初一数学命题、定理与证明练习

合集下载

初中七年级数学《命题、定理、证明》同步练习题

初中七年级数学《命题、定理、证明》同步练习题

5.3.2《命题、定理、证明》同步练习题(3)知识点:命题:判断一件事情的语句,命题由题设和结论组成 真命题:题设成立,结论成立的命题假命题:题设成立,结论不一定成立的命题同步练习:1. 叫做命题,它由 、 两部分组成.常写成“ , ”的形式.2.指出命题“等式两边乘同一个数,结果仍是等式”的题设、结论.题设是 ,结论是 . 3.下列命题是正确的有( )A.相等的两个角是对顶角B.同旁内角互补C.若AB ⊥CD ,垂足为O ,则∠AOC =90oD.两个锐角的和是锐角4、判断下列语句是不是命题(1)延长线段AB ( )(2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( )(5)角平分线是一条射线( ) 5、选择题(1)下列语句不是命题的是( ) A 、两点之间,线段最短 B 、不平行的两条直线有一个交点 C 、x 与y 的和等于0吗? D 、对顶角不相等。

(2)下列命题中真命题是( ) A 、两个锐角之和为钝角 B 、两个锐角之和为锐角 C 、钝角大于它的补角 D 、锐角小于它的余角(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

其中假命题有( )A 、1个B 、2个C 、3个D 、4个 6、分别指出下列各命题的题设和结论。

(1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁内角互补,两直线平行。

7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3(_________________); (2)∵∠1=∠3,∴a ∥b(_________________);ab 1 23c4(3)∵a ∥b,∴∠1=∠2(__________________);(4) ∵a ∥b,∴∠1+∠4=180º (_____________________)(5)∵∠1=∠2,∴a ∥b(__________________);w W w .x K b 1.c o M (6)∵∠1+∠4=180º,∴a ∥b(_______________).8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 证明:∵AB ⊥BC ,BC ⊥CD (已知) ∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质)∴BE ∥CF ( )9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角。

人教版七年级数学下册第五章第三节命题、定理、证明习题(含答案) (71)

人教版七年级数学下册第五章第三节命题、定理、证明习题(含答案) (71)

人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)一、单选题1.下列命题是真命题的是()A.邻补角相等B.同位角相等C.两直线平行,同旁内角相等D.对顶角相等【答案】D【解析】【分析】根据邻补角的定义、平行线的性质、对顶角的性质判断即可.【详解】解:邻补角互补,A是假命题;两直线平行,同位角相等,B是假命题;两直线平行,同旁内角互补,C是假命题;对顶角相等,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.3.下列命题:①直角三角形的两个锐角互余;②同旁内角互补;③如果直线12l l.其中真命题的序号是()l l,直线23l l,那么13A.①②B.①③C.②③D.①②③【答案】B【解析】【分析】利用直角三角形的性质、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:①直角三角形的两个锐角互余,正确,是真命题;②两直线平行,同旁内角互补,故错误,是假命题;③如果直线12 l l ,直线23l l ,那 么13l l ,正确,是真命题; 故选:B .【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.4.下列命题中,真命题的个数有( )① 同一平面内,两条直线一定互相平行; ② 有一条公共边的角叫邻补角;③ 内错角相等. ④ 对顶角相等;⑤ 从直线外一点到这条直线的垂线段,叫做点到直线的距离.A .0个B .1个C .2个D .3个【答案】B【解析】【分析】【详解】解:①同一平面内两直线的位置关系有相交、平行、重合,故错误,不是真命题;②两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角互为邻补角,所以有一条公共边的角叫邻补角错误,不是真命题;③只有两条直线平行,内错角相等,所以只说内错角相等错误,不是真命题; ④对顶角相等是真命题;⑤从直线外一点到这条直线的垂线段,叫做点到直线的距离是假命题; 所以④为真命题;故选B .5.用反证法证明命题“a =,则0a ≥”时,第一步应假设( )Aa ≠ B .0a ≤C .0a <D .0a >【答案】C【解析】【分析】用反证法证明命题的真假,首先我们要假设命题的结论不成立,据此即可得出答案.【详解】∵用反证法证明命题的真假,首先我们要假设命题的结论不成立,∴反证法证明命题“a =,则0a ≥”时,第一步应假设0a <, 故选:C.【点睛】本题主要考查了反证法的运用,熟练掌握相关概念是解题关键.6.下列命题中,真命题是( )A .同位角相等B .平行于同一直线的两条直线互相平行C .两个锐角的和是锐角D .和为180°的两个角互为邻补角【答案】B【分析】直接利用锐角的定义以及互为补角的定义分别分析得出答案.【详解】解:A、两直线平行,同位角相等,故此选项是假命题,不合题意;B、平行于同一直线的两条直线互相平行,是真命题;C、两个锐角的和不一定是锐角,故此选项是假命题,不合题意;D、和为180°的两个角互为补角,故此选项是假命题,不合题意;故选:B.【点睛】此题主要考查了命题与定理,正确掌握相关性质是解题关键.7.下面说法正确的个数有()①若m>n,则22;②由三条线段首尾顺次相接所组成的图形叫做ma mb三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】利用不等式的性质、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义分别判断后即可确定正确的选项.解:①若a>b,当m=0时,22ma mb,故原说法错误;=②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故原说法错误;③有两个角互余的三角形一定是直角三角形,故原说法正确;④各边都相等,各角也相等的多边形是正多边形,故原说法错误;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故原说法错误;故选A.【点睛】本题主要考查了命题与定理,掌握命题与定理是解题的关键.8.下列选项中,可以用来说明命题“若22>”是假命题的反例是a b>,则a b()A.2,a=b=-2D.2,0==a b=-=C.3,a=b=-1 B.2,1a b【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.详解:∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选B.点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.9.下列选项中可以用来说明命题“若x 2>1,则x >1”是假命题的反例是( )A .x =1B .x =﹣1C .x =2D .x =﹣2【答案】D【解析】【分析】根据有理数的乘方法则、假命题的概念解答.【详解】解:2(2)41-=>, 21-<,∴当2x =-时,说明命题“若21x >,则1x >”是假命题,故选D .【点睛】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.下列命题中是假命题的是( )A .对顶角相等B .同旁内角互补C .两点确定一条直线D .垂线段最短 【答案】B【解析】【分析】根据平行线的性质、对顶角的性质、直线的概念、垂线段的性质定理判断.【详解】A、对顶角相等,本选项说法是真命题;B、两直线平行,同旁内角才互补,故本选项说法是假命题;C、两点确定一条直线,本选项说法是真命题;D、垂线段最短,本选项说法是真命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。

人教版七年级数学下册 5.3.2 命题、定理、证明 训练(含答案)

人教版七年级数学下册   5.3.2 命题、定理、证明  训练(含答案)

人教版七年级数学下册5.3.2《命题、定理、证明》训练一、选择题(共10小题,3*10=30)1.下列语句中,是命题的是()A.连接A,B两点B.画一个角的平分线C.过点C作直线AB的平行线D.过直线外一点,有且只有一条直线与已知直线垂直2.下列语句:①两点之间,线段最短;②画线段AB=3 cm;③直角都相等;④如果a=b,那么a2=b2;⑤同旁内角互补,两直线平行吗?其中是命题的有( )A.1个B.2个C.3个D.4个3.命题“对顶角相等”的“题设”是()A.两个角是对顶角B.角是对顶角C.对顶角D.以上都不正确4.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个5.下列命题可以作为定理的有()①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个6.下列命题中,是真命题的是()A.同位角相等B.相等的角是直角C.若|y|=2,则y=±2 D.若ab=0,则a=07.给出以下命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两条直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个8.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行.其中( )A .①、②是正确的命题B .②、③是正确命题C .①、③是正确命题D .以上结论皆错9.下列说法正确的是( )A .互补的两个角是邻补角B .两直线平行,内错角互补C .“平行于同一条直线的两直线平行”不是命题D .“相等的两个角是对顶角”是假命题10. 判断命题“如果n <1,那么n 2-1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .-2B .-12C .0D .12二.填空题(共8小题,3*8=24)11.命题“平行于同一条直线的两条直线平行”的题设是_________________________12.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵_________________________,∴a ∥b.13.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是________.14.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD ⊥BC ;⑤同旁内角不互补,两直线不平行.其中是命题的是__________(填序号)15.下列命题:①若|a|>|b|,那么a 2>b 2;②两点之间,线段最短;③对顶角相等;④内错角相等.其中真命题的是__________(填序号)16.“两直线平行,内错角相等”的题设是______________,结论是______________.17.对于下列假命题,各举一个反例写在横线上.(1)“如果ac =bc ,那么a =b”是一个假命题.反例:___________________.(2)“如果a 2=b 2,则a =b”是一个假命题.反例:___________________.18.如图,从①∠1=∠2;②∠C =∠D ;③∠A =∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为_______.三.解答题(共6小题,46分)19.(6分) 把下列命题写成“如果……那么……”的形式.(1)对顶角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.20.(6分) 举反例说明下列命题是假命题:(1)互补的两个角一个是钝角,一个是锐角;(2)若|a|=|b|,则a=b;(3)内错角相等.21.(6分) 分别指出下列命题的题设和结论,并判断是真命题还是假命题,如果是假命题,请举一个反例说明.(1)同旁内角互补,两直线平行;(2)如果a2=b2,那么a=b;(3)如果ac=bc,那么a=b;(4)互补的两个角一定是一个为锐角,另一个为钝角.22.(6分) 如图,已知∠ABC=∠ACB,BD平分∠ABC,交AC于点D,CE平分∠ACB,交AB于点E,∠DBF=∠F,求证:EC∥DF.23.(6分) 在下面的括号内,填上推理的根据:(1)如图①,已知AB∥CD,BE∥CF,求证:∠B+∠C=180°.证明:∵AB∥CD(已知),∴∠B=∠BGC(____________________________).∵BE∥CF(已知),∴∠BGC+∠C=180°(____________________________),∴∠B+∠C=180°(__________).(2)如图②,已知AD⊥BC于点D,DE∥AB,∠1=∠3,求证:FG⊥BC.证明:∵DE∥AB(已知),∴∠1=∠2(________________________).又∵∠1=∠3(已知),∴∠2=∠3(_______________),∴AD∥FG(______________________________),∴∠BGF=∠BDA(_______________________).∵AD⊥BC(已知),∴∠BDA=90°(_________________),∴∠BGF=90°(____________),∴FG⊥BC(______________).24.(8分) 命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.25.(8分) 已知命题“如果两条平行线被第三条直线所截,那么一对内错角的平分线互相平行”.(1)写出命题的题设和结论;(2)画出符合命题的几何图形;(3)用几何符号表述这个命题;(4)说明这个命题是真命题的理由.参考答案1-5DCAAC 6-10 CBBDA11.两条直线平行于同一条直线12. ∠1+∠3=180°13.014.①②⑤15. ①②③16. 两直线平行,内错角相等17. 3×0=(-2)×0 ,32=(-3)218.319. 解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两个角不相等,那么这两个角不是对顶角.(3)如果两个角相等,那么这两个角是内错角.20. 解:(1)∠A =90°,∠B =90°,∠A 与∠B 互补,但∠A 与∠B 为两个直角.(2)|-3|=|3|,但-3≠3.(答案不唯一)(3)如图,∠1与∠2是内错角,但∠1≠∠2.21. 解:(1)题设:同旁内角互补,结论:两直线平行,是真命题(2)题设:a2=b2,结论:a =b ,是假命题.例如:(-2)2=22,但-2≠2(3)题设:ac =bc ,结论:a =b ,是假命题.例如:3×0=2×0,但3≠2(4)题设:两个角互补,结论:一个为锐角,一个为钝角,是假命题.例如:两个直角互补22. 解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12 ∠ABC ,∠ECB =12∠ACB. ∵∠ABC =∠ACB ,∴∠DBF =∠ECB.∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF23. 解:(1)两直线平行,内错角相等两直线平行,同旁内角互补等量代换(2)两直线平行,内错角相等等量代换同位角相等,两直线平行两直线平行,同位角相等垂直的定义等量代换垂直的定义24. 解:是真命题,证明如下:已知:AB ∥CD ,BE ,CF 分别平分∠ABC ,∠BCD.求证:BE ∥CF.证明:∵AB ∥CD ,∴∠ABC =∠BCD.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线,∴∠2=12∠ABC ,∠3=12∠BCD. ∴∠2=∠3.∴BE ∥CF.25. 解:(1)题设:两条平行线被第三条直线所截,结论:一对内错角的平分线互相平行(2)如图:(3)如图,已知AB ∥CD ,GH ,MN 分别平分∠BGF 和∠EMC ,则GH ∥MN(4)∵GH ,MN 分别平分∠BGF 和∠EMC ,∴∠HGF =12 ∠BGF ,∠NME =12∠EMC , 又∵AB ∥CD ,∴∠BGF =∠CME ,∴∠HGF =∠NME ,∴GH ∥MN。

人教版数学七年级下册:《5.3.2命题、定理、证明》课时练习含答案

人教版数学七年级下册:《5.3.2命题、定理、证明》课时练习含答案

5.3.2命题、定理、证明 课时练习一、单选题(共15小题)1.下列说法错误..的是( ) A .所有的命题都是定理.B .定理是真命题.C .公理是真命题.D .“画线段AB =CD ”不是命题. 答案:A知识点:命题与定理 解析:解答:A :定理是真命题,但假命题不是定理,所以错误,B 、C 、D 均正确,所以本题选择A .分析:辨析命题、定理、公理的关系,明确逻辑意义,是做这类选择题的有效途径. 2.下列语句中,不是命题的是( )A .内错角相等B .如果0=+b a ,那么a 、b 互为相反数C .已知42=a ,求a 的值D .玫瑰花是红的 答案:C知识点:命题与定理解析:解答:A 、B 、D 都是判断一件事情的语句,并且由题设和结论构成,C 不是构成一件事情的语句,故选C .分析:明确判断一件事情的语句,且由题设和结论两部分构成的是命题.3.下列命题中,不正确的是( )A .在同一平面内,过一点有而且只有一条直线与已知直线垂直B .经过直线外一点,有而且只有一条直线与这条直线平行C .垂直于同一直线的两条直线垂直D .平行于同一直线的两条直线平行答案:C知识点:平行公理及推论解析:解答:在同一平面内垂直于同一直线的两条直线平行,故C 错误;A 、B 、D 正确;故选C .分析:利用垂线的性质、平行的性质分别判断后即可得到正确的选项.4.下列命题是假命题的是( )A. 互补的两个角不能都是锐角B. 两直线平行,同位角相等C. 若a ∥b ,a ∥c ,则b ∥cD. 同一平面内,若a ⊥b ,a ⊥c ,则b ⊥c 答案:D 知识点:平行公理及推论;平行线的性质解析:解答:A .互补的两个角不能是锐角,正确,是真命题;B .两直线平行,同位角相等,正确,是真命题;C .根据平行线的传递性可以判断该命题为真命题;D .同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ,故原命题为假命题,故选D .分析:利用互补的定义、平行线的性质及垂线的性质分别进行判断后即可得到正确的选项.5.下列命题:①同旁内角互补;②若n <1,则n2-1<0;③直角都相等;④相等的角是对顶角. 其中,真命题的个数有( )A .1个B .2个C .3个D .4个 答案:A知识点:命题与定理解析:解答:①同旁内角互补,错误,是假命题;②若n <1,则n 2-1<0,错误,是假命题;③直角都相等,正确,是真命题;④相等的角是对顶角,错误,是假命题,故选A .分析:能够运用已学的知识判断命题的真假,是要求学生综合应用数学知识的一个有效方法.6.如图,直线c 与a 、b 相交,且a ∥b ,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠2=∠3。

初中七年级数学《命题、定理、证明》同步练习题

初中七年级数学《命题、定理、证明》同步练习题

《命题、定理、证明》同步练习题(1)知识点:命题:判断一件事情的语句,命题由题设和结论构成真命题:题设建立,结论建立的命题假命题:题设建立,结论不必定建立的命题同步练习:一、填空题:(每题 4 分,共 40 分)1、每个命题都由_____和_____两部分构成。

2、命题“对顶角相等”的题设是_____________,结论是_____3、命题“同位角相等”改写成“假如,那么”的形式是____________ 4、请用“假如,那么”的形式写一个命题:________________ 5、一个命题,假如题设建立,结论必定建立,这样的命题是___命题;假如题设建立,结论不建立或不必定建立,这样的命题是___命题(填“真”、“假”)6、以下四个命题:①一个锐角与一个钝角的和为180°;②若 m 不是正数,则 m 必定小于零;③若 ab>0,则 a>0,b>0;④假如一个数能被 2 整除,那么这个数必定能被 4 整除。

此中真命题有___个。

7、以下语句:①对顶角相等;② OA 是∠BOC的均分线;③相等的角都直角;④线段 AB。

此中不是命题的是_______(填序号)8、“两直线订交只有一个交点”的题设是____________________。

9、命题“a、b 是有理数,若 a>b,则 a2>b2”,若结论保持不变,如何改变条件,命题才是真命题。

请你写出一种改法:______________________ 10、关于同一平面内的三条直线a、b、c 给出以下五个结论:①a∥ b;②b∥c;③a⊥ b;④a∥ c;⑤a⊥c。

以此中两个为题设,一个为结论,构成一个正确的命题:____二、选择题(每题 4 分,共 20 分)11、如图,直线 c 与 a、b 订交,且 a∥b,则以下结论:( 1)∠1=∠2;(2)1a2∠1=∠3;( 3)∠2=∠3。

此中正确的个数为()3A0B1C2D3bc12、以下命题正确的选项是()A 两直线与第三条直线订交,同位角相等;B 两直线与第三条直线订交,内错角相等C两直线平行,内错角相等;D 两直线平行,同旁内角相等13、在同一平面内,直线 a、b 订交于 O,b∥ c,则 a 与 c 的地点关系是() A 平行 B 订交C 重合D 平行或重合14、以下语句不是命题的为()A 两点之间,线段最短B 同角的余角不相等C 作线段 AB 的垂线D 不相等的角必定不是对顶角15、以下命题是真命题的是()A 和为 180°的两个角是邻补角;B 一条直线的垂线有且只有一条;C 点到直线的距离是指这点到直线的垂线段;D 两条直线被第三条直线所截,内错角相等,则同位角必相等。

新人教版七年级数学下册5.3.2命题、定理、证明习题1.doc

新人教版七年级数学下册5.3.2命题、定理、证明习题1.doc

新人教版七年级数学下册《5.3.2 命题、定理、证明》习题1.doc部分预览《命题、定理、证明》习题1.命题:(1)若│x│=│y│,则x=y;(2)大于直角的角是钝角;(3)一个角的两边与另一个角的两边平行,则这两个角相等或互补,假命题是_______.2.举出反例说明下列命题是假命题.(1)大于90°的角是钝角____________________________________________ ____.(2)相等的角是对顶角____________________________________________ ______.3.(经典题)如图1所示,工人师傅在加工零件时,发现AB∥CD,∠A=40°,∠E=80°,小芳用学过的知识,得出∠C=______.图1 图2图3 图44.如图2所示,若AB∥CD,∠1=∠2,∠1=55°,则∠3=______.5.如图3所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()A.2个 B.3个 C.4个 D.5个6.(经典题)如图4所示,两平面镜α、β,的夹角60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60° B.45° C.30° D.75°7.(原创题)如图所示,L1∥L2,CD⊥L2垂足为C,AO与L1交于B,与CD交于点O,若∠AOD=130°,求∠1的度数.8.(教材变式题)如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C,求证:DF∥AC.9.(经典题)如图所示,把一张长方形纸片ABCD 沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G,已知∠EFG=58°,求∠BEG度数.10.(探索题)如图所示,若AB∥CD,在下列四种情况下探索∠APC与∠PAB,∠PCD三者等量关系,并选择图(3)进行说明.答案:1.(1),(2)2.(1)210°,不是钝角(2)长方形相邻两个角为90°,但不是对顶角.3.40°(点拨:∠E=∠C+∠A)4.70°(点拨:∠1=55°,∴∠1+∠2=110°,而∠3+110°=180°)5.C(点拨:∠FGC=∠FCA=∠BCA=∠DAC)6.A(点拨:a∥O′B,∴∠1=180°-60×2=60°)7.过O作OE∥L1,∴∠1=∠AOE,而∠AOE=130°-90°=40°,∴∠1=40°.思路点拨:作辅助线是关键.8.∠1=∠2,∠1=∠3,∴∠2=∠3,∴BD∥EC ∴∠DBC+∠C+180°,又∵∠D=∠C∵∠DBC+∠D=180°,∴DF∥AC思路点拨:由∠1=∠2可得DB∥EC,∴∠C+∠DBC=180°,∠C=∠D,∴∠DBC+∠D=180°,得DE ∥AC.9.∵AD∥BC,∴∠AFE=∠FEC,而EF是折痕∴∠FEG=∠FEC,又∵∠EFG=58°∴∠BEG=180°-2∠FEC=180°-2×58°=64°解题规律:所求角是平角减去两个对折重合的角.10.(1)∠APC+∠PAB+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD选(3)说明,设PC交AB于K,则∠PKB=∠PCD 而∠PKB=∠APC+∠PAB所以∠APC+∠PAB=∠PCD即∠APC=∠PCD-∠PAB.解题规律:过P作PM∥AB或PM∥CD,运用平行线性质加以探索.部分预览《命题、定理、证明》习题1.命题:(1)若│x│=│y│,则x=y;(2)大于直角的角是钝角;(3)一个角的两边与另一个角的两边平行,则这两个角相等或互补,假命题是_______.2.举出反例说明下列命题是假命题.(1)大于90°的角是钝角____________________________________________ ____.(2)相等的角是对顶角__________________________________________________.3.(经典题)如图1所示,工人师傅在加工零件时,发现AB∥CD,∠A=40°,∠E=80°,小芳用学过的知识,得出∠C=______.图1 图2图3 图44.如图2所示,若AB∥CD,∠1=∠2,∠1=55°,则∠3=______.5.如图3所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()A.2个 B.3个 C.4个 D.5个6.(经典题)如图4所示,两平面镜α、β,的夹角60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60° B.45° C.30° D.75°7.(原创题)如图所示,L1∥L2,CD⊥L2垂足为C,AO与L1交于B,与CD交于点O,若∠AOD=130°,求∠1的度数.8.(教材变式题)如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C,求证:DF∥AC.9.(经典题)如图所示,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G,已知∠EFG=58°,求∠BEG度数.10.(探索题)如图所示,若AB∥CD,在下列四种情况下探索∠APC与∠PAB,∠PCD三者等量关系,并选择图(3)进行说明.答案:1.(1),(2)2.(1)210°,不是钝角(2)长方形相邻两个角为90°,但不是对顶角.3.40°(点拨:∠E=∠C+∠A)4.70°(点拨:∠1=55°,∴∠1+∠2=110°,而∠3+110°=180°)5.C(点拨:∠FGC=∠FCA=∠BCA=∠DAC)6.A(点拨:a∥O′B,∴∠1=180°-60×2=60°)7.过O作OE∥L1,∴∠1=∠AOE,而∠AOE=130°-90°=40°,∴∠1=40°.思路点拨:作辅助线是关键.8.∠1=∠2,∠1=∠3,∴∠2=∠3,∴BD∥EC ∴∠DBC+∠C+180°,又∵∠D=∠C∵∠DBC+∠D=180°,∴DF∥AC思路点拨:由∠1=∠2可得DB∥EC,∴∠C+∠DBC=180°,∠C=∠D,∴∠DBC+∠D=180°,得DE ∥AC.9.∵AD∥BC,∴∠AFE=∠FEC,而EF是折痕∴∠FEG=∠FEC,又∵∠EFG=58°∴∠BEG=180°-2∠FEC=180°-2×58°=64°解题规律:所求角是平角减去两个对折重合的角.10.(1)∠APC+∠PAB+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD选(3)说明,设PC交AB于K,则∠PKB=∠PCD 而∠PKB=∠APC+∠PAB所以∠APC+∠PAB=∠PCD即∠APC=∠PCD-∠PAB.解题规律:过P作PM∥AB或PM∥CD,运用平行线性质加以探索.部分预览《命题、定理、证明》习题1.命题:(1)若│x│=│y│,则x=y;(2)大于直角的角是钝角;(3)一个角的两边与另一个角的两边平行,则这两个角相等或互补,假命题是_______.2.举出反例说明下列命题是假命题.(1)大于90°的角是钝角____________________________________________ ____.(2)相等的角是对顶角____________________________________________ ______.3.(经典题)如图1所示,工人师傅在加工零件时,发现AB∥CD,∠A=40°,∠E=80°,小芳用学过的知识,得出∠C=______.图1 图2图3 图44.如图2所示,若AB∥CD,∠1=∠2,∠1=55°,则∠3=______.5.如图3所示,AD∥EF∥BC,AC平分∠BCD,图中和α相等的角有()A.2个 B.3个 C.4个 D.5个6.(经典题)如图4所示,两平面镜α、β,的夹角60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60° B.45° C.30° D.75°7.(原创题)如图所示,L1∥L2,CD⊥L2垂足为C,AO与L1交于B,与CD交于点O,若∠AOD=130°,求∠1的度数.8.(教材变式题)如图,已知B,E分别是线段AC,DF上的点,AF交BD于G,交EC于H,∠1=∠2,∠D=∠C,求证:DF∥AC.9.(经典题)如图所示,把一张长方形纸片ABCD 沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G,已知∠EFG=58°,求∠BEG度数.10.(探索题)如图所示,若AB∥CD,在下列四种情况下探索∠APC与∠PAB,∠PCD三者等量关系,并选择图(3)进行说明.答案:1.(1),(2)2.(1)210°,不是钝角(2)长方形相邻两个角为90°,但不是对顶角.3.40°(点拨:∠E=∠C+∠A)4.70°(点拨:∠1=55°,∴∠1+∠2=110°,而∠3+110°=180°)5.C(点拨:∠FGC=∠FCA=∠BCA=∠DAC)6.A(点拨:a∥O′B,∴∠1=180°-60×2=60°)7.过O作OE∥L1,∴∠1=∠AOE,而∠AOE=130°-90°=40°,∴∠1=40°.思路点拨:作辅助线是关键.8.∠1=∠2,∠1=∠3,∴∠2=∠3,∴BD∥EC ∴∠DBC+∠C+180°,又∵∠D=∠C∵∠DBC+∠D=180°,∴DF∥AC思路点拨:由∠1=∠2可得DB∥EC,∴∠C+∠DBC=180°,∠C=∠D,∴∠DBC+∠D=180°,得DE ∥AC.9.∵AD∥BC,∴∠AFE=∠FEC,而EF是折痕∴∠FEG=∠FEC,又∵∠EFG=58°∴∠BEG=180°-2∠FEC=180°-2×58°=64°解题规律:所求角是平角减去两个对折重合的角.10.(1)∠APC+∠PAB+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD选(3)说明,设PC交AB于K,则∠PKB=∠PCD 而∠PKB=∠APC+∠PAB所以∠APC+∠PAB=∠PCD即∠APC=∠PCD-∠PAB.解题规律:过P作PM∥AB或PM∥CD,运用平行线性质加以探索.。

5.3.2 命题、定理、证明 人教版七年级数学下册重难点专项练习(含答案)

5.3.2 命题、定理、证明 人教版七年级数学下册重难点专项练习(含答案)

5.3.2《命题、定理、证明》重难点题型专项练习考查题型一命题的判断典例1.(2022春·湖南永州·七年级校考期中)下列语句中,属于命题的是().A.直线和垂直吗?B.过线段的中点画的垂线C.同旁内角互补,两直线平行D.连接,两点【答案】C【分析】分别根据命题的定义进行判断.【详解】解:A、直线和垂直吗?这是疑问句,不是命题,所以A选项错误;B、过线段的中点C画的垂线,这是描叙性语言,不是命题,所以B选项错误;C、同旁内角互补,两直线平行是命题,所以C选项正确;D、连接A、B两点,这是描叙性语言,不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.变式1-1.下列语句属于命题的是()A.你今天打卡了吗?B.请戴好口罩!C.画出两条相等的线段D.同位角相等【答案】D【分析】根据命题的定义(判断一件事情的语句,叫做命题),逐项判断即可求解.【详解】解:A.你今天打卡了吗?没有作出判断,故该选项不是命题,不符合题意;B.请戴好口罩!没有作出判断,故该选项不是命题,不符合题意;C.画出两条相等的线段,没有作出判断,故该选项不是命题,不符合题意;D.同位角相等,作出判断,故该选项是命题,符合题意.故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.变式1-2.(2022秋·重庆璧山·七年级校联考期中)下列语句中.不是命题的是()A.内错角相等,两直线平行B.对顶角相等C.如果一个数能被2整除.那么它也能被4整除D.画一条线段【答案】D【分析】根据命题的定义,句子可以改写成“如果……那么……”形式,则为命题,如果不能就不是.【详解】解:A.内错角相等,两直线平行,改写成:如果两条直线被第三条直线所截所成的角中,内错角相等,那么这两条直线平行,是命题,故此选项不符合题意;B.对顶角相等,改写成:如果两个角是对顶角,那么这两角相等,是命题,故此选项不符合题意;C.如果一个数能被2整除,那么它也能被4整除,是命题,故此选项不符合题意;D.画—条线段,无法改写,不是命题,故此选项符合题意.故选:D.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.正确理解命题的定义是解题的关键.变式1-3.(2022秋·安徽宣城·七年级校考期中)下列语句属于命题的个数是()①宣城市奋飞学校是市文明单位②直角等于③对顶角相等④奇数一定是质数吗?A.1B.2C.3D.4【答案】C【分析】根据命题的概念注意判断即可.【详解】解:由命题的概念可知,④不是命题,而①②③均是命题,故选C.【点睛】本题考查了命题的概念,解决本题的关键是掌握命题时表示判断的语句.考查题型二真假命题的判断典例2.(2021春·黑龙江哈尔滨·七年级哈尔滨市虹桥初级中学校校考期中)有下列命题是真命题的是( )A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.有一边互为反向延长线,且和为180°的两个角是邻补角D.过直线外一点有且只有一条直线与这条直线平行【答案】D【分析】根据对顶角的性质和定义,邻补角的定义,平行线的性质,平行线公理逐一判断即可.【详解】A、共顶点,且一个角的两边是另一个角的两边的反向延长线,这样的两个角是对顶角,但是,相等的两个角,若不满足对顶角的定义,也不是对顶角,故此命题是假命题;B、两条平行线被第三条直线所截,同位角相等,故此命题是假命题;C、有一边互为反向延长线,且共顶点与共一条边的两个角是邻补角,故此命题是假命题;D、过直线外一点有且只有一条直线与这条直线平行,是真命题;故选:D.【点睛】本题考查了命题真假的判断,掌握命题所涉的相关知识是关键.变式2-1.(2022春·湖南永州·七年级校考期中)下列不是真命题的是()A.三角形内角和为B.两条直线不相交,就是平行C.任意的等腰三角形都存在着“三线合一”的现象D.三角形至多有一个钝角【答案】B【分析】利用三角形的内角和,等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A.三角形内角和为,正确,是真命题;B.同一平面内,两条直线不相交,就是平行,故原命题错误,是假命题;C.任意的等腰三角形都存在着“三线合一”的现象正确,是真命题;D.三角形至多有一个钝角,正确,是真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,等腰三角形的性质、平行线的性质,难度不大.变式2-2.(2022秋·福建福州·七年级校考期中)下列命题是真命题的是()A.同位角相等B.两个锐角的和是锐角C.若两个角的和为,则这两个角互补D.相等的角是对顶角【答案】C【分析】根据平行线的性质,补角的定义,锐角的定义,对顶角的定义逐项进行判断即可.【详解】解:、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、两个锐角的和可能是锐角、钝角,也可能是直角,故原命题错误,是假命题,不符合题意;C、若两个角的和为,则这两个角互补,正确,是真命题,符合题意;D、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:C.【点睛】本题主要考查了命题真假的判定,解题的关键是熟练掌握平行线的性质,补角的定义,锐角的定义,对顶角的定义.变式2-3.(2022秋·北京海淀·七年级校考期中)下列命题中,真命题的个数是( )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果,那么.A.1B.2C.3D.4【答案】A【分析】根据对顶角、平行线的性质、余角的概念、平方根的概念逐一判断,即可得到答案.【详解】解:①相等的角不一定是对顶角,原说法错误,是假命题;②两直线平行,同位角相等,原说法错误,是假命题;③等角的余角相等,原说法正确,是真命题;④如果,那么,原说法错误,是假命题,即真命题的个数为1,故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.考查题型三命题的题设与结论典例3.(2022秋·福建福州·七年级福建省福州外国语学校校考阶段练习)命题“在同一平面内,垂直于同一条直线的两条直线相互平行”的题设是____________,结论是_____________.该命题是__________命题(填“真”或“假”).【答案】如果在同一平面内,两条直线垂直于同一条直线这两条直线相互平行真【分析】将命题转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”即可找出题设和结论,根据平行线的判定方法判断该命题的真假.【详解】解:原命题可以转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”,故题设是“如果在同一平面内,两条直线垂直于同一条直线”,结论是“这两条直线相互平行”,根据平行线的判定定理,可知该命题是真命题.故答案为:如果在同一平面内,两条直线垂直于同一条直线;这两条直线相互平行;真.【点睛】本题考查命题的概念和平行线的判定,当命题的题设和结论不明显时,可以将命题转化为“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.变式3-1.(2022秋·湖北宜昌·七年级校考期中)命题“内错角相等”的题设是_____,结论是____,它是________(“真”或“假”)命题.【答案】两个角是内错角这两个角相等假【分析】将这个命题改写成“如果,那么”的形式,由此即可得出它的题设和结论,再根据同位角的定义即可判断真假.【详解】解:命题“内错角相等”可改写为“如果两个角是内错角,那么这两个角相等”,则命题“内错角相等”的题设是两个角是内错角,结论是这两个角相等,因为两个内错角不一定相等,所以它是假命题,故答案为:两个角是内错角;这两个角相等;假.【点睛】本题考查了命题的题设与结论、判断命题的真假,熟练掌握将命题改写成“如果,那么”的形式是解题关键.变式3-2.命题“等边对等角”的题设是______结论是______【答案】同一个三角形中的两条边相等;这两条边所对的两个角也相等【分析】判断一件事情的语句叫做命题.任何一个命题都有题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题都可以写成“如果…,那么…”的形式,“如果”后接题设部分,“那么”后接结论部分.【详解】解:由于命题“在同一个三角形中,等边对等角”可改写成:在同一个三角形中,如果有两条边相等,那么这两条边所对的两个角相等.所以题设是同一个三角形中的两条边相等,结论是这两条边所对的两个角相等.故答案为:同一个三角形中的两条边相等;这两条边所对的两个角相等.【点睛】对于像本题这样简写的命题,题设和结论不明显,要经过分析,找出命题中的已知事项和由已知事项推出的事项,将命题改写成“如果…,那么…”的形式,从而区分命题的题设和结论.变式3-3.命题“两点之间线段最短"的题设是______________,结论是______________.【答案】连接两点,得到线段;线段最短【分析】命题常常可以写为“如果……那么……”的形式,如果后面接题设,而那么后面接结论;根据上步的知识,从命题的定义出发,寻找题设和结论就可以了.【详解】命题“两点之间线段最短"的题设是:连接两点,得到线段,结论是:线段最短,故答案为:连接两点;线段最短【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.考查题型四写出命题的逆命题典例4.写出命题“两个全等三角形的面积相等”的逆命题______.【答案】若两个三角形面积相等,则这两个三角形全等【分析】根据逆命题的定义,若两个三角形面积相等,则这两个三角形全等即可.【详解】解:命题“两个全等三角形的面积相等”的逆命题是:若两个三角形面积相等,则这两个三角形全等,故答案为:若两个三角形面积相等,则这两个三角形全等.【点睛】本题考查命题概念,弄清楚命题的条件和结论是写出逆命题的关键.变式4-1.“如果,那么”的逆命题为_____.【答案】如果,那么【分析】根据互逆命题的定义,把原命题的题设和结论交换即可.【详解】解:“如果,那么”的逆命题为“如果,那么”.故答案为:如果,那么.【点睛】本题考查了互逆命题的知识,解决本题的关键是掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.变式4-2.写出命题“如果,那么或.”的逆命题:______.【答案】如果或,那么【分析】根据逆命题的写法,把原命题的条件作为结论,结论作为条件即可.【详解】解:命题“如果,那么或.”的逆命题是:如果或,那么,故答案为:如果或,那么.【点睛】题目主要考查命题与逆命题的写法,熟练掌握命题与逆命题的关系是解题关键变式4-3.命题“等腰三角形两底角的平分线相等”的逆命题是________________.【答案】有两条角平分线相等的三角形是等腰三角形【分析】根据逆命题的定义写出即可.【详解】解:命题“等腰三角形两底角的平分线相等”的逆命题是“有两条角平分线相等的三角形是等腰三角形”.故答案是:有两条角平分线相等的三角形是等腰三角形.【点睛】本题考查了互逆命题的知识,掌握逆命题的定义是解题的关键.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考查题型五 互逆定理的判断典例5.下列说法正确的是( )A .真命题的逆命题是真命题B .原命题是假命题,则它的逆命题也是假命题C .命题一定有逆命题D .定理一定有逆命题【答案】C【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A .真命题的逆命题不一定是真命题,故本选项错误,不符合题意;B .原命题是假命题,则它的逆命题不一定是假命题,故本选项错误,不符合题意;C .命题一定有逆命题,故本选项正确,符合题意;D .定理不一定有逆命题,故本选项错误,不符合题意;故选:C .【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,也考查了逆命题,逆定理.变式5-1.下列说法错误的是( )A .任何命题都有逆命题B .真命题的逆命题不一定是正确的C .任何定理都有逆定理D .一个定理若存在逆定理,则这个逆定理一定是正确的【答案】C【分析】根据命题,定理的定义对各选项分析判断后利用排除法求解即可.【详解】A.任何命题都有逆命题,故A正确,不符合题意;B.真命题的逆命题不一定为真,故B正确,不符合题意;C.任何定理不一定都有逆定理,故C错误,符合题意;D.定理一定是正确的,一个定理若存在逆定理,则这个逆定理一定是正确的,故D正确,不符合题意.故选:C.【点睛】本题考查了命题,定理的定义.如果一个命题的条件与结论分别是另一个命题的结论与条件,那么这两个命题称为互逆命题.定理是指用逻辑的方法判断为正确并作为推理的根据的真命题.一个命题是真命题,它的逆命题却不一定是真命题,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.变式5-2.下列说法正确的是()A.真命题的逆命题也是真命题B.每个命题都有逆命题C.每个定理都有逆定理D.假命题没有逆命题【答案】B【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A、真命题的逆命题可能是真命题,也可能是假命题,故本选项错误;B、一个命题一定有逆命题,正确,故本选项正确;C、一个定理不一定有逆定理,故本选项错误;D、假命题一定有逆命题,错误,故本选项错误.故选B.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.变式5-3.下列说法中,正确的是()A.真命题的逆命题一定是真命题B.假命题的逆命题一定是假命题C.所有的定理都有逆定理D.所有的命题都有逆命题【答案】D【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.【详解】解:A、真命题的逆命题不一定是真命题,所以A选项错误;B、假命题的逆命题不一定是假命题,所以B选项错误.C、每个定理不一定有逆定理,所以C选项错误;D、每个命题都有逆命题,所以D选项正确;故选:D.【点睛】本题考查了命题与定理:断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.。

(word完整版)初一数学命题、定理与证明练习

(word完整版)初一数学命题、定理与证明练习

智立方教育初一数学“命题、定理与证明”练习1、判断以下句是否是命(1)延段 AB(不是)(2)两条直订交,只有一交点(是)(3)画段 AB 的中点(不是)(4)若 |x|=2 , x=2(是)(5)角均分是一条射(是)2、( 1)以下句不是命的是(C)A 、两点之,段最短B、不平行的两条直有一个交点C 、 x 与 y 的和等于0 ?D、角不相等。

( 2)以下命中真命是(C)A 、两个角之和角B、两个角之和角C 、角大于它的角D、角小于它的余角( 3)命:① 角相等;②垂直于同一条直的两直平行;③相等的角是角;④同位角相等。

此中假命有(B)A 、 1 个B、 2 个C、 3 个D、 4 个3、分指出以下各命的和。

(1)假如 a∥ b, b∥ c,那么 a∥ c(2)同旁内角互,两直平行。

(1): a∥ b, b∥ c : a∥ c(2):两条直被第三条直所截的同旁内角互。

:两条直平行。

4、分把以下命写成“假如⋯⋯,那么⋯⋯”的形式。

(1)两点确立一条直;(2)等角的角相等;(3)内角相等。

AE1(1)假如有两个定点,那么两点有且只有一条直(2)假如两个角分是两个等角的角,那么两个角相等。

(3)假如两个角是内角,那么两个角相等。

5、已知:如 AB⊥BC, BC⊥ CD且∠ 1=∠ 2,求: BE∥CF 明:∵ AB⊥ BC, BC⊥ CD(已知)BC 2FD∴∠ ABC =∠ BCD=90 °(垂直定)∵∠ 1=∠ 2(已知)∴∠ EBC =∠ BCF(等式性质)∴ BE∥ CF(内错角相等,两直线平行)C 6、已知:如图,AC⊥ BC,垂足为C,∠ BCD是∠ B 的余角。

求证:∠ ACD=∠ B。

证明:∵ AC⊥ BC(已知)B∴∠ ACB=90°(垂直定义)D∴∠ BCD是∠ DCA的余角∵∠ BCD是∠ B 的余角(已知)∴∠ ACD=∠ B(余角定义,同角的余角相等7、已知,如图, BCE、 AFE是直线, AB∥CD,∠ 1=∠ 2,∠ 3=∠ 4。

人教版七年级下册数学命题、定理、证明课时练习题(含答案)

人教版七年级下册数学命题、定理、证明课时练习题(含答案)

人教版七年级下册数学命题、定理、证明课时练习题(含答案)一、单选题1.能说明命题“对于任意实数a,|a|>−a”是假命题的一个反例可以是()A.a=−2B.a=13C.a=√2D.a=22.下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是()A.9B.16C.8D.43.下列结论中,正确的是()A.过任意三点一定能画一条直线B.两点之间线段最短C.射线AB和射线BA是同一条射线D.经过一点的直线只有一条4.下列命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题是()A.①③B.①④C.①③④D.①②③④5.下列选项中,可以用来证明命题“若a2-4a=0,则a=0”是假命题的反例是().A.a = -2B.a = -1C.a = 4D.a = 26.下列命题中,真命题有()个①若AC:BC=√5−12,则点C是线段AB的黄金分割点;②以矩形各边的中点为顶点的四边形是菱形;③若√(x−2)2=2−x,则x的取值范围是x<2;④已知点A(0,3),B(﹣4,3),以原点O为位似中心,把线段AB缩短为原来的14,其中点C与点A对应,点D与点B对应,则点D的坐标为(﹣1,3 4).A.1B.2C.3D.47.下列说法中,正确的有()①过一点有且只有一条直线与已知直线平行;②从直线外一点到直线的垂线段叫做点到直线的距离;③两平行线间距离处处相等;④平行于同一直线的两直线互相平行.A.1个B.2个C.3个D.4个8.下列说法正确的有()①绝对值等于本身的数是正数.②连接两点的线段的长度,叫做这两点的距离.③若AC=BC,则点C就是线段AB的中点.④不相交的两条直线是平行线.A.1个B.2个C.3个D.4个9.下列表述中,正确的是()A.“在地面向上抛石子,石子落在地上”是随机事件B.若彩票的中奖率为10%,则“买100张彩票有10张中奖”是必然事件C.“经固镇到蚌埠的K371次列车明天准点到达”是随机事件D.掷两枚硬币,朝上面是一正面一反面的概率为1310.下列说法正确的是()A.相等的圆心角所对的弧相等B.平分弦的直径垂直弦并平分弦所对的弧C.相等的弦所对的圆心角相等D.等弧所对的弦相等11.下列说法正确的是()A.−a一定是负数B.如果|a|=|b|,那么a=bC.一个数的绝对值小于它本身D.相反数等于它本身的数只有012.已知下列命题:①若a>b,则ac>bc;②若|a|=a,则a>0;③内错角相等;④周长相等的所有等腰直角三角形全等,其中真命题的个数是()A.1个B.2个C.3个D.4个二、填空题13.把命题“直角三角形的两个锐角互余”改写成“如果……那么……”的形式:.14.命题“a,b,c是直线,若a⊥b,b⊥c,则a⊥c”是.(填写“真命题”或“假命题”)15.命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是它是命题(填“真”或“假”).16.命题“如果a=b,那么a2=b2”是命题.(填“真”或“假”)17.下列说法:①无理数就是开方开不尽的数;②满足- √5<x< √5的x的整数有4个;③-3是√81的一个平方根;④不带根号的数都是有理数;⑤对于任意实数a,都有√a2=a.其中说法正确的是(填序号).18.在四边形ABCD中,用①AB⊥DC,②AD=BC,③⊥A=⊥C中的两个作为题设,余下的一个作为结论.用“如果…,那么…“的形式,写出一个真命题:在四边形ABCD中,.19.下列三个命题:①两个角的和等于平角时,这两个角互为邻补角;②两直线平行,内错角相等;③同旁内角互补,它们是真命题的是 .(填序号)20.命题“全等三角形的面积相等”的条件是 ,结论是 .21.“正方形对角线互相垂直平分”的逆命题是 (填“真命题”或“假命题”).22.命题“内错角相等,两直线平行”的条件是 .23.已知三条不同的直线a 、b 、c 在同一平面内,下列四个命题:①如果a //b ,a⊥c ,那么b⊥c ;②如果b //a ,c //a ,那么b //c ;③如果b⊥a ,c⊥a ,那么b⊥c ;④如果b⊥a ,c⊥a ,那么b //c .其中是假命题的是 .(填序号)24.以下四个命题:①用换元法解分式方程x 2+1x +2x x 2+1=1时,如果设x 2+1x=y ,那么可以将原方程化为关于y 的整式方程y 2+y -2=0;②二次函数y =ax 2-2ax+1,自变量的两个值x 1,x 2对应的函数值分别为y 1、y 2,若|x 1-1|>|x 2-1|,则a (y 1-y 2)>0;③有一个圆锥,与底面圆直径是√3且体积为√3π2的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为43;④如果半径为r 的圆的内接正五边形的边长为a ,那么a =2r sin54°.其中正确的命题的序号为三、解答题25.命题“两直线平行,内错角相等”的题设是 .26.判断下面命题的真假,若是假命题,请举出反例说明:①一个三角形的3个内角中至少有1个钝角;②若三条线段a ,b ,c 满足a +b >c ,则这三条线段a ,b ,c 能够组成三角形;③个位数字是5的整数,能被5整除;④对于所有的自然数n ,代数式n 2-n +11的值都是质数;答 案1.A 2.D 3.B 4.A 5.C 6.B 7.B 8.A 9.C 10.D 11.D 12.A 13.如果一个三角形是直角三角形,那么它的两个锐角互余 14.假命题15.如果同旁内角互补,那么这两条直线平行;真 16.真 17.③18.如果AB⊥DC ,⊥A =⊥C ,那么AD =BC 19.②20.两个三角形是全等三角形;这两个三角形的面积相等 21.假命题 22.内错角相等 23.③ 24.②③ 25.两直线平行26.解:①假命题,锐角三角形; ②假命题,a=2,b=5,c=3;③真命题; ④假命题,n=11。

命题、定理、证明(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

命题、定理、证明(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题5.16命题、定理、证明(专项练习)一、单选题1.下列说法正确的是()A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题2.下列命题中是真命题的是()A .对顶角相等B .同旁内角互补C .互补的角是邻补角D .相等的角是对顶角3.关于命题“等角对等边”,下列说法错误的是()A .这个命题是真命题B .条件是“一个三角形有两个角相等”C .结论是“这两个角所对的边也相等”D .可以用“举反例”的方法证明这个命题是真命题4.要说明命题“若a b >,则22a b >”是假命题,能举的一个反例是()A .3,2a b ==B .4,1a b ==-C .1,0a b ==D .1,2a b ==-5.下列推理正确的是()A .若·0a b >,则0a b +>B .若0a b +>,则·0a bC .若·0a b =,则0a b -=D .若·0a b =,则0a =或0b =6.如图所示,在ABC ∆中,90B ︒∠=,下列结论不一定正确的是()A .A C ∠>∠B .AB BC AC +>C .90A C ︒∠+∠=D .222BC AC AB =-7.下列命题中,其逆命题是假命题的是()A .同旁内角互补,两直线平行B .若22a b =,则 a b =C .锐角与钝角互为补角D .相等的角是对顶角8.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a 2>4.下列命题中,具有以上特征的命题是()A .两直线平行,同位角相等B .如果|a |=1,那么a =1C .全等三角形的对应角相等D .如果x >y ,那么mx >my9.假设命题“a ≤0”不成立,那么a 与0的大小关系只能是()A .a =1B .a ≠0C .a ≥0D .a >010.A ,B ,C ,D ,E 五名学生猜测自己能否进入市中国象棋前三强.A 说:“如果我进入,那么B 也进入.”B 说:“如果我进入,那么C 也进入.”C 说:“如果我进入,那么D 也进入.”D 说:“如果我进入,那么E 也进入,”大家都没有说错,则进入前三强的三个人是()A .A ,B ,CB .B ,C ,DC .C ,D ,ED .D ,E ,A二、填空题11.“若0ab >,则0a >,0b >”_____命题(选填“是”或“不是”).12.命题“如果0ab =,那么=0a ”是______命题(填“真”或“假”),此命题的逆命题是:____________________.13.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是_____.①a =3,b =2;②a =﹣3,b =2③a =3,b =﹣1④a =﹣1,b =314.将命题“在同一平面内,垂直于同一条直线的两条直线平行”改写为“如果……,那么……”的形式为__________________________________________.15.小明在解答“已知 ABC 中,AB =AC ,求证∠B <90°”这道题时,写出了下面用反证法证明这个命题过程中的四个推理步骤:(1)所以∠B +∠C +∠A >180°,这与三角形内角和定理相矛盾.(2)所以∠B <90°.(3)假设∠B ≥90°.(4)那么,由AB =AC ,得∠B =∠C ≥90°,即∠B +∠C ≥90°,即∠B +∠C ≥180°.请你写出这四个步骤正确的顺序______.16.如图所示,90AOB COD ︒∠=∠=,那么AOC ∠=________,依据是__________.17.“如果00a b <>,,那么0a b +<”的逆命题为_____.18.甲、乙、丙、丁四位老师分别教数学、语文、科学、英语,甲老师可以教语文、科学;乙老师可以教数学、英语;丙老师可以教数学、语文、科学;丁老师只能教科学,为了使每位老师都能胜任工作,那么教数学的老师是________老师.三、解答题19.判断下列语句是否是命题.如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.20.给出下列语句,先判断是否为命题,如果是命题请指明其题设和结论.(1)同旁内角互补,两直线平行;(2)直角都相等;(3)画直线AB;(4)凡内错角都相等.21.如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截.在下面三个条件中,请你选择其中两个作为题设,剩下的一个作为结论,组成一个真命题并证明.①AB⊥BC,CD⊥BC,②BE∥CF,③∠1=∠2.22.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B =∠CGF (已知),∴AB CD ().∵∠BGC =∠F (已知),∴CD EF ().∴AB EF ().∴∠B +∠F =180°().又∵∠BGC +∠BGD =180°(),∠BGC =∠F (已知),∴∠F +∠BGD =180°().23.如图,已知直线EF GH ∥,给出下列信息:①AC BC ⊥;②BC 平分DCH ∠;③ACD DAC ∠=∠.(1)请在上述3条信息中选择其中两条作为条件,其余的一条信息作为结论组成一个真命题,你选择的条件是,结论是(只要填写序号),并说明理由.(2)在(1)的条件下,若ACG ∠比BCH ∠的2倍少3度,求DAC ∠的度数.24.(1)已知:如图,直线AB 、CD 、EF 被直线BF 所截,1180B ∠+∠=︒,23∠=∠.求证:180B F ∠+∠=︒;(2)你在(1)的证明过程中应用了哪两个互逆的真命题.参考答案1.A【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.【详解】解:A 、命题一定有逆命题,故此选项符合题意;B 、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;C 、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;D 、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.故选:A .【点拨】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.2.A【分析】根据真命题的定义及对顶角、平行线的性质、邻补角的定义和性质逐项分析即可.【详解】解:A 、对顶角相等,正确,是真命题,符合题意;B 、两直线平行,同旁内角互补,故原命题错误,是假命题,不符合题意;C 、互补的角不一定是邻补角,故原命题错误,是假命题,不符合题意;D 、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:A .【点拨】考查了命题与定理以及对顶角、平行线的性质、邻补角的定义和性质等知识,解题的关键是理解对顶角、平行线的性质、邻补角的定义和性质.3.D【分析】分析原命题,找出其条件与结论,然后写成“如果…那么…”形式即可.【详解】解:在三角形中,如果有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”,则选项A 、B 、C 正确,不符合题意,不可以用“举反例”的方法证明这个命题是真命题.故选:D .【点拨】本题考查了命题与定理的知识,正确理解定义是关键.4.D【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.【详解】解:A .3,2a b ==时.满足a b >,则22a b >,不能作为反例,错误;B .4,1a b ==-时.满足a b >,则22a b >,不能作为反例,错误;C .1,0a b ==时.满足a b >,则22a b >,不能作为反例,错误;D .1,2a b ==-时,a b >,但22a b <,能作为反例,正确;故选:D .【点拨】本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.5.D【分析】直接利用不等式的基本性质和解方程的思想进行判断即可.【详解】解:A 、∵·0a b >,∴a ,b 同号,则0a b +>或0a b +<,本项错误;B 、∵0a b +>,则0a b 不一定正确,如a 1b 2=-=,时,a b 0< ,本项错误;C 、∵0a b = ,则0a =或0b =,∴0a b -=不一定正确,故本项错误;D 、∵0a b = ,则0a =或0b =,本项正确;故选择:D.【点拨】本题考查了不等式性质和解方程的思想,解题的关键是利用不等式性质进行判断.6.A【分析】根据直角三角形的性质,分析判断即可得到答案.【详解】解:A 、直角三角形两个锐角度数不明确,不能比较大小,故本项错误;B 、由两边和大于第三边,得到AB BC AC +>,本项正确;C 、由90B ︒∠=,则90A C ︒∠+∠=,本项正确;D 、由勾股定理可知,222BC AC AB =-,本项正确;故选择:A.【点拨】本题考查了直角三角形的性质,解题的关键是掌握直角三角形的性质.7.C【分析】先写出各选项的逆命题,再逐个判断即可.【详解】解:A 、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,为真命题,选项不符合题意;B 、若22a b =,则 a b =的逆命题为若 a b =,则22a b =,为真命题,选项不符合题意;C 、锐角与钝角互为补角的逆命题为若两个角互补,则这两个角分别为锐角、钝角,为假命题,选项符合题意;D 、相等的角是对顶角的逆命题为对顶角相等,为真命题,选项不符合题意;故选:C【点拨】此题考查了命题的逆命题以及真假命题,解题的关键是正确写出命题的逆命题.8.C【分析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B、原命题错误,是假命题;逆命题为如果a=1,那么|a|=1,正确,是真命题,不符合题意;C、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D、当m=0时原命题错误,是假命题,不符合题意,故选:C.【点拨】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大.9.D【分析】由于a≤0的反面为a>0,则假设命题“a≤0”不成立,则有a>0.【详解】解:假设命题“a≤0”不成立,则a>0.故选:D.【点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.C【分析】若A,B进入了前三强,那么B、C、D、E也均能进入,由于前三强只有三个人,显然这是不合理的;因此只有当C进行前三强,那么D、E也进入,这样才符合题意.【详解】解:若A进入前三强,那么进入前三强的有A、B、C、D、E共5人,显然不合题意,同理,当B进行前三强时,也不合题意,所以应从C开始进入前三强.即进入前三强的是C,D,E.故选C【点拨】此题考查了逻辑推理,根据每个人所说的进行推理即可求解.11.是【分析】根据命题的定义判断即可.【详解】若0ab >,则0a >,0b >是一个命题.故答案为:是.【点拨】本题主要考查了命题的判断,掌握定义是解题的关键.即是表示判断一件事情的句子是命题.12.假如果=0a ,那么0ab =【分析】根据逆命题的题设是原命题的结论,逆命题的结论是原命题的题设解答.【详解】解:“如果0ab =,那么=0a ”是假命题,它的逆命题是:如果=0a ,那么0ab =,故答案为:假;如果=0a ,那么0ab =.【点拨】本题主要考查命题与逆命题的关系,命题的真假判断,正确的命题叫真命题.13.②【分析】通过计算判定,满足a 2>b 2,不满足a >b ,即可.【详解】解:①a =3,b =2,满足a 2>b 2,a >b ,不能说明命题是假命题.②a =﹣3,b =2,满足a 2>b 2,a <b ,能说明命题是假命题.③a =3,b =﹣1,满足a 2>b 2,a >b ,不能说明命题是假命题.④a =﹣1,b =3,不满足a 2>b 2,不能说明命题是假命题.故答案为:②【点拨】本题考查命题与定理,解题的关键是理解用反例说明命题是假命题.14.如果在同一平面内两条直线都垂直于同一条直线,那么这两条直线互相平行【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】解:命题可以改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线互相平行.故答案为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线互相平行.【点拨】本题考查命题的题设和结论,解题的关键是掌握任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别写在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.15.(3)(4)(1)(2)【分析】根据反证法的一般步骤解答即可.【详解】证明:假设90B ∠︒,那么,由AB AC =,得90B C ∠=∠︒,即90B C ∠+∠︒,即180B C ∠+∠︒,所以180B C A ∠+∠+∠>︒,这与三角形内角和定理相矛盾,所以90B ∠<︒,所以这四个步骤正确的顺序是(3)(4)(1)(2),故答案为:(3)(4)(1)(2).【点拨】本题考查的是反证法,解题的关键是掌握反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.16.BOD ∠,同角的余角相等【分析】由∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,即可得到∠AOC=∠BOD.【详解】解:∵90AOB COD ︒∠=∠=,∴∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,根据同角的余角相等,∴∠AOC=∠BOD ;故答案为BOD ∠,同角的余角相等.【点拨】本题考查了同角的余角相等,解题的关键是熟练掌握定理.17.如果0a b +<,那么00a b <>,【分析】根据互逆命题的定义,把原命题的题设和结论交换即可.【详解】解:“如果00a b <>,,那么0a b +<”的逆命题为“如果0a b +<,那么00a b <>,”.故答案为:如果0a b +<,那么00a b <>,.【点拨】本题考查了互逆命题的知识,解决本题的关键是掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.18.丙【分析】从丁老师只能教科学出发,则甲老师只能教语文,可得丙老师只能教数学.【详解】解:∵丁老师只能教科学,甲老师可以教语文、科学,∴甲老师教语文,∵丙老师可以教数学、语文、科学,∴丙老师只能教数学.故答案为:丙【点拨】本题主要考查了逻辑推理应用题,解题方法是由确定项开始用排除法,逐个推论确定各自的正确选项,最终解决问题.19.(1)是命题.题设是:两个角是内错角,结论是:这两个角相等(2)是命题.题设是:两个角是对顶角,结论是:这两个角相等(3)不是命题【分析】(1)先根据命题的定义判断,然后找到相应的条件和结论作为命题的题设和结论即可;(2)先根据命题的定义判断,然后找到相应的条件和结论作为命题的题设和结论即可;(3)根据命题的定义判断即可.(1)解:是命题.题设是:两个角是内错角,结论是:这两个角相等;(2)是命题.题设是:两个角是对顶角,结论是:这两个角相等;(3)不是命题.【点拨】本题考查了命题,解决本题的关键是理解命题是判断一件事情的语句,命题的题设为条件部分,结论为由条件得到的结论.20.(3)不是命题,(1)、(2)、(4)是命题,题设和结论见解析.【分析】根据命题的定义:一般地,在数学中把用语言,符号或式子表示的,可以判断真假的陈述句叫做命题,其中已知的事项叫做题设,由已知事项推出的事项叫做结论,进行求解即可.【详解】解:(1)是命题,题设:两直线被第三条直线所截,同旁内角互补,结论:这两条直线平行;(2)是命题:题设:两个角都是直角,结论:这两个角相等;(3)不是命题;(4)是命题,题设:两个角都是内错角,结论:这两个角相等;【点拨】本题主要考查了命题,以及命题的题设与结论,解题的关键在于能够熟知命题的定义.21.见解析∠=∠,又【详解】试题分析:可以有①②得到③:由于AB⊥BC、CD⊥BC,得到ABC DCBBE∥CF,则∠EBC=∠FCB,可得到∠ABC−∠EBC=∠DCB−∠FCB,即有∠1=∠2.试题解析:已知:如图,AB⊥BC、CD⊥BC,BE∥CF.求证:∠1=∠2.证明:∵AB⊥BC、CD⊥BC,∴∠ABC=∠DCB,又∵BE∥CF,∴∠EBC=∠FCB,∴∠ABC−∠EBC=∠DCB−∠FCB,∴∠1=∠2.22.同位角相等,两直线平行;同位角相等,两直线平行;平行公理的推论;两直线平行,同旁内角互补;平角的定义;等量代换【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵∠B=∠CGF(已知);∴AB CD(同位角相等,两直线平行),∵∠BGC=∠F(已知);∴CD EF(同位角相等,两直线平行),∴AB EF(平行公理的推论)∴∠B+∠F=180°(两直线平行,同旁内角互补).又∵∠BGC+∠BGD=180°(平角的定义),∠BGC=∠F(已知),∴∠F+∠BGD=180°(等量代换).【点拨】本题考查平行线的判定与性质及推理论证,解题关键是熟练掌握平行线的判定与性质定理.23.(1)①②;③;理由见解析(2)59︒∠=∠,再根据等角的余角相等可得出【分析】(1)由角平分线的定义可得BCD BCHACD ACG ∠=∠,再由平行线的性质可得ACG DAC ∠=∠,从而结论得证;(2)由(1)得:90ACG BCH ∠+∠=︒,根据ACG ∠比BCH ∠的2倍少3度,可得关系式23ACG BCH ∠=∠-︒,求得31BCH ∠=︒,59ACG ∠=︒,再根据DAC ACG ∠=∠即可得到DAC ∠的度数.(1)解:条件:①②,结论:③.理由如下:∵BC 平分DCH ∠,∴BCD BCH ∠=∠,∵AC BC ⊥,∴90ACD BCD ∠+∠=︒,90ACG BCH ∠+∠=︒,∴ACD ACG ∠=∠,∵EF GH ∥,∴ACG DAC ∠=∠,∴ACD DAC ∠=∠.故答案为:①②;③.(2)由(1)得:90ACG BCH ∠+∠=︒,∵ACG ∠比BCH ∠的2倍少3度,∴23ACG BCH ∠=∠-︒,∴2390BCH BCH ∠-︒+∠=︒,解得:31BCH ∠=︒,∴9059ACG BCH ∠=︒-∠=︒,∴59DAC ACG ∠=∠=︒.∴DAC ∠的度数59︒.【点拨】本题考查了角平分线的定义,等角的余角相等,平行线的性质,解方程组等知识.理解和掌握平行线的性质,等角的余角相等是解题的关键.24.(1)见解析;(2)同旁内角互补,两直线平行;两直线平行,同旁内角互补.【分析】(1)利用同旁内角互补,两直线平行和内错角相等;两直线平行判断AB ∥CD ,CD ∥EF ,则利用平行线的传递性得到AB ∥EF ,然后根据平行线的性质得到结论;(2)利用了平行线的判定与性质定理求解.【详解】(1)证明:∵∠B+∠1=180°,∴AB∥CD,∵∠2=∠3,∴CD∥EF,∴AB∥EF,∴∠B+∠F=180°;(2)解:在(1)的证明过程中应用的两个互逆的真命题为:同旁内角互补,两直线平行;两直线平行,同旁内角互补.【点拨】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.。

人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习

人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习

5.3 平行线的性质第3课时命题、定理、证明基础训练知识点1 命题的定义及结构1.下列语句是命题的是( )A.延长线段AB到CB.用量角器画∠AOB=90°C.同位角相等,两直线平行D.任何数的平方都不小于0吗?2.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD⊥BC;⑤同旁内角不互补,两直线不平行.其中是命题的是( )A.①②③B.①②⑤C.①②④⑤D.①②④3.下列语句中,不是命题的是( )A.如果a>b,那么b<aB.同位角相等C.垂线段最短D.反向延长射线OA4.命题“平行于同一条直线的两条直线互相平行”的题设是( )A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线5.命题“如果a2=b2,那么a=b或a+b=0”的结论是( )A.a2=b2或a=bB.a2=b2C.a=b或a+b=0D.a2=b2或a+b=0知识点2 命题的分类6.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是(填写所有真命题的序号).7.下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与这条直线平行;⑥如果|x|=2,那么x=2.其中真命题有( )A.1个B.2个C.3个D.4个8.(2016·大庆)如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A.0B.1C.2D.3知识点3 定理与证明(举反例)9.下列说法错误的是( )A.命题不一定是定理,定理一定是命题B.定理不可能是假命题C.真命题是定理D.如果真命题的正确性是经过推理证实的,这样得到的真命题就是定理10.下列命题可以作为定理的个数是( )①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个11.(2016·宁波)能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是( )A.a=-2B.a=错误!未找到引用源。

七年级数学命题、定理、证明(人教版)(基础)(含答案)

七年级数学命题、定理、证明(人教版)(基础)(含答案)

命题、定理、证明(人教版)(基础)一、单选题(共10道,每道10分)1.下列说法正确的是( )A.证实命题正确与否的推理过程叫做证明B.定理是命题,但不是真命题C.“对顶角相等”是命题,但不是定理D.要证明一个命题是真命题只要举出一个反例即可答案:A解题思路:略试题难度:三颗星知识点:命题、定理、证明2.下列命题是真命题的是( )A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.大于直角的角是钝角答案:B解题思路:略试题难度:三颗星知识点:命题、定理、证明3.下列命题:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④邻补角一定互补.其中真命题的个数是( )A.1个B.2个C.3个D.4个答案:B解题思路:略试题难度:三颗星知识点:命题、定理、证明4.下列命题中是假命题的是( )A.同旁内角互补,两直线平行B.直线a⊥b,则a与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c答案:C解题思路:略试题难度:三颗星知识点:命题、定理、证明5.已知同一平面内的三条直线a,b,c,下列命题中错误的是( )A.如果a∥b,b∥c,那么a∥cB.如果a⊥b,b⊥c,那么a⊥cC.如果a⊥b,b⊥c,那么a∥cD.如果a⊥b,a⊥c,那么b∥c答案:B解题思路:略试题难度:三颗星知识点:命题、定理、证明6.已知三条不同的直线a,b,c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中是真命题的有( )A.0个B.1个C.2个D.3个答案:D解题思路:略试题难度:三颗星知识点:命题、定理、证明7.如图,下列命题是假命题的是( )A.如果∠2=∠3,那么a∥cB.如果a∥b,a∥c,那么b∥cC.如果∠4+∠5=180°,那么∠2=∠3D.如果∠4=∠6,那么∠1+∠3=180°答案:C解题思路:略试题难度:三颗星知识点:命题、定理、证明8.设a,b,c是三条不同的直线,则在下面四个命题中,正确的有( )①如果a与b相交,b与c相交,那么a与c相交;②如果a与b平行,b与c平行,那么a与c平行;③如果a与b垂直,b与c垂直,那么a与c垂直;④如果a与b平行,b与c相交,那么a与c相交.A.4个B.3个C.2个D.1个答案:C解题思路:略试题难度:三颗星知识点:命题、定理、证明9.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有( )A.0个B.1个C.2个D.3个答案:A解题思路:略试题难度:三颗星知识点:命题、定理、证明10.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A.0B.1C.2D.3答案:D解题思路:略试题难度:三颗星知识点:命题、定理、证明。

人教版七年级数学下《命题、定理、证明》基础练习

人教版七年级数学下《命题、定理、证明》基础练习

《命题、定理、证明》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列四个命题中不正确的是()A.直径是弦B.三角形的内心到三角形三边的距离都相等C.经过三点一定可以作圆D.半径相等的两个半圆是等弧2.(5分)给出下列命题:①若a2=b2,则a=b;②若a+b=0,则a3+b3=0;③能被5整除的数,末位数字必是5;④若|x|=|y|,则x=±y.其中假命题的个数是()A.1个B.2个C.3个D.4个3.(5分)下列命题中,真命题的个数是()①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A.4个B.3个C.2个D.1个4.(5分)下列句子是命题的是()A.画∠AOB=45°B.小于直角的角是锐角吗?C.连结CDD.相等的角是对顶角5.(5分)下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④二、填空题(本大题共5小题,共25.0分)6.(5分)把“两边相等的三角形是等腰三角形”改写成“如果……,那么……”的形式为.7.(5分)下列说法正确的有①若a,b,c为实数,且a>b,则ac2>bc2;②在平行四边形、线段、角、等边三角形四个图形中,既是轴对称图形又是中心对称图的只有一个.③如果关于x的不等式﹣k﹣x+6>0的正整数解为1,2,3,那么k应取值为2≤k<3.④抛物线y=3x2﹣x+4与x轴无交点.⑤命题“三角形一条边的两个端点到这条边上的中线所在直线的距离相等”是真命题;⑥、3π、和0.101001…都是无理数.8.(5分)用一组a,b的值说明命题“若a<b,则”是错误的,这组值可以是a=,b=.9.(5分)命题“垂线段最短”是(填“真命题”或“假命题”)10.(5分)命题“正数的绝对值是它本身”的逆命题是.三、解答题(本大题共5小题,共50.0分)11.(10分)已知∠ABC的两边与∠DEF的两边平行,即BA∥ED,BC∥EF.(1)如图①,若∠B=40°,则∠E=°;(2)如图②,猜想∠B与∠E有怎样的关系?试说明理由;(3)如图③,猜想∠B与∠E有怎样的关系?试说明理由;(4)根据以上情况,请归纳概括出一个真命题.12.(10分)指出下列命题的条件和结论.(1)若a>0,b>0,则ab>0.(2)同角的补角相等.13.(10分)在△ABC和△DEF中,点B,E,C,F在同一条直线上,下面给出四个论断:①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.从中选三个作为已知条件,剩余的一个作为结论,请写出一个真命题(用序号⊗⊗⊗⇒⊗的形式表示),并给出证明.14.(10分)指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.15.(10分)命题“如果a2=b2,那么a=b”是真命题还是假命题?请说明理由.《命题、定理、证明》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列四个命题中不正确的是()A.直径是弦B.三角形的内心到三角形三边的距离都相等C.经过三点一定可以作圆D.半径相等的两个半圆是等弧【分析】利用弦的定义、三角形的内心的性质、确定圆的条件及等圆的概念分别判断后即可确定正确的选项.【解答】解:A、直径是圆内最长的弦,故正确;B、三角形的内心到三角形三边的距离都相等,正确;C、经过不在同一直线上的三点可以作圆,故错误;D、半径相等的两个半圆是等弧,正确,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解弦的定义、三角形的内心的性质、确定圆的条件及等圆的概念等知识,难度不大.2.(5分)给出下列命题:①若a2=b2,则a=b;②若a+b=0,则a3+b3=0;③能被5整除的数,末位数字必是5;④若|x|=|y|,则x=±y.其中假命题的个数是()A.1个B.2个C.3个D.4个【分析】利用平方的性质、绝对值的意义分别判断后即可确定正确的选项.【解答】解:①若a2=b2,则a=±b,故错误,是假命题;②若a+b=0,则a3+b3=0,正确,是真命题;③能被5整除的数,末位数字必是5或0,故错误,是假命题;④若|x|=|y|,则x=±y,正确,是真命题,假命题有2个,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是掌握有关的定义及定理,难度不大.3.(5分)下列命题中,真命题的个数是()①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A.4个B.3个C.2个D.1个【分析】利用圆的有关性质和定义进行逐一判断即可得到正确的答案.【解答】解:①过不在同一直线上的三点一定可以作一个圆,错误;②平分弦(不是直径)的直径垂直于弦,故错误,③同圆或等圆中,相等的圆心角所对的弧相等,正确;④三角形的外心到三角形的三个顶点的距离相等,错误;真命题有1个,故选:D.【点评】本题考查了命题与定理的知识,解决本题的关键是了解圆的有关性质及定义.4.(5分)下列句子是命题的是()A.画∠AOB=45°B.小于直角的角是锐角吗?C.连结CDD.相等的角是对顶角【分析】根据命题的定义分别进行判断.【解答】解:画∠AOB=45°、连接CD是描述性语句,不是命题,故A、D错误;小鱼直角的角是锐角吗?是疑问句,不是命题,故B错误,相等的角是对顶角对问题作出了判断,是命题,故选:D.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.(5分)下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④【分析】根据命题是判断性语句,可得答案.【解答】解:①你叫什么名字,没有作出判断,不是命题;②负数的绝对值等于它的相反数,正确,是命题;③相等的角是对顶角,正确,是命题;④明天下雨吗?是疑问句,不是命题,故选:B.【点评】本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.二、填空题(本大题共5小题,共25.0分)6.(5分)把“两边相等的三角形是等腰三角形”改写成“如果……,那么……”的形式为如果一个三角形中有两边相等,那么这个三角形是等腰三角形.【分析】找到这个命题的条件即为题设,用如果引起,再找到这个命题的结论,用那么引起即可.【解答】解:命题“两边相等的三角形是等腰三角形”改写成“如果…,那么…”的表述形式:如果一个三角形中有两边相等,那么这个三角形是等腰三角形.故答案为:如果一个三角形中有两边相等,那么这个三角形是等腰三角形.【点评】本题考查了命题和证明,在学生眼里这是难点,要熟练掌握.7.(5分)下列说法正确的有②③④⑤①若a,b,c为实数,且a>b,则ac2>bc2;②在平行四边形、线段、角、等边三角形四个图形中,既是轴对称图形又是中心对称图的只有一个.③如果关于x的不等式﹣k﹣x+6>0的正整数解为1,2,3,那么k应取值为2≤k<3.④抛物线y=3x2﹣x+4与x轴无交点.⑤命题“三角形一条边的两个端点到这条边上的中线所在直线的距离相等”是真命题;⑥、3π、和0.101001…都是无理数.【分析】①根据不等式的基本性质即可判断;②根据轴对称图形,中心对称图形的定义即可判断;③解不等式即可解决问题;④利用判别式即可判断;⑤利用全等三角形的性质即可判断;⑥根据无理数的定义即可判断;【解答】解:①若a,b,c为实数,且a>b,则ac2>bc2;错误,c=0时,不成立;②在平行四边形、线段、角、等边三角形四个图形中,既是轴对称图形又是中心对称图的只有一个.正确,线段既是轴对称图形又是中心对称图;③如果关于x的不等式﹣k﹣x+6>0的正整数解为1,2,3,那么k应取值为2≤k<3.正确;④抛物线y=3x2﹣x+4与x轴无交点.正确;⑤命题“三角形一条边的两个端点到这条边上的中线所在直线的距离相等”是真命题;正确;⑥、3π、和0.101001…都是无理数.错误,不是无理数.故答案为②③④⑤.【点评】本题考查命题与定理,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(5分)用一组a,b的值说明命题“若a<b,则”是错误的,这组值可以是a=﹣1,b=1.【分析】通过a取﹣1,b取1可说明命题“若a<b,则”是错误的.【解答】解:当a=﹣1,b=1时,满足a<b,但<.故答案为﹣1,1.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.(5分)命题“垂线段最短”是真命题(填“真命题”或“假命题”)【分析】根据垂线的性质判断即可.【解答】解:垂线段最短是真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(5分)命题“正数的绝对值是它本身”的逆命题是绝对值等于它本身的数是正数.【分析】直接利用逆命题的写法就是将原命题的结论与题设交换进而得出答案.【解答】解:“正数的绝对值是它本身”的逆命题是:绝对值等于它本身的数是正数.故答案为:绝对值等于它本身的数是正数.【点评】此题主要考查了命题与定理,正确把握逆命题的定义是解题关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知∠ABC的两边与∠DEF的两边平行,即BA∥ED,BC∥EF.(1)如图①,若∠B=40°,则∠E=40°;(2)如图②,猜想∠B与∠E有怎样的关系?试说明理由;(3)如图③,猜想∠B与∠E有怎样的关系?试说明理由;(4)根据以上情况,请归纳概括出一个真命题.【分析】(1)根据平行线的性质得出∠B=∠DOC,∠DOC=∠E,即可得出答案;(2)根据平行线的性质得出∠B=∠EOC,∠EOC=∠E,即可得出答案;(3)根据平行线的性质得出∠B=∠DOC,∠BOE+∠E=180°,即可得出答案;(4)根据结果得出即可.【解答】解(1):∵BA∥ED,BC∥EF,∴∠B=∠DOC,∠DOC=∠E,∴∠B=∠E=40°,故答案为:40;(2)∠B=∠E,理由是:∵BA∥ED,BC∥EF,∴∠B=∠EOC,∠EOC=∠E,∴∠B=∠E,故答案为:∠B=∠E;(3)∠B+∠E=180°,理由是:∵BA∥ED,BC∥EF,∴∠B=∠DOC,∠BOE+∠E=180°,∵∠DOC=∠BOE,∴∠B+∠E=180°;(4)通过上面(1)、(2)、(3),你可得到的结论是:如果一个角的两边分别平行于另一个角的两边,则这两个角的关系是相等或互补,【点评】本题考查了命题与定理,利用平行线的性质是解题关键.12.(10分)指出下列命题的条件和结论.(1)若a>0,b>0,则ab>0.(2)同角的补角相等.【分析】一个命题由题设和结论两部分组成,以如果开始的部分是条件,以那么开始的部分是结论.【解答】解:(1)若a>0,b>0,则ab>0的题设是a>0,b>0,结论是ab>0,(2)同角的补角相等的题设是两个角是同角的补角,结论是它们相等.【点评】本题主要考查了命题的组成,命题由题设和结论两部分组成.其中题设是已知的条件,结论是由题设推出的结果.13.(10分)在△ABC和△DEF中,点B,E,C,F在同一条直线上,下面给出四个论断:①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.从中选三个作为已知条件,剩余的一个作为结论,请写出一个真命题(用序号⊗⊗⊗⇒⊗的形式表示),并给出证明.【分析】任选三个作为已知条件,余下一个作为结论,可组合得到4个命题,分别为:(1)①③④为条件,②为结论;(2)①②④为条件,③为结论;对2个命题分别证明即可解题.【解答】解:(1)①③④⇒②为结论;∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF;故本命题为真命题;(2)①②④⇒③;∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF;故本命题为真命题;【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ABC≌△DEF是解题的关键.14.(10分)指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:(1)题设:如果两个角的和等于平角时,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,如图∠1与∠2是内错角,∠2>∠1;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【点评】此题考查命题与定理,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.15.(10分)命题“如果a2=b2,那么a=b”是真命题还是假命题?请说明理由.【分析】根据互为相反数的两个数的平方相等判断.【解答】解:如果a2=b2,那么a=b是假命题,应为:若a2=b2,则a=b或a=﹣b.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.第11页(共11页)。

人教七年级下数学_必刷题《命题、定理、证明》刷基础

人教七年级下数学_必刷题《命题、定理、证明》刷基础

5.3.2 命题、定理、证明知识点一命题的定义1.(2019江苏徐州铜山区期末)下列句子中,是命题的是()A.画一个角等于已知角B.a,b两条直线平行吗C.对顶角相等D.过一点画已知直线的垂线2.下列语句不是命题的是()A.解方程3x+5=9x-13B.整数是有理数C.一个数的绝对值不小于原数D.负数的偶次幂是正数知识点二命题的组成3.命题“只有符号不同的两个数互为相反数”的题设是()A.两个数的符号不同B.两个数只有符号不同C.两个数互为相反数D.只有符号不同4.(2019安徽阜阳颖泉区校级月考)命题“绝对值相等的两个数互为相反数”. (1)将命题改写成“如果……那么……”的形式.(2)写出该命题的题设和结论.知识点三命题的真假5.(2019湖北随州曾都区校级期中)下列命题:①两条直线被第三条直线所截,同位角的平分线互相平行;②直线外一点到这条直线的垂线段,就是这一点到这条直线的距离;③在平面内,过一点有且只有一条直线与已知直线垂直;④在平面内,过一点有且只有一条直线与已知直线平行.其中真命题的个数是()A.1B.2C.3D.46.(2020河南漯河哪城区期末)下列命题是假命题的是()A.同位角相等,两直线平行B.相等的角是对顶角C.若a=b,则|a|=|b|D.若ab=0,则a=0或b=07.下列命题是真命题还是假命题?说明理由.(1)一个数的平方大于原数;(2)如果x=y,那么x+5=y+5.知识点四举反例判断假命题8.(2020北京丰台区三模)能够说明“设a,b是任意非零实数,若a>b,则1a <1”是假命题的一组整数的a,b值依次为______________________________.b9.(2019福建福州三模)说明命题“若x>-4,则x²>16”是假命题的一个反例可以是______________________________________________________________. 知识点五定理与证明10.(2019广东中山期中)下列命题是定理的是()A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2019江苏南京鼓楼区校级月考)如图,从①∠1=∠2,②∠C=∠D,③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论可以组成3个命题. (1)这三个命题中,真命题的个数为__________;(2)选择一个真命题,并且证明.(要求写出每一步的依据)参考答案1.答案:C解析:A、B、D选项都没有对一件事情作出任何判断,都不是命题.C选项作出了判断,是命题.2.答案:A解析:B、C、D选项都对事情作出了判断,只有A选项没有作出任何判断,故A选项不是命题.3.答案:B解析:原命题可以改写为“如果两个数只有符号不同,那么这两个数互为相反数”,“如果”后面的部分是题设,故B正确.4.答案:见解析解析:(1)如果两个数的绝对值相等,那么这两个数互为相反数.(2)题设是两个数的绝对值相等,结论是这两个数互为相反数.5.答案:A解析:两条平行线被第三条直线所截,同位角的平分线互相平行,①错误;直线外一点到这条直线的垂线段的长度,就是这一点到这条直线的距离,②错误;在平面内,过一点有且只有一条直线与已知直线垂直,③正确;在平面内,过直线外一点有且只有一条直线与已知直线平行,④错误.故选A.6.答案:B解析:A选项,同位角相等,两直线平行,正确,是真命题,不符合题意;B选项,相等的角不一定是对顶角,故原命题错误,是假命题,符合题意;C选项,若a=b,则|a|=|b|,正确,是真命题,不符合题意;D选项,若ab=0,则a=0或b=0,正确,是真命题,不符合题意.故选B.7.答案:见解析解析:(1)假命题.理由:若一个数为0.1,0.12=0.01,0.01<0.1,故该命题是假命题.(2)真命题.理由:因为x=y(已知),所以x+5=y+5(等量加等量,和相等).8.答案:2﹣1(答案不唯一)解析:当a=2,b=﹣1时,有a>b,1a >1b,则题中所给命题是假命题.9.答案:x=﹣3(答案不唯一)解析:若x=﹣3,则x²=9,条件满足,但9<16,结论不成立.10.答案:B解析:A选项,内错角相等,需要有前提条件“两直线平行”,是假命题;B选项,同位角相等,两直线平行,是真命题,也是定理;C选项,一个角的余角可以等于它本身,如45°,是假命题;D选项,在同一平面内,过一点有且只有一条直线与已知直线垂直,是假命题.故选B.11.答案:见解析解析:(1)由①②,得③;由①③,得②;由②③,得①均为真命题,故答案为3.(2)(答案不唯一)选①②为条件,③为结论.如图所示,∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠3=∠2(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠D=∠4(两直线平行,同位角相等).∵∠C=∠D(已知),∴∠4=∠C(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).。

初中数学专题 命题、定理、证明含答案

初中数学专题  命题、定理、证明含答案

5.3.2 命题、定理、证明要点感知1 __________一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是__________,“那么”后面接的部分是__________.预习练习1-1下列语句中,是命题的是( )A.有公共顶点的两个角是对顶角B.在直线AB上任取一点CC.用量角器量角的度数D.直角都相等吗1-2 将“两点之间,线段最短”写成“如果……那么……”的形式:______________________________.要点感知2 题设成立,并且结论一定成立的命题叫做__________;题设成立,不能保证结论__________的命题叫做假命题.预习练习2-1下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角C.钝角大于它的补角D.锐角与钝角之和等于平角要点感知 3 经过推理证实为正确并可以作为推理的依据的真命题叫做__________.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做__________.预习练习3-1如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.知识点1 命题的定义1.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤知识点2 命题的结构2.命题的题设是__________事项,结论是由__________事项推出的事项.3.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________________.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.知识点3 命题的真假及证明5.下列命题中,是真命题的是( )A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是( )A.相等的角是对顶角B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.8.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.“具有相同字母的项称为同类项”是“同类项”的定义9.下列命题是假命题的是( )A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线10.下列三个命题:①同位角相等,两直线平行;②两直线和第三条直线相交,同位角相等;③过两点有且只有一条直线.其中真命题有( )A.0个B.1个C.2个D.3个11.把命题“同角的余角相等”改写成“如果……那么……”的形式,正确的是( )A.如果是同角,那么余角相等B.如果两个角相等,那么这两个角是同一个角的余角C.如果是同角的余角,那么相等D.如果两个角是同一个角的余角,那么这两个角相等12.“直角都相等”的题设是____________________,结论是____________________.13.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.反例:______________________________;(2)“如果a2=b2,则a=b”是一个假命题.反例:______________________________.14.把“等角的余角相等”改写成“如果……那么……”的形式是______________________________,该命题是__________命题(填“真”或“假”).15.如图,已知:AB∥CD,∠B=∠D.求证:BC∥AD.16.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.17.(1)如图,请在AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为条件,一个作为结论,写一个命题:如果__________且__________,那么__________.(2)请说明你写的命题是真命题.18.如图所示,如果已知∠1=∠2,则AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.挑战自我19.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.参考答案课前预习要点感知1判断题设结论预习练习1-1 A1-2如果有两点,那么在连接两点的所有线中,线段最短要点感知2真命题一定成立预习练习2-1 C要点感知3定理证明预习练习3-1 证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB.当堂训练1.A2.已知已知3.如果两条直线垂直于同一条直线,那么这两条直线平行4.(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.5.B6.A7.是真命题,证明如下:已知:AB∥CD,BE,CF分别平分∠ABC和∠BCD.求证:BE∥CF.证明:∵AB∥CD,∴∠ABC=∠BCD.∵BE,CF分别是∠ABC,∠BCD的角平分线,∴∠2=12∠ABC,∠3=12∠BCD.∴∠2=∠3.∴BE∥CF.课后作业8.C 9.B 10.C 11.D 12.两个角是直角这两个角相等13.(1)3×0=(-2)×0(2)32=(-3)214.如果两个角是等角的余角,那么这两个角相等真15.证明:∵AB∥CD,∴∠B+∠C=180°.∵∠B=∠D,∴∠D+∠C=180°.∴BC∥AD.16.(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.17.(1)AB∥CD ∠A=30°∠CDA=30°(2)∵AB∥CD,∠A=30°,∴∠CDA=∠A=30°.18.假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN.∵∠1=∠2,∴∠ABD=∠CDN.∴AB∥CD.19.逆命题:在角的内部到角两边距离相等的点在这个角的平分线上. 题设:在角的内部到角两边距离相等的点;结论:在这个角的平分线上.。

人教版七年级数学下册第五章第三节命题、定理、证明习题(含答案) (90)

人教版七年级数学下册第五章第三节命题、定理、证明习题(含答案) (90)

人教版七年级数学下册第五章第三节命题、定理、证明复习试题(含答案)下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,那么它们的积是正数,则它们的逆命题是真命题的是_______(填序号).【答案】②【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】①对顶角相等逆命题是相等的角是对顶角,不成立;②全等三角形的对应边相等逆命题是对应边相等的三角形是全等三角形,成立;③如果两个实数是正数,它们的积是正数逆命题是如果两个数的积是正数,那么这两个数是正数,不成立.故答案为:②.【点睛】此题考查命题与定义,解题关键在于掌握其定义.92.命题:“如果|a|=|b|,那么a=b”的逆命题是:____(填“真命题”或“假命题”).【答案】真命题【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案【详解】“如果|a|=|b|,那么a=b”的逆命题是“如果a=b,那么|a|=|b|.”“如果a=b,那么|a|=|b|”是真命题,故答案为:真命题.【点睛】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.93.“到一个角的两边距离相等的点,在这个角的平分线上”它的逆命题是_________.【答案】角平分线上的点到角两边的距离相等【解析】【分析】根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,即可得出结论.【详解】解:“到一个角的两边距离相等的点,在这个角的平分线上”的逆命题是角平分线上的点到角两边的距离相等.故答案为:角平分线上的点到角两边的距离相等.【点睛】此题考查的是写一个命题的逆命题,掌握逆命题的定义是解决此题的关键.94.命题“如果两个角是直角,那么它们相等”的逆命题是;逆命题是命题(填“真”或“假”).【答案】如果两个角相等,那么它们是直角;假.【解析】【分析】先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假.【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为:如果两个角相等,那么它们是直角;假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.95.把命题“同位角相等”改写成“如果……那么……”的形式:____________________________________【答案】如果两个角是同位角,那么这两个角相等.【解析】【分析】命题有题设与结论组成,把命题的题设写在如果的后面,结论写在那么的后面即可.【详解】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为:如果两个角是同位角,那么这两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.96.命题“两个锐角之和一定是钝角”是_____.(填“真命题”或“假命题”)【答案】假命题【解析】【分析】两个40°角的和是80°,还是锐角,所以这个命题是假命题.【详解】解:两个锐角之和一定是钝角是假命题,故答案为:假命题.【点睛】判断一个命题是真命题,一般要进行推理、论证,判断一个命题是假命题,只要举出一个反例即可.97.命题:“如果m是自然数,那么它是有理数”,则它的逆命题为:__________.【答案】如果m 是有理数,那么它是自然数;【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】解:命题:“如果m 是自然数,那么它是有理数”的逆命题为“如果m 是有理数,那么它是自然数”.故答案为“如果m 是有理数,那么它是自然数”.【点睛】此题考查命题与定理,解题关键在于掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.98.举反例说明下面的命题是假命题,命题:若0ab >,则0a >且0b >,反例:__________【答案】1a =-,2b =-,则0ab >且0a <,0b <【解析】【分析】根据要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致进行分析即可.【详解】解:因为当1a =-,2b =-时,原条件ab >0仍然成立,所以反例为:1a =-,2b =-,则0ab >且0a <,0b <.故答案为:1a =-,2b =-,则0ab >且0a <,0b <.【点睛】本题考查命题相关,熟练掌握命题的定义即判断一件事情的语句,叫做命题以及判断一个命题是假命题,只需举出一个反例即可.99.下列命题中,其逆命题成立的是___________.(只填写序号) ①对顶角相等;②线段垂直平分线上的点到线段的两个端点的距离相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长,,a b c 满足222+=a b c ,那么这个三角形是直角三角形.【答案】②、④【解析】【分析】根据逆命题的确定方法得到各项的逆命题依次判断正确即可.【详解】①逆命题为:相等的角是对顶角,错误;②逆命题为:到线段的两个端点的距离相等的点在线段的垂直平分线上,正确;③逆命题为:如果两个实数的平方相等,那么这两个实数相等,错误; ④如果一个直角三角形的三边长分别是a 、b 、c ,且c 为斜边,那么222+=a b c ,正确,故答案为:②、④.【点睛】此题考查命题的逆命题,判断命题是否正确,正确理解对顶角的性质,线段垂直平分线定理,勾股定理及逆定理是解题的关键.三、解答题100.如图,已知BC 、DE 相交于点O ,给出以下三个判断:①//AB DE ;②//BC EF ;③B E ∠=∠.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题.【答案】见解析【解析】【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质即可判断这些命题的真假.【详解】解:(1)若AB ∥DE ,BC ∥EF ,则∠B =∠E ,此命题为真命题;(2)若AB ∥DE ,∠B =∠E ,则BC ∥EF ,此命题为真命题;(3)若∠B =∠E ,BC ∥EF ,则AB ∥DE ,此命题真命题;第一个命题证明如下:∵AB ∥DE ,∴∠B =∠DOC .∵BC∥EF,∴∠DOC=∠E.∴∠B=∠E.第二个命题证明如下:∵AB∥DE,∴∠B=∠DOC.∵∠B=∠E,∴∠DOC=∠E.∴BC∥EF.第三个命题证明如下:∵BC∥EF,∴∠DOC=∠E.∵∠B=∠E,∴∠DOC=∠B.∴AB∥DE.【点睛】本题考查了真假命题和平行线的判定与性质,属于常考题型,熟练掌握上述基本知识是解题的关键.。

人教版七年级数学下册《命题、定理、证明》拓展练习

人教版七年级数学下册《命题、定理、证明》拓展练习

《命题、定理、证明》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是()A.∠B=∠D B.OA=OC C.OA=OD D.AD=BC 2.(5分)甲乙丙丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的3.(5分)如图,AB∥EF,∠BAC与∠CDE的角平分线交于点G,且GF∥DE,已知∠ACD=90°,若∠AGD=α,∠GFE=β,则下列等式中成立的是()A.α=βB.2α+β=90°C.3α+β=90°D.α+2β=90°4.(5分)下列命题是真命题的是()A.三角形的一个外角大于它的任何一个内角B.到线段两端距离相等的点在线段的垂直平分线上C.分式的分子与分母都乘同一个整式,所得分式与原分式相等D.相等的角是对顶角5.(5分)下列命题正确的个数为()①圆心角相等,所对的弦也相等②等弧所对的弦相等③平分弦的直径垂直弦④矩形都相似⑤三点确定一个圆A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,共25.0分)6.(5分)张老师把红、白、蓝各一个气球分别送给三个小朋友.根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?(1)小春说:“我分到的不是蓝气球.”(2)小宇说:“我分到的不是白气球.”(3)小华说:“我看见张老师把蓝气球和红气球分给上面两位小朋友了.”则小春、小宇、小华分别分到颜色的气球.7.(5分)已知三条不同的直线a、b、c在同一平面内,如果a∥b,a⊥c,那么b⊥c:这是一个命题.(填“真或假”)8.(5分)下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是(填序号)9.(5分)命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.10.(5分)把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.三、解答题(本大题共5小题,共50.0分)11.(10分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.证明:∵AB∥CD(已知)∴∠=∠.()∵.(已知)∴∠EBC=∠ABC,(角平分线的定义)同理,∠FCB=∴∠EBC=∠FCB.()∴BE∥CF.()12.(10分)阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠,∠C=∠.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE 平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为°(用含n的代数式表示)13.(10分)综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.【发现】(1)∵AM∥BN,∴∠ACB=∠;(2)求∠ABN、∠CBD的度数;解:∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.【操作】(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.【探究】(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.14.(10分)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.15.(10分)已知AB∥CD,点E为平面内一点,BE⊥CE于E.(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.《命题、定理、证明》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,已知AC∥BD,∠A=∠C,则下列结论不一定成立的是()A.∠B=∠D B.OA=OC C.OA=OD D.AD=BC【分析】根据平行线的性质和等腰三角形的判定逐个判断即可.【解答】解:A、∵AC∥BD,∴∠A=∠D,∠C=∠B,∵∠A=∠C,∴∠B=∠D,正确,故本选项不符合题意;B、∵∠A=∠C,∴OA=OC,正确,故本选项不符合题意;C、根据已知不能推出OA=OD,错误,故本选项符合题意;D、∵∠A=∠C,∠B=∠D,∴OA=OC,OD=OB,∴OA+OD=OC+OB,即AD=BC,正确,故本选项不符合题意;故选:C.【点评】本题考查了平行线的性质和等腰三角形的判定,能灵活运用定理进行推理是解此题的关键.2.(5分)甲乙丙丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的【分析】先判断出乙和丙的车不是红色,进而判断出甲的车是红色,再根据丙的说法不是实话,判断出丁的车是蓝色,再根据甲的说法判断出丙和乙的车的颜色.【解答】解:∵丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,假设乙的车是红色,∴乙的说法是实话,∴丙的车也是红色,和乙的车是红色矛盾,假设丙的车是红色,∴丙的说法是实话,而乙说:“丙的车是红色的.”,∴乙的说法是实话,∴有两人说的是实话,与只有一个人是说法是实话矛盾,∴只有甲的车是红色,∴甲的说法是实话,∴丙的说法不是实话,∵丙说:“丁的车不是蓝色的.”∴丁的车是蓝色,∴乙和丙的车一个是白色,一个是银色,∵甲说:“乙的车不是白色.”且甲的说法是实话,∴丙的车是白色,乙的车是银色,即:甲的车是红色,乙的车是银色,丙的车是白色,丁的车是蓝色,故选:C.【点评】此题是推理与论证题目,解决此类题目先假设某个说法正确,然后根据题意进行分析推理,看是否有矛盾,进而得出结论,3.(5分)如图,AB∥EF,∠BAC与∠CDE的角平分线交于点G,且GF∥DE,已知∠ACD=90°,若∠AGD=α,∠GFE=β,则下列等式中成立的是()A.α=βB.2α+β=90°C.3α+β=90°D.α+2β=90°【分析】过D作DP∥EF,连接GC并延长,依据平行线的性质以及三角形的外角性质,即可得到∠CAG+∠CDG=90°﹣α,∠EDP=∠F=β,进而得出2α+β=90°.【解答】解:如图,过D作DP∥EF,连接GC并延长,∵AB∥EF,∴AB∥DP,∴∠ACD=∠BAC+∠PDC=90°,又∵∠ACH是△ACG的外角,∠DCH是△DCG的外角,∴∠ACD=∠CAG+∠CDG+∠AGD,∴∠CAG+∠CDG=90°﹣α,∵∠BAC与∠CDE的角平分线交于点G,∴∠BAC=2∠GAC,∠CDG=∠EDG,∴2∠GAC+∠CDG+(∠EDG﹣∠EDP)=90°,又∵DP∥EF,DE∥GF,∴∠EDP=∠F=β,∴2∠GAC+∠CDG+(∠EDG﹣β)=90°,即2∠GAC+2∠CDG﹣β=90°,∴2(90°﹣α)﹣β=90°,∴2α+β=90°,故选:B.【点评】本题主要考查了平行线的性质,熟练掌握“两直线平行,同旁内角互补”是解题的关键.4.(5分)下列命题是真命题的是()A.三角形的一个外角大于它的任何一个内角B.到线段两端距离相等的点在线段的垂直平分线上C.分式的分子与分母都乘同一个整式,所得分式与原分式相等D.相等的角是对顶角【分析】利用三角形的外角的性质、垂直平分线的判定、分式的基本性质及对顶角的性质分别判断后即可确定正确的选项.【解答】解:A、三角形的一个外角大于它的任何一个不相邻的内角,故错误,是假命题;B、到线段两端距离相等的点在线段的垂直平分线上,正确,是真命题;C、分式的分子与分母都乘同一个不为零的整式,所得分式与原分式相等,故错误,是假命题;D、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是能够了解三角形的外角的性质、垂直平分线的判定、分式的基本性质及对顶角的性质,难度不大.5.(5分)下列命题正确的个数为()①圆心角相等,所对的弦也相等②等弧所对的弦相等③平分弦的直径垂直弦④矩形都相似⑤三点确定一个圆A.1个B.2个C.3个D.4个【分析】利用圆周角定理、垂径定理、矩形的性质及确定圆的条件分别判断后即可确定正确的选项.【解答】解:①同圆或等圆中,圆心角相等,所对的弦也相等,故错误;②等弧所对的弦相等,正确;③平分弦(不是直径)的直径垂直弦,故错误;④矩形的对应角都相等,但对应边不一定成比例,故错误;⑤不在同一直线上的三点确定一个圆,故错误,正确的有1个,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解圆的有关的定义及性质,难度不大.二、填空题(本大题共5小题,共25.0分)6.(5分)张老师把红、白、蓝各一个气球分别送给三个小朋友.根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?(1)小春说:“我分到的不是蓝气球.”(2)小宇说:“我分到的不是白气球.”(3)小华说:“我看见张老师把蓝气球和红气球分给上面两位小朋友了.”则小春、小宇、小华分别分到红、蓝、白颜色的气球.【分析】首先根据小春和小华说的判断出分给小宇蓝色气球,分给小春红色气球,即可得出结论.【解答】解:∵小春说:“我分到的不是蓝气球.”小华说:“我看见张老师把蓝气球和红气球分给上面两位小朋友了.”∴小宇分到达是蓝色气球,小春分到的是红色气球,∴剩下的白色气球分给了小华,即:小春分到红色气球,小宇分到蓝色气球,小华分到白色气球,故答案为:红、蓝、白.【点评】此题是推理与论证题目,审清题意,根据小春和小华的说法判断出小宇分到蓝色气球是解本题的关键.7.(5分)已知三条不同的直线a、b、c在同一平面内,如果a∥b,a⊥c,那么b⊥c:这是一个真命题.(填“真或假”)【分析】根据平行线的性质定理判断即可.【解答】解:∵a∥b,a⊥c,∴b⊥c,∴三条不同的直线a、b、c在同一平面内,如果a∥b,a⊥c,那么b⊥c:这是一个真命题;故答案为:真.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断该命题的真假关键是要熟悉课本中与平行线有关的性质定理.8.(5分)下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是①③(填序号)【分析】分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.【解答】解:①对顶角相等是真命题;②两直线平行,内错角相等;故是假命题;③平行于同一条直线的两条直线互相平行,是真命题;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,是假命题;故答案为:①③【点评】本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键.9.(5分)命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.10.(5分)把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.三、解答题(本大题共5小题,共50.0分)11.(10分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.证明:∵AB∥CD(已知)∴∠ABC=∠DCB.(两直线平行,内错角相等)∵BE平分∠ABC.(已知)∴∠EBC=∠ABC,(角平分线的定义)同理,∠FCB=∠DCB∴∠EBC=∠FCB.(等量代换)∴BE∥CF.(内错角相等,两直线平行)【分析】根据平行线的性质得出∠ABC=∠DCB,求出∠EBC=∠FCB,根据平行线的判定得出即可.【解答】证明:∵AB∥CD(已知)∴∠ABC=∠DCB(两直线平行,内错角相等),∵BE平分∠ABC,∴∠EBC=∠ABC(角平分线的定义),同理:∠FCB=∠DCB,∴∠FBC=∠FCB(等量代换),∴BE∥CF(内错角相等,两直线平行),故答案为:ABC,DCB,两直线平行,内错角相等,BE平分∠ABC,∠DCB,等量代换,内错角相等,两直线平行.【点评】本题考查了平行线的性质和判定、角平分线的定义等知识点,能熟练地运用定理进行推理是解此题的关键.12.(10分)阅读理解如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC∴∠B=∠BAE,∠C=∠CAD.又∵∠EAB+∠BAC+∠DAC=180°(平角定义)∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.小明受到启发,过点C作CF∥AB如图所示,请你帮助小明完成解答:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°.BE平分∠ABC,DE 平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为65°.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为(215﹣n)°(用含n的代数式表示)【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)①过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;②∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE =∠DEF=35°,进而可求∠BED=∠BEF+∠DEF=180°﹣n°+35°=215°﹣n°.【解答】解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC,故答案为:∠EAB,∠DAC;(2)如图2,过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)①如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;②如图4,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°﹣n°+35°=215°﹣n°.故答案为:215°﹣n.【点评】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.13.(10分)综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.【发现】(1)∵AM∥BN,∴∠ACB=∠CBN;(2)求∠ABN、∠CBD的度数;解:∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=120°,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义)∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°.【操作】(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.【探究】(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是30°.【分析】(1)由平行线的性质:两直线平行同旁内角互补和内错角相等可得;(2)由(1)知∠ABP+∠PBN=120°,再根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据∠ABN=120°,∠CBD=60°可得答案.【解答】解:(1)∵AM∥BN,∴∠ACB=∠CBN;故答案为:CBN;(2):∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=120°,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义)∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°,故答案为:120°;2∠PBD;角平分线的定义;60°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°,故答案为:30°.【点评】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.14.(10分)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.【点评】此题考查了平行线的性质.此题注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.(10分)已知AB∥CD,点E为平面内一点,BE⊥CE于E.(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CD于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.【分析】(1)结论:∠ECD=90°+∠ABE.如图1中,从BE交DC的延长线于H.利用三角形的外角的性质即可证明;(2)只要证明∠CEF与∠CEM互余,∠BEM与∠CEM互余,可得∠CEF=∠BEM即可解决问题;(3)如图3中,设∠GEF=α,∠EDF=β.想办法构建方程求出α即可解决问题;【解答】解:(1)结论:∠ECD=90°+∠ABE.理由:如图1中,从BE交DC的延长线于H.∵AB∥CH,∴∠ABE=∠H,∵BE⊥CE,∴∠CEH=90°,∴∠ECD=∠H+∠CEH=90°+∠H,∴∠ECD=90°+∠ABE.(2)如图2中,作EM∥CD,∵EM∥CD,CD∥AB,∴AB∥CD∥EM,∴∠BEM=∠ABE,∠F+∠FEM=180°,∵EF⊥CD,∴∠F=90°,∴∠FEM=90°,∴∠CEF与∠CEM互余,∵BE⊥CE,∴∠BEC=90°,∴∠BEM与∠CEM互余,∴∠CEF=∠BEM,∴∠CEF=∠ABE.(3)如图3中,设∠GEF=α,∠EDF=β.∴∠BDE=3∠GEF=3α,∵EG平分∠CEF,∴∠CEF=2∠FEG=2α,∴∠ABE=∠CEF=2α,∵AB∥CD∥EM,∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,∴∠BED=∠BEM+∠MED=2α+β,∵ED平分∠BEF,∴∠BED=∠FED=2α+β,∴∠DEC=β,∵∠BEC=90°,∴2α+2β=90°,∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,∵∠ABK=180°,∴∠ABE+∠B=DBE+∠KBD=180°,即2α+(3α+β)+(3α+β)=180°,∴6α+(2α+2β)=180°,∴α=15°,∴∠BEG=∠BEC+∠CEG=90°+15°=105°.【点评】本题考查平行线的性质、垂线的性质、三角形的内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.。

人教七年级下册数学 5.3.2命题、定理、证明 同步练习(解析版)

人教七年级下册数学 5.3.2命题、定理、证明 同步练习(解析版)

5. 3.2命题、定理、证明基础闯关全练1.下列语句中,是命题的是( )①若∠1= 60°,∠2= 60°,则∠1=∠2;②同位角相等吗?③画线段AB= CD ;④如果a >b ,b >c ,那么a >c ;⑤直角都相等.A .①④⑤ B.①②④ C .①②⑤ D.②③④⑤ 2.下列命题中不正确的是( ) A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a=b ,那么a ² =b ²3.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A. ∠α=60°,∠α的补角∠β= 120°,∠β>∠α B .∠α=90°,∠α的补角∠β=90°,∠β= ∠α C .∠α=100°,∠α的补角∠β=80°,∠β<∠α D .两个角互为邻补角4.写出下列命题的条件和结论. (1)两直线平行,同旁内角互补;(2)如果∠DOE=2∠EOF ,那么OF 是∠DOE 的平分线;(3)等角的余角相等.5.下列说法不正确的是( ) A .定理是命题,而且是真命题 B .“对顶角相等”是命题,但不是定理 C .“同角(或等角)的余角相等”是定理 D .“同角(或等角)的补角相等”是定理 6.完成下列的推导过程:已知:如图.BD ⊥AC ,EF ⊥AC .∠1=∠2.求证:GD ∥BC. 证明:∵BD ⊥AC ,EF ⊥AC (已知), ∴∠BDC=∠EFC= 90°(垂直的定义), ∴______∥_____( ), ∴∠3=_____( ), 又∵∠1=∠2(已知),∴______=_______(等量代换), ∴GD ∥BC( ). 能力提升全练 1.下列语句:①两点之间,线段最短; ②不许大声讲话; ③连接A 、B 两点; ④鸟是动物; ⑤不相交的两条直线是平行线;⑥n 为任意自然数,n ² -n+11的值都是质数吗?其中不是命题的有( )A.2个B.3个C.4个D.5个2.对于下列假命题,各举一个反例写在横线上. (1)“如果ac=bc ,那么a=b ”是一个假命题, 反例:_________;(2)“如果a ² =b ²,则a=b ”是一个假命题, 反例:__________.3.把下列命题写成“如果……那么……”的形式,并判断其真假. (1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.4.已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”.(1)下图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB_____CD ,EM 、FN 分别平分______和______,则_____; (2)试判断这个命题的真假,并说明理由,5.如图.已知∠1=∠3,∠2=∠4,EF ∥AD ,补充各证明过程: (1)∵∠_______=∠_______(已知), ∴AD//BC( ).(2)∵∠_______=∠_______(已知), ∴AB//CD( ). (3)∵EF//AD (已知), 又∵AD//BC(已证),∴____∥_____(平行于同一条直线的两条直线平行). 三年模拟全练 一、选择题1.下列命题中,是真命题的是( ) A .过一点有且只有一条直线与已知直线平行 B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .在同一平面内.垂直于同一直线的两条直线平行2.①过平面上两点,有且只有一条直线;②同角的补角相等;③两点之间的连线中,线段最短;④一个角的补角不是锐角就是钝角.其中是定理的有( )A.1个B.2个 C .3个 D.4个 二、填空题3.把下列命题写成“如果……那么……”的形式,不能被2整除的数是奇数:___________三、解答题4.已知:如图,C,D是直线AB上两点,∠1+ ∠2= 180°,DE平食∠CDF、EF//AB.(1)求证:CE∥DF;(2)若∠DCE= 130°,求∠DEF的度数.五年中考全练一、选择题1.下列命题是真命题的是( )A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.相等的两个角是对顶角2.对于命题“若a²>b²,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a= 3,b=2B.a= -3,b=2C.a=3,b= -1D.a= -1,b=3二、填空题3.下列四个命题:①对顶角相等;②同旁内角互补;③邻补角互补;④两直线平行,同位角相等,其中是假命题的为_____(填序号).4.写出命题“如果a=b,那么3a= 3b”的题设:______ ,结论:______ _. 核心素养全练1.在平面直角坐标系中,任意两点A(x₁,y₁),B(x₂,y₂),规定运算:(1)A⊕B=(x₁+x₂,y₁+y₂);(2)A B=x₁x₂+y₁y₂;(3)当x₁=x₂且y₁=y₂时,A=B,下列四个命题:①若A(1,2),B(2,-1),则A⊕B=(3,1),A B=0;②若A⊕B=B⊕C,则A=C;③若A B=B C.则A=C;④对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立.其中正确命题的个数为( ) A.1B.2C.3D.42.(1)如图所示,DE∥BC,∠1=∠3,CD⊥AB,试说明FG⊥AB;(2)若把(1)中的题设中的“DE∥BC”与结论“FG⊥AB”对调,所得命题是不是真命题?试说明理由;(3)若把(1)中的题设中的“∠1=∠3”与结论“FG⊥AB”对调呢?5.3.2命题、定理、证明1.A②③都不是判断一件事情的语句,不是命题,①④⑤是命题.2.B两个数的绝对值相等,但这两个数不一定相等,如|-2|=|2|,但-2≠2.3.C A中,∠α的补角>∠α,符合假命题的结论,错误;B中,∠α的补角=∠α,符合假命题的结论,错误;C中,∠α的补角<∠α,不符合假命题的结论,正确;D中,由于无法说明两角具体的大小关系,故错误,选C.4.解析(1)条件是两直线平行,结论是同旁内角互补.(2)条件是∠DOE=2∠EOF.结论是OF是∠DOE的平分线.(3)条件是两个角是等角,结论是这两个角的余角相等.5.B对顶角相等是命题,且是真命题,也是定理,故B不正确.6.解析∵BD⊥AC.EF⊥AC(已知).∴∠BDC=∠EFC=90°(垂直的定义).∴BD∥EF(同位角相等,两直线平行).∴∠3=∠2(两直线平行,同位角相等),又∵∠1=∠2(已知).∴∠3=∠1(等量代换).∴GD∥BC(内错角相等,两直线平行).1.B只有对一件事情作出判断的语句,才是命题,如果一个句子既没有肯定什么,也没有否定什么,则它一定不是命题,所以不是命题的有②③⑥,故选B.2.答案(1)3×0=(-2)×0(3≠-2)(2)3²=(-3)²(3≠-3)3.解析(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角,是假命题.4.解析(1)已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FN.故答案为∥;∠GEB;∠EFD;EM//FN.(2)此命题为真命题,证明:∵A B∥CD.∴∠GEB=∠EFD,∵EM、FN分别平分∠GEB和∠EFD,∴∠GEM=21∠GEB,∠EFN=21∠EFD,∴∠GEM=∠EFN,∴E M∥FN.5.解析(1)∵∠1=∠3(已知),∴AD//BC(内错角相等,两直线平行).(2)∵∠2=∠4(已知).∴AB∥CD(内错角相等,两直线平行).(3)∵EF//AD(已知),又∵AD//BC(已证),∴EF∥BC(平行于同一条直线的两条直线平行).一、选择题1.D A项,过直线外一点有且只有一条直线与已知直线平行,所以A选项错误;B项,相等的角不一定为对顶角,所以B选项错误:C项,两条平行直线被第三条直线所截,同旁内角互补,所以C选项错误;D项,在同一平面内,垂直于同一直线的两条直线平行,所以D 选项正确.故选D .2.C ①②③都是正确的命题,是学过的定理,④是错误的命题, 二、填空题3.答案 如果一个数不能被2整除,那么这个数是奇数解析先分清命题“不能被2整除的数是奇数”的题设与结论,然后写成“如果……那么……”的形式,如果一个数不能被2整除,那么这个数是奇数. 三、解答题4.解析(1)证明:∵C ,D 是直线AB 上两点, ∴∠1+∠ DCE= 180°.∵∠1+∠2= 180°,∴∠2=∠DCE.∴ CE ∥DF. (2)∵CE ∥DF ,∠DCE= 130°.∴∠CDF=180°-∠DCE=180°-130°=50°. ∵DE 平分∠CDF ,∴∠CDE=21∠CDF= 25°.∵EF//AB ,∴∠DEF= ∠LCDE=25°. 一、选择题1.A A 项,如果一个数的相反数等于这个数本身,那么这个数一定是0.原命题是真命题;B 项,如果一个数的倒数等于这个数本身,那么这个数是1或-1,原命题是假命题;C 项,如果一个数的平方等于这个数本身,那么这个数是1或0,原命题是假命题;D 项,相等的两个角不一定是对顶角,原命题是假命题.故选A .2.B 在A 中,a ²=9,b ²=4,且3>2,满足“若a ²>b ²,则a >b ”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a ² =9,b ²=4,且-3<2,此时虽然满足a ² >b ²,但a >b 不成立,故B 选项中a 、b 的值可以说明命题为假命题;在C 中,a ² =9,b ² =1,且3>-1,满足“若a ² >b ²,则a >b ”,故C 选项中a 、b 的值不能说明命题为假命题;在D 中,a ²=1,b ² =9,且-1<3,此时a ²<b ²,不满足题设条件,故D 选项中a 、b 的值不能说明命题为假命题,故选B . 二、填空题 3.答案②解析 ①对顶角相等是真命题;②同旁内角互补是假命题;③邻补角互补是真命题;④两直线平行,同位角相等是真命题. 4.答案a=b ;3a=3b1.C ①A ⊕B=(1+2,2-1)=(3,1),A B= 1×2 +2×(-1)=0,所以①正确;②设C(x ₃,y ₃),因为A ⊕B=(x ₁+x ₂,y ₁+y ₂),B ⊕C= (x ₂ +x ₃,y ₂ +y ₃),而A ⊕B=B ⊕C .所以x ₁+x ₂ =x ₂ +x ₃,y ₁+y ₂ =y ₂ +y ₃,则x ₁=x ₃,y ₁=y ₃,所以A=C ,所以②正确;③因为A B=x ₁x ₂ +y ₁y ₂ ,B C=x ₂x ₃+y ₂ y ₃,而A B=B C ,则x ₁x ₂ +y ₁y ₂ =x ₂x ₃+y ₂y ₃,不能得到x ₁=x ₃,y ₁=y ₃,所以A=C 不一定成立,所以③不正确;④因为(A ⊕B)⊕C=(x ₁+x ₂ +x ₃,y ₁+y ₂ +y ₃),A ⊕(B ⊕C)= (x ₁+x ₂+x ₃,y ₁+y ₂+y ₃),所以(A ⊕B)⊕C=A ⊕(B ⊕C),所以④正确.故选C . 2.解析(1)证明:∵DE ∥BC ,∴∠1= ∠2. 又∠1=∠3.∴∠2=∠3.∴CD ∥FG .∵CD ⊥AB ,∠CDB= 90°.∴∠BFG= 90°,∴FG ⊥AB. (2)是真命题.理由如下:∵CD ⊥AB ,FG ⊥AB ,∴CD//FG.∴ ∠2=∠3. 又∠1=∠3.∴∠1=∠2.∴DE ∥BC.(3)是真命题,理由如下:同(2)可得∠2=∠3,∵DE∥BC.∴∠1=∠2.∴∠1=∠3.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学“命题、定理与证明”练习
1、判断下列语句是不是命题
(1)延长线段AB ( )
(2)两条直线相交,只有一交点( )
(3)画线段AB 的中点( )
(4)若|x|=2,则x=2( )
(5)角平分线是一条射线( )
2、选择题
(1)下列语句不是命题的是( )
A 、两点之间,线段最短
B 、不平行的两条直线有一个交点
C 、x 与y 的和等于0吗?
D 、对顶角不相等。

(2)下列命题中真命题是( )
A 、两个锐角之和为钝角
B 、两个锐角之和为锐角
C 、钝角大于它的补角
D 、锐角小于它的余角
(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。

其中假命题有( )
A 、1个
B 、2个
C 、3个
D 、4个
3、分别指出下列各命题的题设和结论。

(1)如果a ∥b ,b ∥c ,那么a ∥c
(2)同旁内角互补,两直线平行。

4、分别把下列命题写成“如果……,那么……”的形式。

(1)两点确定一条直线;
(2)等角的补角相等;
(3)内错角相等。

5、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF
证明:∵AB ⊥BC ,BC ⊥CD (已知) ∴ = =90°( ) ∵∠1=∠2(已知) ∴ = (等式性质)
∴BE ∥CF ( ) 6、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角。

求证:∠ACD=∠B 。

证明:∵AC ⊥BC (已知) ∴∠ACB=90°( )
∴∠BCD 是∠DCA 的余角
∵∠BCD 是∠B 的余角(已知) ∴∠ACD=∠B ( )
7、已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。

求证:AD ∥BE 。

C A B D E F 1 2 B D A C
D
证明:∵AB ∥CD (已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF ( )
即∠ =∠
∴∠3=∠ ( )
∴AD ∥BE ( )
8、已知,如图,AB ∥CD ,∠EAB+∠FDC=180°。

求证:AE ∥FD 。

9、已知:如图,DC ∥AB ,∠1+∠A=90°。

求证:AD ⊥DB 。

10、如图,已知AC ∥DE ,∠1=∠2。

求证:AB ∥CD 。

11、已知,如图,AB ∥CD ,∠1=∠B ,∠2=∠D 。

求证:BE ⊥DE 。

12、求证:两条平行直线被第三条直线所截,内错角的平分线互相平行。

【练习答案】
1、(1)不是 (2)是 (3)不是 (4)是 (5)是
2、(1)C (2)C (3)B
3、(1)题设:a ∥b ,b ∥c 结论:a ∥c
(2)题设:两条直线被第三条直线所截的同旁内角互补。

结论:这两条直线平行。

4、(1)如果有两个定点,那么过这两点有且只有一条直线
(2)如果两个角分别是两个等角的补角,那么这两个角相等。

(3)如果两个角是内错角,那么这两个角相等。

5、∠ABC=∠BCD ,垂直定义,∠EBC=∠BCF ,内错角相等,两直线平行。

6、垂直定义;余角定义,同角的余角相等。

7、∠BAE 两直线平行同位角相等
∠BAE (等量代换) 等式性质
∠BAE ,∠CAD ,∠CAD (等量代换)
内错角相等,两直线平行。

8、证明:∵AB ∥CD
∴∠AGD+∠FDC=180°(两直线平行,同旁内角互补)
D A B C
E
F
G A B D E 1 2 A B C D E 1 2 A B C D 1
∵∠EAB+∠FDC=180°(已知)
∴∠AGD=∠EAB (同角的补角相等)
∴AE ∥FD (内错角相等,两直线平行)
9、证明:∵DC ∥AB (已知)
∴∠A+∠ADC=180°(两直线平行,同旁内角互补)
即∠A+∠ADB+∠1=180°
∵∠1+∠A=90°(已知)
∴∠ADB=90°(等式性质)
∴AD ⊥DB (垂直定义)
10、证明:∵AC ∥DE (已知)
∴∠2=∠ACD (两直线平行,内错角相等)
∵∠1=∠2 (已知)
∴∠1=∠ACD (等量代换)
∴AB ∥CD (内错角相等,两直线平行)
11、证明:作EF ∥AB
∵AB ∥CD ∴∠B=∠3(两直线平行,内错角相等) ∵∠1=∠B (已知) ∴∠1=∠3(等量代换)
∵AB ∥EF ,AB ∥(已作,已知)
∴EF ∥CD (平行于同一直线的两直线平行)
∴∠4=∠D (两直线平行,内错角相等)
∵∠2=∠D (已知)
∴∠2=∠4(等量代换)
∵∠1+∠2+∠3+∠4=180°(平角定义)
∴∠3+∠4=90°(等量代换、等式性质)
即∠BED=90°
∴BE ⊥ED (垂直定义)
12、已知:AB ∥CD ,EG 、FR 分别是∠BEF 、∠EFC 的平分线。

求证:EG ∥FR 。

证明:∵AB ∥CD (已知) ∴∠BEF=∠EFC (两直线平行,内错角相等) ∵EG 、FR 分别是∠BEF 、∠EFC 的平分线(已知) ∴2∠1=∠BEF ,2∠2=∠EFC (角平分线定义)
∴2∠1=2∠2(等量代换)
∴∠1=∠2(等式性质)
∴EG ∥FR (内错角相等,两直线平行) A B C D E 1 2 4 3 R A B C D E F G 1 2。

相关文档
最新文档