2020-2021初中数学概率真题汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学概率真题汇编
一、选择题
1.抛掷一枚质地均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()
A.大于1
2
B.等于
1
2
C.小于
1
2
D.无法确定
【答案】B
【解析】
【分析】
根据概率的意义解答即可.
【详解】
∵硬币由正面朝上和朝下两种情况,并且是等可能,
∴第3次正面朝上的概率是1
2
.
故选:B.
【点睛】
本题考查了概率的意义,正确理解概率的含义并明确硬币只有正反两个面是解决本题的关键.
2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()
A.1
2
B.
1
3
C.
1
6
D.
1
9
【答案】B
【解析】
【分析】
先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】
画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)
共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3,
所以小斌和小宇两名同学选到同一课程的概率=31 93 ,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列
出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
3.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()
A.1
36
B.
1
6
C.
1
12
D.
1
3
【答案】A
【解析】
【分析】
本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.
【详解】
P(a,b,c正好是直角三角形三边长)=
61 21636
=
故选:A
【点睛】
本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.
4.下列事件中,是必然事件的是( )
A.任意掷一枚质地均匀的骰子,掷出的点数是奇数
B.操场上小明抛出的篮球会下落
C.车辆随机到达一个路口,刚好遇到红灯
D.明天气温高达30C︒,一定能见到明媚的阳光
【答案】B
【解析】
【分析】
根据必然事件的概念作出判断即可解答.
【详解】
解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;
B、操场上小明抛出的篮球会下落是必然事件,故B正确;
C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;
D、明天气温高达30C︒,一定能见到明媚的阳光是随机事件,故D错误;
故选:B.
【点睛】
本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题
的关键.
5.(2018•六安模拟)下列成语所描述的是必然事件的是()
A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针
【答案】B
【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.
6.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6
y
x
=图象的概率是()
A.1
2
B.
1
3
C.
1
4
D.
1
8
【答案】B
【解析】
【分析】
根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.
【详解】
Q点(),m n在函数6
y
x
=的图象上,
6
mn
∴=.
列表如下:
mn的值为6的概率是
41 123
=.
故选:B.
【点睛】
本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表
找出mn=6的概率是解题的关键.
7.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )
A.1
2
B.
1
3
C.
2
3
D.
1
6
【答案】A
【解析】
【分析】
用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】
解:画树状图如下:
则总共有12种情况,其中有6种情况是两个球颜色相同的,
故其概率为61 122
.
故答案为A.
【点睛】
本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.8.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()
A.3
4
B.
2
3
C.
1
2
D.
1
4
【答案】A
【解析】
【分析】
根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.
【详解】
∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.
∴落地后至多有一次正面朝下的概率为3
4
.
故选:A
【点睛】
本题考核知识点:求概率.解题关键点:用列举法求出所有情况.
9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()
A.1
6
B.
1
12
C.
1
3
D.
1
4
【答案】D
【解析】
【分析】
【详解】
解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:
∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84
故选D.
10.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()
A.1
2
B.
1
3
C.
1
6
D.
1
9
【答案】B
【解析】
【分析】
画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.
【详解】 如图所示:
共有9种等可能的结果数,两人选到同根绳子的结果有3个, ∴两人选到同根绳子的概率为19=13
, 故选B . 【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.
11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>
C .10a -<
D .210a +<
【答案】B 【解析】 【分析】
根据事件发生的可能性大小判断相应事件的类型即可. 【详解】
解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;
B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;
C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;
D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
12.下列说法正确的是( )
A .检测某批次灯泡的使用寿命,适宜用全面调查
B .“367人中有2人同月同日生”为必然事件
C .可能性是1%的事件在一次试验中一定不会犮生
D .数据3,5,4,1,﹣2的中位数是4 【答案】B 【解析】 【分析】
根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断. 【详解】
检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A 错; 一年有366天所以367个人中必然有2人同月同日生,B 对; 可能性是1%的事件在一次试验中有可能发生,故C 错;
3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D 错. 故选B. 【点睛】
区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.
13.在平面直角坐标系中有三个点的坐标:()()0,2,2,01
(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .
1
3
B .
16
C .
12
D .
23
【答案】A 【解析】 【分析】
先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解. 【详解】
解:在()()0,2,2,01
(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:
共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是21
63
=; 故选:A . 【点睛】
本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.
14.下列说法正确的是 ()
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定
【答案】C
【解析】
【分析】
直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.
【详解】
A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;
B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;
C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;
D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;
故选:C.
【点睛】
此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.
15.下列事件是必然事件的是()
A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50
C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180
【答案】D
【解析】
【分析】
直接利用随机事件以及必然事件的定义分别判断得出答案.
【详解】
A、打开电视机正在插放动画片为随机事件,故此选项错误;
B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;
C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;
D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.
故选:D.
【点睛】
此题考查随机事件以及必然事件,正确把握相关定义是解题关键.
16.下列问题中是必然事件的有( )个
(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1 B .2
C .3
D .4
【答案】B 【解析】 【分析】
先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】
(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】
本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.
17.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,
12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).
A .16
B .6
π C .
8π D .
5
π 【答案】B 【解析】 【分析】
由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-5
2
=1,求得直角三角形的面积和圆的面积,即可得到结论.
【详解】
解:∵AB=5,BC=4,AC=3, ∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形, ∴△ABC 的内切圆半径=4+3-5
2
=1, ∴S △ABC =12AC•BC=1
2
×4×3=6, S 圆=π,
∴小鸟落在花圃上的概率=6
π , 故选B . 【点睛】
本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.
18.在六张卡片上分别写有1
3
,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A .
16
B .
13
C .
12
D .
56
【答案】B 【解析】 【分析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率. 【详解】
∵这组数中无理数有π共2个, ∴卡片上的数为无理数的概率是21
=63
.
故选B. 【点睛】
本题考查了无理数的定义及概率的计算.
19.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是 180°
D.抛一枚硬币,落地后正面朝上
【答案】C
【解析】
分析:必然事件就是一定发生的事件,依据定义即可作出判断.
详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选C.
点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
20.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()
A.1
9
B.
1
6
C.
1
3
D.
2
3
【答案】C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为31 = 93
.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是
放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。