .04.(2023·高一课时练习)下列语句中:①12-<;①1x >;①210x 有一个根为0;①高二年级的学生;①今天天气好热!①有最小的质数吗?其中是命题的是( )A .①①①B .①①①C .①①①D .①①5.(2023·江苏·高一假期作业)判断下列语句是否是命题,并说明理由. (1)3π是有理数; (2)3x 2≤5;(3)梯形是不是平面图形呢?(4)一个数的算术平方根一定是负数.考点二 命题真假的判断6.(2023秋·高一校考课时练习)判断下列命题的真假:(1)一个实数不是质数就是合数;(2)若3x =或7x =,则()()370x x --=;(3)正方形既是矩形又是菱形;(4)若A B B =,则B A ⊆7.(2023秋·高一校考课时练习)下列命题中,是真命题的是( )A .{}∅是空集B .{}N 13|x x ∈-<是无限集C .π是有理数D .方程250x x -=的根是自然数8.(2023·江苏·高一假期作业)下列命题中真命题有( )①2210mx x +-=是一元二次方程;①函数21y x =-的图象与x 轴有一个交点;①互相包含的两个集合相等;①空集是任何集合的真子集.A .1个B .2个C .3个D .4个9.(2023秋·高一课时练习)有下列命题:①所有人都喜欢吃苹果;①若a b >,则a c b c +>+;①空集是任何集合的真子集.其中真命题共有( )A .0个B .1个C .2个D .3个10.【多选】(2023秋·高一课时练习)下列命题是假命题的是( )A .形如a +B .函数21y ax x =++是二次函数C .若1m >,则方程220x x m -+=无实数根D .若x y +为有理数,则,x y 都是有理数11.(2023秋·高一课时练习)下列命题:①相等的角是对顶角;①若0ab =,则220a b +=;①若M N M ⋂=,则N M ⊆.其中假命题的个数是 .考点三 命题的条件与结论12.(2023·江苏·高一假期作业)命题“对顶角相等”中的条件为 ,结论为 .13.(2023秋·高一校考课时练习)命题:若0x y +>,则0x >且0y >,条件p : ,结论q : . 14.(2023·上海·高一专题练习)将“等腰三角形两底角必是锐角”改写为“若…则…”形式 . 15.(2023秋·黑龙江绥化·高一统考期中)已知命题“菱形的对角线互相平分”,将其改写成“若p ,则q ”形式为 .(格式正确,描述清楚即可)16.(2023·江苏·高一专题练习)将命题“tan 30︒=”改写成“若p 则q ”的形式: . 17.(2023秋·全国·高一专题练习)写出下列命题的条件和结论.(1)如果两个三角形相似,那么这两个三角形的对应角相等;(2)如果一个四边形是平行四边形,那么这个四边形的对角相等;(3)若a ,b 都是偶数,则a b +是偶数;(4)若两个实数的积为正数,则这两个实数的符号相同;(5)若a b =,则2a ab =;(6)若1q ≥-,则方程220x x q +-=有实数解.18.(2023·江苏·高一假期作业)把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)当14m >时,210mx x -+=无实根; (2)一个整数的个位数是0,这个数一定能被5整除也能被2整除.19.(2023·江苏·高一假期作业)将下列命题改写为“若p ,则q ”的形式,并判断真假.(1)当a >b 时,有ac 2>bc 2;(2)实数的平方是非负实数;(3)能被6整除的数既能被3整除也能被2整除.20.(2023·江苏·高一假期作业)将下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当1a >-时,方程2210ax x 有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知,x y 为非零自然数,当2y x -=时,4,2y x ==.21.(2023秋·全国·高一专题练习)将下列命题改写成“若p ,则q ”的形式.(1)平面内垂直于同一条直线的两条直线平行;(2)平行于同一条直线的两条直线平行;(3)两个无理数的和是无理数;(4)乘积为正数的两个数同号;(5)两个奇数的和是偶数;(6)矩形的四个角相等;(7)等腰三角形的两个底角相等;(8)直径所对的圆周角是直角.考点四 根据命题的真假求参数22.【多选】(2023·江苏·高一假期作业)给出命题“方程210x ax ++=有实数根”,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .3-23.(2023·江苏·高一假期作业)若命题“方程ax 2+bx +1=0有实数解”为真命题,则a ,b 满足的条件是 . 24.【多选】(2023·全国·高一期末)已知2()2f x x x m =+-,如果(1)0f >是假命题,(2)0f >是真命题,则实数m 可取( )A .0B .3C .6D .825.(2023·江苏·高一假期作业)若[]2,5x ∈和{|1x x x ∈<或}4x >都是假命题,则x 的范围是 26.(2023秋·全国·高一专题练习)已知命题p :实数x 满足1x ≤-或3x ≥.命题q :实数x 满04x <<.若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.27.(2023秋·新疆喀什·高一新疆维吾尔自治区喀什第六中学校考阶段练习)已知:p 22a -<<,q :关于x 的方程20x x a -+=有实数根.(1)若q 为真命题,求实数a 的取值范围;(2)若p 为真命题,q 为假命题,求实数a 的取值范围.。

数学华东师大版八年级上册教案:13.1 命题、定理与证明 第二课时 定理与证明

数学华东师大版八年级上册教案:13.1 命题、定理与证明 第二课时 定理与证明

优质资料---欢迎下载课题:13.1 命题、定理与证明第二课时定理与证明&.教学目标:1、理解公理与命题,公理与定理之间的关系。

2、了解定理的作用,并初步学会运用公理、定理或真命题来证明其他的真命题。

&.教学重点、难点:重点:公理、定理、命题之间的关系以及定理的作用。

难点:从公理、定理出发,用逻辑推理的方法进行简单的证明。

&.教学过程:一、问题引入1、复习回顾:一个命题是由哪几部分组成的?2、根据你学过的知识填空.(1)一条直线截两条平行线所得的同位角相等;(2)两条直线被第三条直线所截,如果同位角相等,那么,这两条直线互相平行;(3)全等三角形的对应边、对应角分别相等。

二、探究新知思考:上述三个命题是真命题吗?以上三个都是真命题,以上的三个真命题均作为本书的公理。

(引出标题)§.公理:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。

注意:(1)公理是真命题,而真命题不一定是公理。

(2)公理可以作为判断其他命题真假的原始依据。

§.探究定理的概念:观察下列判断真命题的推理过程,并在后面括号内填写适当的理由。

(1)命题:垂直于同一条直线的两条直线互相平行.如图所示,ab⊥,ac⊥.求证:cb//证明:∵ab⊥,ac⊥(已知)∴︒=∠901,︒=∠902(垂直的定义)∴21∠=∠(等量代换)a1 2b c∴c b //(同位角相等,两直线平行)(2)如图所示,已知ABC Rt ∆中,︒=∠90C ,点D 为AB 上任一点,BC DE ⊥. 求证:A ∠=∠1证明:∵︒=∠90C ,BC DE ⊥(已知)∵DE AC //(垂直于同一条直线的两条直线互相平行) ∴A ∠=∠1(两直线平行,同位角相等) §.定理:数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。

专题训练17:命题、定理与证明-2021年中考数学一轮复习知识点课标要求

专题训练17:命题、定理与证明-2021年中考数学一轮复习知识点课标要求

2021年中考数学一轮复习知识点课标要求专题训练17:命题、定理与证明(含答案)一、知识要点:1、命题与定理定义1:判断一件事情的语句,叫做命题。

命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。

数学中的命题常可以写成“如果……,那么……”的形式。

“如果”后接的部分是题设,“那么”后接的部分是结论。

定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。

定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。

定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。

其中一个叫做原命题,另外一个叫做逆命题。

如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。

2、证明:一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。

二、课标要求:1、通过具体实例,了解定义、命题、定理、推论的意义。

2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。

会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。

3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。

4、了解反例的作用,知道利用反例可以判断一个命题是错误的。

三、常见考点:1、命题及命题真伪的判断。

2、命题的条件和结论的区分。

3、写出命题的逆命题。

四、专题训练:1.下列说法正确的是()A.一组数据6,5,8,8,9的众数是8B.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐C.命题“若|a|=1,则a=1”是真命题D.三角形的外角大于任何一个内角2.下列命题正确的是()A.三角形的一个外角大于任何一个内角B.三角形的三条高都在三角形内部C.三角形的一条中线将三角形分成两个三角形面积相等D.两边和其中一边的对角相等的三角形全等3.下列四个命题:①5是25的算术平方根;②(﹣4)2的平方根是﹣4;②经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是()A.0个B.1个C.2个D.3个4.下列说法中,不正确的个数是()①若a+b=0,则有a,b互为相反数,且=﹣1;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c<0,abc>0,则﹣+﹣的结果有三个;⑤方程ax+b=0(a,b为常数)是关于x的一元一次方程.A.1个B.2个C.3个D.4个5.如图,在矩形ABCD中,AB=,BC=1,把矩形ABCD绕点A顺时针旋转30°得到矩形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为()A.B.C.D.6.下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0,其中错误的有()A.2个B.3个C.4个D.5个7.写出“对顶角相等”的逆命题.8.四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人都只猜对了一半,那么甲、乙、丙、丁的名次顺序为.(按一、二、三、四的名次排序)9.如图,直线与x轴、y轴分别交于A、B两点,点P是第二象限图象上一动点,PM⊥x轴于点M,PN⊥y轴于点N,连接MN,在点P的运动过程中,线段MN长度的最小值是.10.如图,矩形ABCD中,AB=2,BC=,将矩形ABCD绕点A旋转得到矩形AB'C'D',点C的运动路径为.当点B'落在CD上时,图中阴影部分的面积为.11.如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为.12.在Rt△ABC中,∠ABC=90°,AB=8,BC=4.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A 到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.13.如图,▱ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O,以下三个条件:①BO=DO;②EO=FO;③AE=CF,以其中两个作为题设,余下的一个作为结论组成命题,其中真命题的个数为.14.如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,则点D在运动过程中ME的最小值为.15.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP于点F.①弦AB的长度为;②点P在⊙O上运动的过程中,线段OF长度的最小值为.16.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其短边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其短边恰好落在水平桌面上,则长方形木板顶点A在滚动过程中所经过的路径长为.17.桌子上有7张反面向上的纸牌,每次翻转n张(n为正整数)纸牌,多次操作后能使所有纸牌正面向上吗?用“+1”、“﹣1”分别表示一张纸牌“正面向上”、“反面向上”,将所有牌的对应值相加得到总和,我们的目标是将总和从﹣7变化为+7.(1)当n=1时,每翻转1张纸牌,总和的变化量是2或﹣2,则最少次操作后所有纸牌全部正面向上;(2)当n=2时,每翻转2张纸牌,总和的变化量是,多次操作后能使所有纸牌全部正面向上吗?若能,最少需要几次操作?若不能,简要说明理由;(3)若要使多次操作后所有纸牌全部正面向上,写出n的所有可能的值.18.阅读下面内容,并解答问题.在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.求证:.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择题.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,则∠EMF 的度数为.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,则∠EOF与∠EPF满足的数量关系为.19.点E、F分别是菱形ABCD边BC、CD上的点.(1)如图,若CE=CF,求证AE=AF;(2)判断命题“若AE=AF,则CE=CF”的真假.若真,请证明;若假,请在备用图上画出反例.20.概念学习.已知△ABC,点P为其内部一点,连接PA、PB、PC,在△PAB、△PBC、△PAC 中,如果存在一个三角形,其内角与△ABC的三个内角分别相等,那么就称点P为△ABC 的等角点.理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①内角分别为30°、60°、90°的三角形存在等角点;;②任意的三角形都存在等角点;;(2)如图①,点P是锐角△ABC的等角点,若∠BAC=∠PBC,探究图①中,∠BPC、∠ABC、∠ACP之间的数量关系,并说明理由.解决问题如图②,在△ABC中,∠A<∠B<∠C,若△ABC的三个内角的角平分线的交点P是该三角形的等角点,求△ABC三角形三个内角的度数.参考答案1.解:A、一组数据6,5,8,8,9的众数是8,是真命题;B、甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,原命题是假命题;C、命题“若|a|=1,则a=1”是假命题,原命题是假命题;D、三角形的外角大于任何一个不与它相邻的内角,原命题是假命题;故选:A.2.解:A、三角形的一个外角大于与它不相邻的任何一个内角,原命题是假命题;B、钝角三角形的三条高不在三角形内部,原命题是假命题;C、三角形的一条中线将三角形分成两个三角形面积相等,是真命题;D、两边和其夹角相等的三角形全等,原命题是假命题;故选:C.3.解:①5是25的算术平方根,本小题说法是真命题;②∵(﹣4)2的平方根是±4,∴本小题说法是假命题;②经过直线外一点,有且只有一条直线与这条直线平行,本小题说法是真命题;④∵两直线平行,同旁内角互补,∴本小题说法是假命题;故选:C.4.解:①若a+b=0,则有a,b互为相反数,当a=b=0时,无意义,本小题说法不正确;②∵|a|>|b|,∴a2>b2,∴(a+b)(a﹣b)=a2﹣b2>0,是正数,本小题说法正确;③(2a5+a﹣3)+(﹣a5+2a﹣3)+(﹣a5+a2﹣30)=a2+3a﹣36,则三个五次多项式的和不一定是五次多项式,本小题说法不正确;④当a+b+c<0,abc>0时,a、b、c两个正数、一个负数或一个正数、两个负数,则﹣+﹣的结果有两个,本小题说法不正确;⑤方程ax+b=0(a,b为常数),当a=0时,不是关于x的一元一次方程,本小题说法不正确;故选:D.5.解:连接AC',在矩形ABCD中,∵∠B=90°,AB=,BC=1,∴tan∠BAC==,∴∠BAC=30°,∵旋转角为30°,∴A、B′、C共线.∴AC===2,∵S阴=S扇形ACC′﹣S△AB′C′,∴S阴=﹣=﹣,故选:B.6.解:①负数有立方根,原命题是假命题;②一个实数的算术平方根一定是非负数,原命题是假命题;③一个正数或负数的立方根与这个数同号,原命题是真命题;④如果一个数的算术平方根是这个数本身,那么这个数是1或0,原命题是真命题;⑤如果一个数的立方根是这个数本身,那么这个数是1、﹣1或0,原命题是假命题;故选:B.7.解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.8.解:因为他们每人只猜对一半,可以先假设明明说“甲得第一”是正确的,由此推导:明明:甲得第一→文文:丁得第四→凡凡:丙得第二→乙得第三,成立;若假设明明说“乙得第二”是正确的,由此进行推导:明明:乙得第二→文文:丁得第四→凡凡:丙得第二,矛盾.所以甲、乙、丙、丁的名次顺序为甲、丙、乙、丁.故答案为:甲、丙、乙、丁.9.解:连接OP.∵直线与x轴、y轴分别交于A、B两点,∴A(﹣2,0),B(02),∴OA=2,OB=2,∴tan∠BAO==,∴∠BAO=30°,∵PM⊥x轴于点M,PN⊥y轴于点N,∴∠PMO=∠PNO=∠MON=90°,∴四边形OMPN是矩形,∴MN=OP,∴当OP⊥AB时,MN=OP的值最小,最小值=OA•sin30°=,故答案为.10.解:如图,连接AC,AC′.∵四边形ABCD是矩形,∴∠B=∠D=∠DAB=90°,∵AB=2,BC=,∴AC===,∵cos∠DAB′=,∴∠DAB′=30°,DB′=AB′=1,∴∠BAB′=∠CAC′=60°,CB′=CD﹣DB′=2﹣1=1,∴S阴=S扇形CAC′﹣S△AC′B′﹣S△ACB′=﹣×2×﹣×1×=﹣.故答案为﹣.11.解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∴在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠AFE=∠BAD+∠FBA=∠CBE+∠FBA=∠ABC=60°,∴∠AFB=120°,∴点F的运动轨迹是以点O为圆心,OA为半径的弧,如图,此时∠AOB=120°,OA==,所以弧AB的长为:=.则点F的运动路径的长度为.故答案为:.12.解:如图所示:取A1B1的中点E,连接OE,C1E,当O,E,C1在一条直线上时,点C到原点的距离最大,在Rt△A1OB1中,∵A1B1=AB=8,点OE为斜边中线,∴OE=B1E=A1B1=4,又∵B1C1=BC=4,∴C1E==4,∴点C到原点的最大距离为:OE+C1E=4+4.故答案为:4+4.13.解:已知②EO=OF;①BO=DO,结论:③AE=CF.理由:在△DOE和△BOF中,∴△DOE≌△BOF(SAS),∴DE=BF,∵四边形ABCD是平行四边形,∴AD=BC,∴AE=FC,同理可得:已知②EO=FO,③AE=CF,结论:①BO=DO,是真命题;已知:①BO=DO,③AE=CF,结论:②EO=FO,是真命题,故答案为:3.14.解:如图,连接BE,过点M作MG⊥BE的延长线于点G,过点A作AK⊥AB交BD的延长线于点K,∵等腰直角△ABC中,∠ACB=90°,∴∠B=45°,∴∠K=45°,∴△AKB是等腰直角三角形.∵线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴∠KAD+∠DAB=∠BAE+∠DAB=90°,∴∠KAD=∠BAE,在△ADK和△AEB中,∴△ADK≌△AEB(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵AC=BC=4,∴AB=4,∵M为AB中点,∴BM=2,∴MG=BG=2,∠G=90°,∴BM>MG,∴当ME=MG时,ME的值最小,∴ME=BE=2.故答案为2.15.解:①如图,连接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA•sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案为2.②取AC的中点H,连接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值为﹣1.故答案为﹣1.16.解:第一次转动是以点M为圆心,AM为半径,圆心角是60度所以弧AA1的长==π,第二次转动是以点N为圆心,A′N为半径圆心角为90度,所以弧A′A″的长==π,所以总长为π.故答案为π.17.解:(1)总变化量:7﹣(﹣7)=14,次数(至少):14÷2=7,故答案为:7;(2)①两张由反到正,变化:2×[1﹣(﹣1)]=4,②两张由正到反,变化:2×(﹣1﹣1)=﹣4,③一正一反变一反一正,变化﹣1﹣1+1﹣(﹣1)=0,不能全正,总变化量仍为14,无法由4,﹣4,0组成,故不能所有纸牌全正;故答案为:14;(3)由题可知:0<n≤7.①当n=1时,由(1)可知能够做到,②当n=2时,由(2)可知无法做到,③当n=3时,总和变化量为6,﹣6,2,﹣2,14=6+6+2,故n=3可以,④当n=4时,总和变化量为8,﹣8,4,﹣4,0,14无法由8,﹣8,4,﹣4,0组成,故=4不可以,⑤当n=5时,总和变化量为10,﹣10,6,﹣6,2,﹣2,14=10+2+2,故n=5可以,⑥当n=6时,总和变化量为12,﹣12,8,﹣8,4,﹣4,0,无法组合,故n=6不可以,⑦当n=7时,一次全翻完,可以,故n=1,3,5,7时,可以.18.解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴,,∴.在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为EG⊥GF.(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=(∠BEG+∠DFG)=45°,∴∠M=∠BEM+∠MFD=45°,B.如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为A或B,45°,∠EOF=2∠EPF.19.解:(1)连接AC,∵四边形ABCD是菱形,∴∠ACE=∠ACF,在△ACE与△ACF中,∴△ACE≌△ACF(SAS),∴AE=AF,(2)当AE=AF=AF'时,CE≠CF',如备用图,所以命题“若AE=AF,则CE=CF”是假命题.20.解:理解应用(1)①内角分别为30、60、90的三角形存在等角点是真命题;②任意的三角形都存在等角点是假命题,如等边三角形不存在等角点;故答案为:真命题,假命题;(2)如图①,∵在△ABC中,∠BPC=∠ABP+∠BAC+∠ACP,∠BAC=∠PBC,∴∠BPC=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP;解决问题如图②,连接PB,PC∵P为△ABC的角平分线的交点,∴∠PBC=∠ABC,∠PCB=∠ACB,∵P为△ABC的等角点,∴∠PBC=∠BAC,∠BCP=∠ABC=2∠PBC=2∠BAC,∠ACB=∠BPC=4∠A,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠A+4∠A=180°,∴∠A=,∴该三角形三个内角的度数分别为,,。

命题与证明--知识讲解

命题与证明--知识讲解

命题与证明--知识讲解撰稿:张晓新审稿:孙景艳【学习目标】1.了解命题、定义、公理、定理、证明及推论的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假,理解证明的必要性,体会证明的过程要步步有据;2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明.【要点梳理】要点一、命题、公理、定理、推论1.命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.2.公理人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.3.定理从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.4.推论由基本事实、定理直接得出的真命题叫做推论.要点二、逆命题和逆定理互逆命题在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.互逆定理如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.要点三、演绎推理演绎推理从已知条件出发,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论,这一方法称为演绎推理.演绎推理的过程就是演绎证明,简称证明.要点诠释:演绎推理的过程就是演绎证明,并不是所有的真理都可以进行演绎证明.要点四、三角形内角和定理定理:三角形的内角和等于180°.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.推论3:三角形的外角等于与它不相邻的两个内角的和.推论4:三角形的外角大于与它不相邻的任何一个内角.要点诠释:三角形的外角:由三角形的一边与另一边的延长线组成的角,叫做三角形的外角.【典型例题】类型一、命题1.判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等;(2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a,b两条直线平行吗?(5)鸟是动物;(6)若a2=4,求a的值;(7)若a2=b2,则a=b.【答案与解析】句子(1)(3)(5)(7)对事情作了判断,其中(1)(3)(5)判断是正确的,(7)判断是错误的.句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a<b,则-b<-a;(2)三角形的三条高交于一点;(3)在ΔABC中,若AB>AC,则∠C>∠B吗?(4)两点之间线段最短;(5)解方程x2-2x-3=0;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题;(3)(5)不是命题.2.下列命题是真命题的是()A.如果|a|=1,那么a=1B.有两条边相等的三角形是等腰三角形C.如果a为实数,那么a是有理数D.有两边和一角相等的两个三角形全等;【答案】B【解析】如果|a|=1,那么a=±1,故A错误;如果a为有理数,那么a是实数,故C错误;有两边和夹角相等的两个三角形全等,故D错误;而B根据等腰三角形的定义可判断正确;【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:【变式】下列命题中,真命题的个数有()①对顶角相等②同位角相等③4的平方根是2④若a>b,则-2a>-2b A.3个B.1个C.4个D.2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。

定义,真假命题,基本事实,定理,证明之间的关系

定义,真假命题,基本事实,定理,证明之间的关系

定义,真假命题,基本事实,定理,证明之间的关系
定义、真假命题、基本事实、定理和证明之间的关系可以这样理解:
1. 定义:定义是明确某一概念或对象的含义的陈述。

定义不涉及对错,只是对某一概念或对象进行描述或解释。

2. 真假命题:命题是一个陈述句,其真实性是可以判断的。

真命题是指符合事实或经过验证的命题,而假命题则是不符合事实或错误的命题。

3. 基本事实:基本事实是无需证明或论证的事实,它们是公认的、自明的,通常作为其他论证的基础。

例如,两点确定一条直线就是一个基本事实。

4. 定理:定理是需要经过证明才能被接受为真的命题。

一旦一个定理被证明,它就可以作为其他命题的基础。

5. 证明:证明是使用逻辑推理和已知事实来证明某一命题真实性的过程。

证明依赖于基本事实和先前已被证明的定理。

关系:
定义是描述概念或对象的基础,不涉及真假。

真假命题是根据事实和逻辑来判断的,有真也有假。

基本事实是无需证明的事实,常作为其他命题的基础。

定理需要证明才能被接受为真,可以基于基本事实或其他定理。

证明是使用逻辑推理和已知事实来证明某一命题真实性的过程。

总的来说,这些概念在逻辑和数学中都有其特定的角色和相互依赖的关系,共同构成了严谨的知识体系。

《定理与证明》参考教案

《定理与证明》参考教案

13.1 命题、定理与证明第二课时定理与证明教学目标1.知识与技能:理解命题、公理、定理的含义;理解证明的必要性.2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.重点与难点1.重点:知道什么是公理,什么是定理2.难点:理解证明的必要性.教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)公理教师讲解:数学中有些命题的准确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道以下命题是真命题:两点确定一条直线;两点之间、线段最短;过一点有且只有一条直线与已知直线垂直;过直线外一点有且只有一条直线与这条直线平行;两条直线被第三条直线所截,假设同位角相等,那么这两条直线平行.在本书中我们将这些真命题均作为公理.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜想是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:假设a=b,那么a2=b2.由此我们猜想:当a>b时,a2>b2.这个命题是真命题吗?[答案:不准确,因为3>-5,但3 2<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题能够从公理出发用逻辑推理的方法证明它们是准确的,并且能够进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还能够证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题能够用来作为判断其他命题真假的依据,所以我们把它也作为定理.定理的作用不但在于它揭示了客观事物的本质属性,而且能够作为进一步确认其他命题真假的依据.三、随堂练习课本P58练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理.2、用逻辑推理的方法证明它们是准确的命题叫做定理五、布置作业课本P58 习题13.1 3。

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。

通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。

本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。

但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。

三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。

2.学会用逻辑推理的方法证明几何命题。

3.培养学生的空间想象能力和思维能力。

四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。

2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。

六. 教学准备1.教学PPT课件。

2.相关例题及练习题。

3.几何画图工具。

七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。

通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。

2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。

让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。

3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。

教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。

4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。

教师及时批改、讲解,巩固学生所学知识。

5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、在下面的括号内,填上推理的依据。如图,∠A+∠B=180°,求证∠C+∠D=180。
证明:
∵∠A+∠B=180°(已知),
∴AD∥BC.()
∴∠C+∠D=180°()
2.命题“同位角相等”是真命题吗?如果是,说出理由;如果不是,请举出反例.
3、怎样判定一个命题是假命题,
4、、学生畅谈收获。
四、当堂检测。(5分钟)
1、在下面括号内,填上推理的根据.:如图AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.
证明:
∵∠A=∠B(已知),
∴AC∥BD()
∴∠C=∠D()
2、命题“相等的角是对顶角”是真命题吗?如果是,说出理由;如果不是,请举出反例.
二、展示交流(10分钟)
1、如图,已知直线b∥c,a⊥b.求证a⊥c.
2、填空。
证明中的每一步推理都要有__________,不能_____________,这些根据,可以是________________,也可以是学过的____________、基本事实、_____________等。
三、点拨升华(20分钟)
学生独立完成
一、自主学习(10分钟)
1、请同学们举出我们学过的一些真命题的例子.
2、什么叫做定理?请举一个例子。
3定理有什么作用?
__________________________________________________________
4、、什么叫做证明?
______________________________________________________
科目
数学
课题
命题、定理、证明(2)
审核人
杨晓梅
审批人
主备人
宋皎Байду номын сангаас
班级
七年级()班
姓名
授课
时间
3月日
组号
序号
10
学习
目标
1、了解定理的概念及作用。
2、了解证明的概念,会对一个命题的正确性进行证明。
导案
学案
自学课本P21-22页内容,对于存在的问题,小组讨论。
回答“点拨升华”问题
自主做题,然后小组内讨论结果正误。
相关文档
最新文档