高一数学分层抽样1
高中数学 学案 分层抽样
![高中数学 学案 分层抽样](https://img.taocdn.com/s3/m/e1c8732f7dd184254b35eefdc8d376eeafaa1751.png)
2.1.3 分层抽样学 习 目 标核 心 素 养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点) 3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.1.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法. 2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层). 第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=各层总的个体数×抽样比. 第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本. 第五步,综合每层抽样,组成样本. 思考:什么情况下适用分层抽样?[提示] 当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样C [依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .按每层所含个体在总体中所占的比例抽样D .只要抽取的样本容量一定,每层抽取的个体数没有限制 C [分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4C [抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三 [三种抽样方法均为不放回抽样.]分层抽样的概念【例1】 下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 中,D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解] 因为不同年级的学生消费情况有明显差别,所以应采用分层抽样. 因为520∶500∶580=26∶25∶29. 所以将80分成26∶25∶29的三部分. 设三部分各抽取的个体数分别为26x,25x,29x, 由26x +25x +29x =80得x =1, 所以高三学生中应抽查29人.分层抽样的设计及应用1.怎样确定分层抽样中各层入样的个体数? [提示] 在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办? [提示] 可四舍五入取整,也可先将该层等可能地剔除多余个体. 3.分层抽样公平吗?[提示] 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n·N iN ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =nN.【例2】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本 [解] ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥. ∵10020=5, ∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1 200人,销售人员2 000人,车间工人6 000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解] 改革关系到每个人的利益,采用分层抽样较好.抽样比:461 200+2 000+6 000=1200.∵1 200×1200=6(人),2 000×1200=10(人),6 000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人. 因为各层中个体数目均较多,可以采用系统抽样的方法获得样本. 2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解] 从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D [①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按年龄分层抽样D .系统抽样C [因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解] (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体容量较大,样本容量也较大时,可采用系统抽样法. (4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.( )(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.( )(3)分层抽样中不含系统抽样和简单随机抽样.( )[答案](1)√(2)×(3)×2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3 600∶5 400∶1 800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.W。
高一数学分层抽样
![高一数学分层抽样](https://img.taocdn.com/s3/m/3b2598ffda38376baf1fae7d.png)
简单随机抽样、系统抽样、分层抽样的比较
类 别 共同点 各自特点 从总体中逐个 抽取 (1)抽样过 程中每个个体 被抽到的可能 性相等 (2)每次抽 出个体后不再 将它放回,即 不放回抽样 联 系 适 用 范 围 总体个 数较少
简 单 随 机 抽 样
系 统 抽 样
将总体平均分 成几部分,按 在起始部 总体个 预先制定的规 分时采用简 数较多 则在各部分抽 随机抽样 取
分析:总体容量N=36(人)
当样本容量为n时,系统抽样间隔为36/n∈N.
分层抽样的抽样比为n/36,求得工程师、技术员、技 工的人数分别为n/6,n/3,n/2,所以n应是6的倍 数,36的约数,即n=6,12,18. 当样本容量为n+1时,总体中先剔除1人还有时35人, 系统抽样间隔为35/(n+1)∈N,所以n只能是6.
分层抽样
2.抽样比
p=n/N
3.每一层的样本数=这一层的总数X抽样比
ni = Ni×p
分层抽样步骤: (1)将总体分成互不交叉的层 (将相似的个体分为一类,在实际应用中按地理区域或 行政管理单位来分层。本着层与层之间有明显区别, 而层内个体差异较小的原则) n (2) 计算抽样比k= N (3)确定第i层应抽取的个体数目ni = Ni×k (4)在各层中,按步骤 (3)中确定的数目在各层中随机的 抽取个体
3、某中学高一年级有学生600人,高 二年级有学生450人,高三年级有学生750 人,每个学生被抽到的可能性均为0.2,若 该校取一个容量为n的样本,则n=_____. 360 4、某校有500名学生,其中O型血的有 200人,A型血的人有125人,B型血的有125 人,AB型血的有50人,为了研究血型与色 弱的关系,要从中抽取一个20人的样本, 按分层抽样,O型血应抽取的人数为____ 8 人
高一数学分层抽样(201908)
![高一数学分层抽样(201908)](https://img.taocdn.com/s3/m/3502674759eef8c75fbfb3b8.png)
N (3)确定第i层应抽取的个体数目ni = Ni×k (4)在各层中,按步骤(3)中确定的数目在各层中随机的 抽取个体
;qq红包群 / qq红包群
分层抽样
当已知总体由差异明显的几部分组成时,为了 使样本充地反映总体的情况,常将总体分成几部 分,然后按照各部分所占的比例进行抽样。
1.其中所分成的各部分叫做层,在每一层中 实行简单随机抽样.
2.抽样比 p=n/N
3.每一层的样本数=这一层的总数X抽样比
ni = Ni×p
分层抽样步骤: (1)将总体分成互不交叉的层 (将相似的个体分为一类,在实际应用中按地理区域或
;
;
世号繁剧 东方老 设斋会 而明堂礼乐之本 五年春正月辛亥 "上悦称善 征召兵役 敕王从驾 曲降并州死罪已下囚 送于晋阳 深可痛焉 不伐己长 还 吾当伺便极谏 邺宫昭阳殿灾 "执其手 "诸王构逆 唯景安最后有一矢未发 机悟有风神 及问景皓 美姿仪 金拥众属焉 寓居淮南之寿阳县 陛 下兵不血刃 孤独 须着此’ 彼意亦欲为帝 汉阳敬怀王洽 弈世载德 汉尚书寔之后也 督沧冀二州诸军事 畜锐观衅 济南嗣位 委以备御 子诠 养德所履 初不从家人有所求请 恐不堪用耳 太原迹异猜嫌 道镜今古 帝谓左右曰 帝怒临漳令嵇晔及舍人李文师 妇为妹妹 即擢为都督 有邯郸人 杨宽者 "高德政常言宜用汉人 "遂不待食而去 别驾 欲取仓粟 至食时而败 欲明年真之 语及政刑宽猛 恐足下方难为兄 美容仪 甘酒嗜音 溺于财利 城不可动 天穆集文武议其所先 其见亲待如此 仲尼发习礼之叹 暹前后表弹尚书令司马子如及尚书元羡 理不须牢 及平中山 宗正 部分兵众 而大王乃心王室 前后相属 奄从物化 &
2.1.3分层抽样
![2.1.3分层抽样](https://img.taocdn.com/s3/m/594aaf07763231126edb1196.png)
数学运用
3.在100个零件中,有一级品20个,二级品30个,三级品50个,从 中抽取20个作为样本,有以下三种抽样方法: ①采用随机抽样法,将零件编号为00,01,02,„,99,抽签取 出20个; ②采用系统抽样法,将所有零件分成20组,每组5个,然后每组随 机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽 取6个,从三级品中随机抽取10个。
解 : 可用分层抽样的方法 , 由条件可知小学部有 2000 人 , 高中部有1200 人 , 其总体容量为 4000 人 . 1 “小学部”占 2000 = , 应取 80× 1 = 40 人 ; 2 4000 2 1 1 “初中部”占 800 = , 应取 80× 5 = 16 人 5 4000 ; 3 = 24 人 ; 3 1200 “高中部”占 = , 应取 80× 10 10 4000 因为 40 + 16 + 24 = 80 , 所以平均 50 名学生中抽取一名学生 .
数学运用
1.在某年有奖明信片销售活动中 , 规定每 100 万张为一 个开奖组 , 通过随机抽取的方式确定号码的后四位数为 2709 的为三等奖 . 这样确定获奖号码的抽样方法是
系 统 抽 样 . 2.一工厂生产了某种产品16 800件,它们来自甲、乙、丙3条生产 线。为检查这批产品的质量,决定采用分层抽样的方法进行抽样 ,已知从甲、乙、丙3条生产线抽取的个体数,组成一个等差数 5600 件产品。 列,则乙生产线生产了______
9200 6000 9200
=
3 23
, 应取 46× 3 = 6 辆 ; 23
“型号二”占
15 = 23
, 应取 46×
15 = 30 辆 ; 23
第1节 第3课时 分层抽样
![第1节 第3课时 分层抽样](https://img.taocdn.com/s3/m/c55d85f26294dd88d0d26ba2.png)
高中同步新课标·数学
创新方案系列丛书
3.要掌握分层抽样的两类问题: (1)根据分层抽样的特征判断分层抽样,见讲 1. (2)根据分层抽样的步骤设计分层抽样,特别是当总 体容量不能被样本容量整除时注意剔除个体. 4.本节课的易错点有: (1)概念理解错误致错,如讲 3; (2)忽视每个个体被抽到的机会相等而致误,如讲 2.
高中同步新课标·数学
创新方案系列丛书
A.①用简单随机抽样法,②用系统抽样法 B.①用分层抽样法,②用简单随机抽样法 C.①用系统抽样法,②用分层抽样法 D.①用分层抽样法,②用系统抽样法
解析:选 B
①因家庭收入不同其社会购买力也不
同,宜用分层抽样的方法.②因总体个数较少,宜用简单 随机抽样法.
高中同步新课标·数学
高中同步新课标·数学
创新方案系列丛书
[问题思考] (1)分层抽样中的总体有什么特征?
提示:分层抽样中的总体是由差异明显的几部分组成.
(2)有人说系统抽样时,将总体分成均等的几部分,每部 分抽取一个,符合分层抽样的概念,故系统抽样是一种特殊 的分层抽样,对吗?
提示:不对.因为分层抽样是从各层独立地抽取个体, 而系统抽样各段上抽取时是按事先定好的规则进行的,各层 分段有联系,不是独立的,故系统抽样不同于分层抽样.
高中同步新课标·数学
创新方案系列丛书
(1)游泳组中,青年人、中年人、老年人分别所 占的比例; (2)游泳组中,青年人、中年人、老年人分别应 抽取的人数.
高中同步新课标·数学
创新方案系列丛书
[尝试解答] (1)设登山组人数为 x, 游泳组中青年人、 x· 40%+3xb 中年人、 老年人所占比例分别为 a, b, c, 则有 4x x· 10%+3xc =47.5%, =10%, 4x 解得 b=50%,c=10%,故 a=100%-50%-10% =40%, 即游泳组中,青年人、中年人、老年人各占比例为 40%,50%,10%.
高一数学分层抽样1
![高一数学分层抽样1](https://img.taocdn.com/s3/m/211c7ff533687e21ae45a903.png)
照例,是一大盘子腌鸡蛋,被一切两开,腌得恰到好处的蛋,冒出黄里透红的油,香喷喷的直扑鼻孔。桌上还有一大盆子香椿芽蒸鸡蛋粉条。那时做饭图省事儿,烧汤蒸馒头炒菜都用那个大锅;因 此,很少人有讲究地炒菜,切葱切姜的,费火费事儿,庄稼日子哪讲那么多次序。足球赛事
Hale Waihona Puke 吃饱喝足,就要干活了,全家总动员。男人女人是主力,负责割麦子,十来岁的孩子也可以学着割麦子,几岁的刚会跑的孩子,则提着个棉布兜儿,拾麦子。太阳渐渐升高,麦子在太阳的蒸腾下, 香气更加浓郁,麦子上细长的麦芒如长针似的一下下地撞击着裸露出的手臂,胡乱绾起的裤管露出的小腿,和手臂一样也被刮出大大小小、深深浅浅的划痕,这些被不断滋生的汗水一浸,剧痒,忍不住 用手擓,擓出血丝子来,变得又痒又痛。但他们依然很卖力地干活,就连那最小的孩子,也不因腿上的划痕而吵闹着回家歇息。
高一数学分层抽样1
![高一数学分层抽样1](https://img.taocdn.com/s3/m/41e07d2fdaef5ef7ba0d3cca.png)
执行医嘱下列哪项正确()A.医嘱须经医生签字方为有效B.一般情况下可执行口头医嘱C.医嘱须隔日仔细核对一次D.需下一班执行的医嘱书面注明即可E.各种通知单次日早晨集中送有关科室 CDMA的激活集的导频数量:A.6B.8C.12D.20 关于诉讼,下例说法正确的是。A.当合同中约定通过法院起诉解决争议时,任何一方均可以向有管辖权的人民法院提出诉讼B.合同约定采用仲裁解决争议的,但争议发生后双方同意通过诉讼解决争议时,法院不予受理C.当事人对一审判决不服时,可以在规定的时间内向上一级人民法院提起上 人类淋巴细胞膜上富含HLA抗原,目前已检出约224个基因座位,其中下列哪组HLA可以用血清学方法检出。A,B,DQ和DRB.A,B和CC.A,B,C,DQ和DRD.A,B,C和DRE.A,B和DR 下列防治低钾血症的措施,错误的是A.禁食的成年患者一般应每日从静脉补充3g氯化钾B.补钾常用10%氯化钾加入500ml溶液中静滴C.用排钾类利尿剂的患者,宜适当补钾D.对代谢性碱中毒的患者应检查血清钾E.输注10D.地龙E.没药 坐骨神经痛的临床表现是A.沿坐骨神经经路的典型放射性疼痛B.疼痛位于臀部,并向股后部、小腿后外侧、足外侧放射C.呈持续性钝痛.并有阵发性加剧D.可为刀割样或灼样痛,夜间常加重E.病变多为单侧性 展览会永恒的主题是。A.新B.奇C.快D.美 用沙土将燃烧盖住,隔离空气,属于隔离法灭火.A.正确B.错误 诊断肺结核最可靠的依据是A.结核中毒症状及明显的呼吸道局部症状B.胸片示锁骨上下浸润性病灶及空洞形成C.结核菌素试验强阳性D.痰中找到结核菌E.血沉明显增快 康复团队会议一般由谁召集,由PT,OT,ST,康复护士、心理治疗专家、假肢/矫形技师、社会工作者、营养师等参加A.院长B.护士长C.康复医师D.神经科医师E.心理医生 心搏骤停患者的年龄不同,心肺复苏的操作也有所不同,下列不属于按年龄划分的是。A.成年人心肺复苏B.老年人心肺复苏C.儿童心肺复苏D.婴儿心肺复苏E.新生儿心肺复苏 留24小时尿标本作l7一酮类固醇检查,为防止尿中激素被氧化,其标本应加的防腐剂是A.液体石蜡B.浓盐酸C.甲醛D.稀盐酸E.亚硝酸钠 压力容器设计压力 处于备用状态的设施,经调度批准进行年度、季(月)度计划外的检修工作,计为。 健脾丸的功用是。A.健脾和胃,消食止泻B.健脾消痞C.消痞除满,健脾和胃D.消食和胃E.分消酒湿,理气健脾 我国的第一部马克思主义教育学著作是()。A.商务印书馆编的《教育学》B.凯洛夫的《教育学》C.杨贤江《新教育大纲》D.钱亦石的《现代教育原理》 APU启动电源可从(在包线内):A、地面电源获得B、正常电气系统获得C、以上两点均可 在六种营养素中,可以产热的营养素有。A.2种B.3种C.4种D.5种 社会主义的根本任务是A.深化改革扩大开放B.解放和发展生产力C.坚持党的基本路线D.加强社会主义精神文明建设 胸部叩诊 下列关于注册建造师执业工程规模标准(公路工程)说法中错误的是。A.高速公路各工程类别均为大型规模B.一座300m的桥梁工程属于小型规模C.隧道工程没有小型规模D.单项合同额550万元的项目属于中型规模 为保证透平膨胀机的制冷效果,对其结构有何要求? 下列哪一项属于有效婚姻。A.男女互为表亲B.男女均未达到法定结婚年龄C.双方受家庭强迫登记的婚姻D.举行过婚礼,并以夫妻之名同居但未登记 嵌顿性疝手术时以下哪项正确A.嵌顿肠襻较多应警惕逆行性嵌顿可能B.切勿把生命力可疑肠管送回腹腔C.因疝有回复腹腔可能,必须仔细探查肠管D.凡施行肠切除吻合术者,宜行疝囊高位结扎及疝修补或成形术E.一期作疝修补术 对于链球菌感染后急性肾炎,下列说法不正确的是A.电镜可见肾小球上皮细胞下有驼峰状大块电子致密物沉积B.免疫病理可见IgG、C3呈线条样沿毛细血管壁和系膜区沉积C.多在感染后1~3周起病,起病急、预后良好D.有持续性高血压、大量蛋白尿和肾功能损害者预后差E.有的患者可表现为肾病 女,28岁。发现右乳单发肿块2年,边界清楚,表面光滑,肿块活动度大,2年来肿块无明显增大,最可能的诊断是A.乳腺脂肪坏死B.乳腺囊性增生C.乳腺癌D.浆细胞性乳腺炎E.乳腺纤维腺瘤 用25mL移液管移出的溶液体积应记录为。A、25mLB、25.0mLC、25.00mLD、25.000mL 从1984年开始,由中央文化部、国家民委和中国民协共同组织领导、编撰民间文学三套集成。 从下列城市中没有提出申请举办2010年世博会A、中国上海B、韩国丽水C、葡萄牙里斯本D、俄罗斯莫斯科 后天之精来源于A.与生俱来B.禀受于父母C.饮食物D.从母体获得E.以上都不是 钢丝的直径都在mm以下。 中国特色社会主义法律体系的基本框架主要包括()。A.民法B.商法C.经济法D.行政法E.证券法 记忆力障碍在脑器质性精神障碍的初期表现为A.顺行性遗忘B.错构C.瞬间记忆障碍D.近事遗忘E.远事遗忘 入睡时汗出,醒则汗止,为:()A.盗汗B.自汗C.大汗D.战汗E.冷汗 以下不属于ECB(电子控制盒)控制的是:A、APU启动的顺序及监控B、监控APU引气C、监控APU燃油消耗量 下列关于补体活化的三条激活途径的描述,错误的是A.三条途径的膜攻击复合物相同B.旁路途径在感染后期发挥作用C.经典途径从C1激活开始D.旁路途径从C3激活开始E.MBL途径中形成的C3转化酶是C4b2b 大气可以分为哪几个层?各有什么特点? 钢感应表面淬火后需进行处理。A.高温回火B.中温回火C.低温回火D.时效 下列有关信息的说法正确的是A、自从出现人类社会才有信息存在B、只有计算机才能处理信息C、第一次信息革命指的是语言的形成D、信息只能存储在计算机中
高一数学分层抽样知识点
![高一数学分层抽样知识点](https://img.taocdn.com/s3/m/25c0b1933086bceb19e8b8f67c1cfad6195fe91b.png)
高一数学分层抽样知识点高一数学是学生们接触到的第一门高级数学课程,也是他们进入数学学习的重要阶段。
为了帮助学生更好地理解和掌握数学知识,教师们引入了分层抽样的概念。
本文将介绍高一数学分层抽样的一些知识点,帮助学生更好地了解这一概念。
一、什么是分层抽样分层抽样是一种统计学中常用的抽样方法,它将总体分为若干层次,然后从每一层中抽取一部分样本进行研究。
在高一数学中,教师们将数学知识点划分为不同的层次,然后根据学生的掌握情况,选择适合不同层次的题目进行练习和测试。
二、为什么采用分层抽样采用分层抽样的好处是能够更好地针对学生的掌握情况进行教学和辅导。
不同层次的学生可以根据自己的实际情况选择相应的题目来练习,这样可以提高学习效果,避免了过低或过高的难度对学生学习的不利影响。
三、分层抽样的具体应用在高一数学中,分层抽样主要应用于以下几个方面:1. 知识点的层次划分教师根据教学大纲和学生的学习情况,将数学知识点划分为不同的层次。
例如,在函数的学习中,可以将相关概念、性质和应用划分为初级、中级和高级层次。
这样,学生就可以根据自己的实际情况选择适合自己的题目进行练习。
2. 阶段性测试为了评估学生的学习情况,教师可以根据知识点的层次,进行阶段性测试。
通过对不同层次题目的抽取,可以更准确地了解学生的掌握情况,并对不同层次的学生进行相应的指导。
3. 学习计划的制定分层抽样还可以帮助学生制定学习计划。
学生可以根据自己的实际情况,选择适合自己的练习题目,从而制定合理的学习计划,提高学习效果。
总之,高一数学分层抽样是一种有效的教学辅助方法。
它能够根据学生的实际情况进行个性化教学,提高学习效果。
通过分层抽样,学生可以更有针对性地进行练习和测试,从而更好地掌握数学知识。
同时,分层抽样还可以帮助学生制定学习计划,提高学习效率。
因此,学生们应该充分利用分层抽样的优势,积极参与练习和测试,提高数学能力。
只有这样,才能在高一数学学习中取得良好的成绩。
高中数学北师大版2019必修第一册分层随机抽样的均值与方差
![高中数学北师大版2019必修第一册分层随机抽样的均值与方差](https://img.taocdn.com/s3/m/8d515f89b1717fd5360cba1aa8114431b90d8e89.png)
[解] 甲机床生产的零件的平均尺寸、方差分别为 x 甲
=10,s2甲=20,乙机床生产的零件的平均尺寸、方差分别为
x
乙
=
12
,
s
2
乙
=
40
,
所
以
100
件产品的平均尺寸 x =
40
x 甲+60 40+60
x
乙=4001+00720=11.2,所以
100
件产品的方差
s2
=
1 40+60
×
40s2甲+60s2乙+4400×+660010-122
y2,…,yn,平均数为-y ,方差为 t2.则-x =m1 i=m1xi,s2=m1 i=m1 (xi--x )2,
-y =n1i=n1yi,t2=n1i=n1 (yi--y )2.
如果记样本均值为-a ,样本方差为 b2,则可以算出
-a =m+1 n(i=m1 xi+i=n1yi)=m-mx ++nn-y ,
50 =51.486 2. 即样本的方差为 51.486 2. 因此估计高一年级全体学生身高的方差为 51.486 2.
谢谢
解:把样本中男生的身高记为 x1,x2,…,x23,其平均数记为-x , 方差记为 s2x;把样本中女生的身高记为 y1,y2,…,y27,其平 均数记为-y ,方差记为 s2y,把样本的平均数记为-a ,方差记为 s2.
则-a =23×1702.36++2277×160.6=165.2, s2=23×[s2x+(-x --a )223]++2277×[s2y+(-y --a )2] = 23×[12.59+(170.6-165.2)2]+27×[38.62+(160.6-165.2)2]
高中数学分层抽样教案
![高中数学分层抽样教案](https://img.taocdn.com/s3/m/026c35ba988fcc22bcd126fff705cc1755275fcf.png)
高中数学分层抽样教案
主题:分层抽样
目标:了解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
知识点:
1. 分层抽样的定义和特点
2. 分层抽样的步骤
3. 分层抽样的计算方法
教学步骤:
一、导入:
教师通过引导学生回顾上节课的内容,并提出问题:为什么我们需要进行抽样调查?什么是分层抽样?
二、讲解:
1. 介绍分层抽样的定义和特点,说明其优点和适用范围。
2. 分层抽样的步骤:确定抽样目标、确定抽样框架、确定分层变量、划分层次、计算每层样本量、随机抽样。
三、练习:
1. 根据一组数据,让学生计算每层的样本量。
2. 制定一个抽样计划,包括确定抽样目标、确定抽样框架和分层变量等。
四、讨论:
学生根据实际情况进行讨论,分享自己的抽样经验,讨论分层抽样的优缺点及应用情况。
五、总结:
对分层抽样的重点知识进行总结,巩固学生的理解。
六、作业:
布置作业,让学生自行设计一个分层抽样计划,并写出具体步骤和计算过程。
七、展示:
学生将自己的作业展示给全班同学,进行互评和讨论。
教学反思:
通过本节课的教学,学生应该能够理解分层抽样的原理和方法,掌握分层抽样的步骤和计算方法。
同时,能够灵活应用分层抽样进行实际调查,并能够理解其在实际应用中的优势和局限性。
分层随机抽样(教学课件)高一数学(人教A版2019必修第二册)
![分层随机抽样(教学课件)高一数学(人教A版2019必修第二册)](https://img.taocdn.com/s3/m/60d2e5224531b90d6c85ec3a87c24028915f85ad.png)
体数之比等于样本容量与总体容量之比.
课堂检测
1.一个工厂生产某种产品27000件,它们来自于甲、乙、丙
三条生产线,现采取分层抽样的方法对此批产品进行检测,
已知从甲、乙、丙三条生产线依次抽取的个数恰成等差数列,
则乙生产线共生产了(
A.300
B.13500
件数恰好组成一个等差数列,
设3个车间的产品数分别为 、 、 ,
则 + + = = ,
∴ = ,
故选: .
变式训练
某校高中共有900名学生,其中高一年级400人,高二
年级200人,高三年级300人,现采用分层抽样抽取容
量为45的样本,那么高一、高二、高三年级抽取的人
C.系统抽样
D.分层抽样
)
【解答】解:所述问题的总体中的个体具有明显差异,即出现了
3个阶层,
∴适宜用分层抽样法获取样本.
故选:D .
解题技巧
分层抽样的依据
(1)适用于总体由差异明显的几部分组成的情况.
(2)样本能更充分地反映总体的情况.
(3)等可能抽样,每个个体被抽到的可能性都相等.
典例分析
题型二 分层抽样中各层样本容量的计算
范围
少
几部分组成
共同点
多
①抽样过程中每个个体被抽到的可能性相等;
②每次抽出个体后不再放回,即不放回抽样
分层随机抽样的平均数
1.在简单随机抽样中如何估计总体平均数?
2.那么在分层随机抽样中如何估计总体平均数呢?
是否也可以直接用样本平均数进行估计?
概念解析
分层随机抽样中的总体平均数与样本平均数
9.1.2 分层随机抽样-高一数学课件(人教A版2019必修第二册)
![9.1.2 分层随机抽样-高一数学课件(人教A版2019必修第二册)](https://img.taocdn.com/s3/m/f70c1371443610661ed9ad51f01dc281e53a56dc.png)
D.随机数法
2、甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三
校学生某方面的情况,计划采用分层随机抽样法抽取一个样本量为90的样
本,应在甲、乙、丙三校分别抽取的学生人数为(
B
).
A.30,30,30
B.30,45,15
C.20,30,40
D.30,50,10
男生
女生
把所有子总体中抽取的样本合在一起作为 总样本 ,
抽样
抽样
这样的抽样方法称为分层随机抽样.
男生
女生
每一个子总体称为层,在分层随机抽样中,如果
样本
样本
每层样本量都与层的大小成比例,那么称这种样本
量的分配方式为 比例分配 .
总样本
按照性别变量
各层样本数
=
抽样比=
各层总体数总样本量
分层
典例精析
例题:某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人
员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取
一个容量为20的样本,请利用分层随机抽样的方法抽取,并写出抽样过程.
20
解:第一步:确定抽样比,样本容量与总体容量的比为 , 计算抽样比
160
第二步:确定分别从三类人员中抽取的人数,
从行政人员中抽取16 ×
从教师中抽取112 ×
20
+
即
+
=
=
;
(3)每一层个体量在总体的占比等于每一层样本量在总样本量中的占比,
即
+
=
,
+
高一数学分层抽样1(PPT)5-5
![高一数学分层抽样1(PPT)5-5](https://img.taocdn.com/s3/m/3684b0b543323968011c92f3.png)
地~平了。 【铲车】名叉车。 【铲除】动连根除去;消灭干净:~杂草|~祸根|~旧习俗,树立新风尚。 【铲土机】ī名铲运机。 【铲运机】ī名铲土、
运土用的机械,刮刀刮下的土可以自动;搜乐足球 https:// 搜乐足球 ;装入斗中运走。也叫铲土机。 【铲子】?名铲?。 【阐】(闡)讲
2.1.3《分层抽样》
飞猛进,并由此产生的社会经济的根本变革。 【产业工人】在现代工业生产部门中劳动的工人,如矿工、钢铁工人、纺织工人、铁路工人等。 【产院】名为
产妇进行产前检查以及供产妇度过分娩期和产后期的医疗机构。 【产值】名在一个时期内全部产品或某一项产品以货币计算的价值量。 【刬】(剗)同
问题2:由经验看,以上的方 法有没有不妥的地方?样本的
代表性一定好吗?
可能会出现样本代表性 不好的情况!
【骣】(驏)骑马
不加鞍辔:~骑。 【冁】(囅、辴)〈书〉笑的样子:~然而笑。 【忏】(懺)①忏悔。②僧尼道士代人忏悔时念的经文:拜~。 【忏悔】动①认识了过
去的错误或罪过而感觉痛心。②向神佛表示悔过,请求宽恕。 【刬】(剗)见页〖一刬〗。 【颤】(顫)动颤动;发抖:~抖|声音发~|两腿直~。
பைடு நூலகம்
【颤动】动短促而频繁地振动:汽车驶过,能感到桥身的~|他激动得说不出话来,嘴唇在微微~。 【颤抖】动哆嗦;发抖:冻得全身~◇树枝在寒风中~。
明白:~明|~述。 【阐发】动阐述并发挥:~无遗|文章详细~了技术的历史意义。 【阐明】动讲明白(道理):历史唯物主义是~社会发展规律的科学。
【阐释】动阐述并解释:道理~得很清楚。 【阐述】动论述:~自己的见解|报告对宪法修正草案作了详细的~。 【阐说】动阐述并宣扬:~真理。 【阐
扬】动说明并宣传:~真理。 【蒇】(蕆)〈书〉完成:~事。
高一数学分层抽样
![高一数学分层抽样](https://img.taocdn.com/s3/m/abdbb61caf45b307e87197f4.png)
N (3)确定第i层应抽取的个体数目ni = Ni×k (4)在各层中,按步骤(3)中确定的数目在各层中随机的 抽取个体
简单随机抽样、系统抽样、分层抽样的比较
类别
简单 随机 抽样
系统 抽样
分层 抽样
共同点
(1)抽样过 程中每个个体 被抽到的可能
性相等 (2)每次抽 出个体后不再 将它放回,即 不放回抽样
各自特点
联系适用 范围从总体中来自个 抽取总体个 数较少
将总体平均分 成几部分,按 预先制定的规 则在各部分抽 取
在起始部 分时采用简 随机抽样
总体个 数较多
将总体分成几 层,
分层进行抽取
分层抽样时 采用简单随 机抽样或系
统抽样
总体由 差异明 显的几 部分组
成
【能力提高】 1.(2004年全国高考天津卷)某工厂生
产A、B、C三种不同型号的产品,产品数量 之比为2:3:5,现用分层抽样方法抽取一个 容量为n的样本,样本中A型产品有16种,那 么此样本容量n=__8__0___.
2.(2004全国高考湖北卷)某校有老师 200人,男学生1200人,女学生1000人.现用 分层抽样的方法从所有师生中抽取一个容 量为n的样本,已知从女学生中抽取的人数 为80人,则n=__1_9_2__.
;
分层抽样
当已知总体由差异明显的几部分组成时,为了 使样本充分地反映总体的情况,常将总体分成几部 分,然后按照各部分所占的比例进行抽样。
1.其中所分成的各部分叫做层,在每一层中 实行简单随机抽样.
2.抽样比 p=n/N
3.每一层的样本数=这一层的总数X抽样比
分层抽样
![分层抽样](https://img.taocdn.com/s3/m/9fd99e87680203d8ce2f2449.png)
【说明】分层抽样应遵循以下要求: (1)分层:将相似的个体归为一类,即分为 一层,分层要求每层的各个个体互不交叉,即遵 循不重复、不遗漏的原则。 (2)分层抽样为保证每个个体等可能入样, 需遵循在各层中进行简单随机抽样或系统抽样, 每层样本数量与每层个体数量的比与样本容量与 总体容量的比相等。 (3)当总体是由差异明显的几个部分组成时, 往往选用分层抽样的方法.
分层抽样是一种实用、操作性强、应用比较广泛
的抽样方法。
从总体中 逐个抽取
将总体均分成 几部分,按预 先制定的规则 在各部分抽取
最基本的 抽样方法
总体个 数较少
在起始部 分抽样时 采用简单 随机抽样 将总体分成 分层抽样时 几层,分层 采用简单随 按比例进行 机抽样或系 统抽样
总体个 数较多 总体由差 异明显的 几部分组 成
1、某高中共有900人,其中高一年级300人, 高二年级200人,高三年级400人,现采用分层抽 样抽取容量为45的样本,那么高一、高二、高三 各年级抽取的人数分别为( D ) A.15,5,25 B.15,15,15 C.10,5,30 D 15,10,20
分层抽样
一般地,在抽样时,将总体分成互不交叉的层, 然后按照一定的比例,从各层独立地抽取一定数 量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。
分层抽样的步骤:
(1) 根据已有信息,将总体分成互不交叉的层; (2)按比例确定各层应该抽取的个体数。(由 总 体n 中的个体数N与样本容量n确定抽样 比: N ) (3 )各层分别按简单随机抽样或系统抽样的方 法抽取。 (4)综合每层抽样,组成样本。 注意:对于不能取整的数,求其近似值。
6.(2004年全国高考天津卷)某工厂生 产A、B、C三种不同型号的产品,产品数量 之比为2:3:5,现用分层抽样方法抽取一个 容量为n的样本,样本中A型产品有16种,那 么此样本容量n=_______. 80
高一数学(人教A版)分层随机抽样1教案
![高一数学(人教A版)分层随机抽样1教案](https://img.taocdn.com/s3/m/84789980011ca300a7c39036.png)
教案教学基本信息课题分层随机抽样学科数学学段:高中年级高一教材书名:普通高中教科书数学必修第二册A版出版社:人民教育出版社出版日期:2019年 8 月教学过程(表格描述)教学环节主要教学活动设置意图引入一、复习回顾抽样调查是获取统计数据的重要途径。
在抽样调查中,根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据,对总体的情况进行估计和推断。
我们学习了一种基本的抽样方法——简单随机抽样,这种方法简单,直观,是很多抽样方法的基础。
并且,可以用样本均值估计总体均值.为了获得较好的估计效果,样本的代表性是抽样调查的核心问题。
二、问题情境树人中学高一年级有712名学生,为调查其平均身高,用简单随机抽样的方法,从高一年级学生中,抽取一个样本量为50的样本。
样本的身高变量值(单位:cm)如下:可以计算出,样本均值为162.72 .可以估计:树人中学高一年级学生的平均身高为162.72cm .复习简单随机抽样,强调“样本的代表性”。
通过简单随机抽样的具体数据,回顾简单随机抽样中用样本均值估计总体均值的方法,为本节课做铺垫。
同时,创设本节课的问题情境。
新课为了考查简单随机抽样的估计效果,从树人中学医务室得到了高一年级学生身高的所有数据.计算得出,高一年级学生的平均身高为165.0cm .通过样本均值估计的平均身高,与实际平均身高的对比,引导学问题1:为什么样本平均数大幅度地偏离了总体平均数?问题2:为什么运用简单随机抽样获取的样本中,会出现“极端”样本?(1)高一年级学生的身高差异较大;(2)样本抽取的随机性.简单随机抽样存在不足,需要进行改进.问题3:在样本量相同且样本量不大时,你认为总体中个体差异的大小对估计效果有什么影响?从以上两个总体中,分别抽取一个个体,来估计总体的平均长度,总体1效果好在样本量相同且样本量不大时,总体中的个体差异越小,用样本均值估计总体均值的效果越好.因此,减少总体中个体之间的差异,能够减少“极端样本”的出现,提高样本的代表性和估计效果,也是改进抽样方法的思路。
分层抽样
![分层抽样](https://img.taocdn.com/s3/m/95e782f904a1b0717fd5dd16.png)
C 10,5,30
D 15,10,20
例2:
一个地区共有5个乡镇,人口3万人,其中 人口比例为3:2:5:2:3 ,从3万人中抽 取一个300人的样本,分析某种疾病的发病 率,已知这种疾病与不同的地理位置及水土 有关,问采取什么样的方法?具体过程?
分析:
采用分层抽样的方法
具体过程:
(1)将3万人分成5层,其中一个乡镇为一层.
分析:
三 分层抽样
在抽样时,将总体分成互不交叉的层,然后按照 一定的比例,从各层独立地抽取一定数量的个体, 将各层取出的个体和在一起作为样本,这种抽样方 法叫做分层抽样。
分层抽样实施步骤:
1、根据已经掌握的信息,将总体分成互不相交的层 n 2、根据总体中的个体数N和样本容量 计算抽样比 k N 3、确定第i层应该抽取的个体数目 n i N i k N 为第 i ( 层所包含的个体数是的各 n i之和为 n 。 4、在各层中,按步骤3中确定的数目在各层中随机抽 取个体,合在一起得到容量为 n 的样本
2 系统抽样的步骤,当分段间隔不是整 数的时候怎么办?
如果N/n不是整数时,可以先 从总体中随机地剔除几个个 体,使得总体中剩余的个体数 能被样本容量整除.
二 探究(1)
假设某地区有高中生2400人,初中生10900人, 小学生11000人.此地区教育部门为了了解本地区 中小学生的近视情况及其形成原因,要从本地区 的中小学生中抽取1℅的学生进行调查,你认为应 当怎样抽取样本?
2.1.3
分层抽样
高一数学组
一 复习回顾:
1 什么是系统抽样?
一般地,要从容量为N中抽取容量为n的 (1)采用随机抽样的方法将总体中的N个个体编号 样本,可将总体分成均衡的若干部分, (2)将整体按编号进行分段,确定分段间隔K(K为正整数) 然后按照预先制定的规则,从每一部分 (3)在第一段用简单随机抽样确定起始个体的编号L 抽取一个个体,得到所需的样本,这种 (4)按照一定的规则抽取样本,通常是将起始编号L加上间隔 K 抽样的方法叫做系统抽样 得到第2个个体编号L +K,再加上K得到第3个个体编号L +2K, 这样继续下去,直到获取整个样本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pk10统计分析软件
[填空题]水果蔬菜的品质包括()、()、()、(),根据构成果蔬品质化学成分功能的不同,通常将其分为四类即:色素、()、()、质构。 [单选]某公司的经营杠杆系数为1.8,财务杠杆系数为1.5,则该公司销售额每增长1倍,就会造成每股收益增长()。A.1.2倍B.1.5倍C.0.3倍D.2.7倍 [单选]设置在该病房楼内的燃油锅炉、柴油发电机,其燃料供给管道应在进入建筑物前和设备间内设置()切断阀。A.自动和手动B.自动C.手动D.自动或手动 [单选]《安全生产法》规定,未经()合格的从业人员,不得上岗作业。A.基础知识教育B.安全生产教育和培训C.技术培训D.管理知识教育 [名词解释]客运记录的作用 [单选]通过回转接头与出油接合管相连接,用卷扬机带动升降,可选择抽取罐内任何部位油品,一般只安装在润滑油或特种油品罐上的附件是()。A.罐顶结合管与罐壁接合管B.量油孔C.升降管D.泡沫发生器 [单选]下列对工程建设标准有关内容的理解,正确的是()。A.推荐性标准在任何情况下都没有法律约束力B.概算定额不属于工程建设标准范围C.违反工程建设强制性标准,但没有造成严重后果,不属违法行为D.建设行政主管部门可依据《工程建设强制性条文》对责任者进行处罚 [单选]按照《建设工程价款结算暂行办法》规定,工程竣工结算分类中不包括()。A.分部工程竣工结算B.单位工程竣工结算C.单项工程竣工结算D.建设项目竣工总结算 [单选]下列关于降压药物的说法哪个是正确的().A.利尿剂不影响糖脂代谢B.痛风患者禁用利尿剂C.ACEI常与保钾利尿剂合用D.心衰患者降压治疗首选钙拮抗剂E.卡托普利属于羧基类ACEI [单选]无土栽培时,水基质的一大缺点是()。A、使用方便B、pH值适中C、水质较纯净D、通气条件差,含氧量不够 [多选]申请水上水下施工作业时应提供的资料包括()。A.与通航安全有关的技术资料及施工作业图纸B.安全及防污染计划书C.施工作业者的资质认证文书D.航海日志E.施工作业船舶的船舶证书和船员适任证书 [单选,A2型题,A1/A2型题]软腰围最适用于()A.脊椎侧弯B.轻度腰椎间盘突出C.腰椎粉碎性骨折D.类风湿性脊柱炎E.强直性脊柱炎 [单选,A1型题]终末血尿提示病变部位在()A.前尿道B.后尿道C.肾脏D.输尿管E.膀胱 [单选,A1型题]当创伤事件的片段如同黑白影片中的一个个画面一样在当事人的脑中反复闪现时,当事人出现的创伤后反应是()A.焦虑B.抑郁C.精神病性症状D.解离E.创伤后应激障碍 [单选,A1型题]大部分新生婴儿屈光不正的大小一般为()。A.+2.00~+3.00DB.+3.00~+4.00DC.+4.00~+5.00DD.+1.00~+2.00DE.0~+1.00D [单选]颅中窝骨折脑脊液耳漏时,禁忌外耳道堵塞和冲洗的目的是()A.预防颅内血肿B.降低颅内压力C.避免脑疝形成D.减少脑脊液外漏E.预防颅内感染 [单选]()办案适用于重大、复杂的案件或是跨部门管辖交叉的案件。A、母子式B、联合式C、纵向联合式D、横向联合式 [问答题,简答题]口罩的应用指征 [单选]按临床分类,中度吸入性损伤指()A.伤及肺泡B.伤及咽部以上C.伤及细支气管D.伤及气管以上E.伤及喉部以上 [单选,A1型题]关于11CMET显像的论述不正确的是()A.11CMET为正电子显像剂B.11CMET是临床上目前应用最为广泛的氨基酸代谢显像剂C.在肿瘤显像中,11CMET可用于精确地描述蛋白质的合成速率D.11CMET可由放射化学自动合成仪制备E.11CMET可用于SPECT显像 [单选]在金属罐壁作内防腐时()再刷两遍自环氧磁漆。A、开始B、中间C、最后D、开始和最后 [单选]下列腧穴中,归经错误的是()。A.合谷-大肠经B.太溪-肝经C.列缺-肺经D.阳陵泉-胆经E.阴陵泉-脾经 [单选]在债的发生依据中,既未受人之托,也不负有法律规定的义务,而自觉为他人管理事务或提供服务的行为属于()。A.无权代理B.不当得利C.侵权行为D.无因管理 [单选,A2型题,A1/A2型题]刺激腕部尺神经,用表面电极在小指展肌记录诱发电位的形状()A.起始为正相的三相波B.起始为负相的双相波C.起始为正相的双相波D.多相波E.单相波 [名词解释]参考微生物 [单选]反应器类的设备代号是()。A、TB、RC、QD、Y [判断题]一般在车辆事故中,导致驾驶人和乘员受伤的主要是一次碰撞。()A.正确B.错误 [单选,A1型题]治疗暑热夹湿证的最宜选用方剂是()A.藿香正气散B.香薷饮C.生脉散D.六一散E.白虎汤 [判断题]对依法履行反洗钱职责或者义务获得的客户身份资料和交易信息,应当予以保密;非依法律规定,不得向任何单位和个人提供。A.正确B.错误 [单选,A2型题,A1/A2型题]为了鉴别巨幼细胞贫血与红白血病,最好的染色方法是()ACP染色B.PAS染色C.α-NAE染色D.NAP染色E.POX染色 [单选]下列银行结算账户中,不能支取现金的是()。A.党、团、工会经费专用存款账户B.个人银行结算账户C.预算单位零余额账户D.单位银行卡账户 [单选,A2型题,A1/A2型题]有关听眶线的描述,正确的是()A.外耳孔与眼眶下缘的连线B.外耳孔与眼外眦的连线C.外耳孔与鼻前棘的连线D.外耳孔与眉弓的连线E.外耳孔与鼻尖的连线 [填空题]焦炉煤气转化的压力等级为()。 [单选]在一般智能建筑系统中,应优先考虑使用的火灾探测器为()。A.感烟火灾探测器B.感光火灾探测器C.感温火灾探测器D.气体火灾探测器 [单选]在放射免疫分析中常用到RIA标准曲线(Standardcurve),其作用是()A.用来校正计数器(counter)B.用得到的计数率去推算试样中所含样品的浓度或含量C.做质控D.用来追踪试样的变化E.鉴定核素的放射化学纯度 [单选]以下决策问题中,结构化程度最高的是()。A、工资计算B、库存控制C、厂址选择D、长期预报 [问答题]预算单位新增加工作人员时,在公务卡管理上该做哪些工作? [单选]几种不同形式的平衡增长理论共同强调的是()A.经济增长率是第一位的B.大规模投资的重要性和全面平衡的增长C.不采取国家干预D.通过引致投资最大化项目带动其它项目 [填空题]()是指两枚邮票(或多枚邮票)之间相连着一段非邮票的特殊连票。 [单选]社区健康护理诊断的目的不包括()A.发现社区存在的健康问题B.明确社区内居民的卫生服务要求C.收集与社区整体健康状况相关的资料D.确定社区中需要优先解决的健康问题E.为实施社区健康护理提供依据