2020-2021中考数学复习锐角三角函数专项易错题附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学复习锐角三角函数专项易错题附详细答案
一、锐角三角函数
1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)
【答案】AB 的长约为0.6m .
【解析】
【分析】
作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可.
【详解】
解:作BF CE ⊥于F ,
在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,
3.85CF BC cos BCF ⋅∠≈=,
在Rt ADE ∆E 中,3 1.73tan 3
AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=
由勾股定理得,22BH AH 0.6(m)AB =+≈,
答:AB 的长约为0.6m .
【点睛】
考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
2.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且
10cos B =
. (1)求AB 的长度;
(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.
(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.
【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析.
【解析】
【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;
(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13
,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,
∵AB=AC ,AF ⊥BC ,∴BF=CF=
12
BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10
BF B == (2)连接DG ,
∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°,
又∵∠DAG=∠FAE ,∴△DAG ∽△FAE ,
∴AD :AF=AG :AE ,
∴A D•AE=AF•AG ,
连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG ,
∵22AB BF -=3,
∴FG=1
,
3
∴AD•AE=AF•AG=AF•(AF+FG)=3×10
=10;
3
(3)连接CD,延长BD至点N,使DN=CD,连接AN,
∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,
∴∠ADC=∠ADN,
∵AD=AD,CD=ND,
∴△ADC≌△ADN,
∴AC=AN,
∵AB=AC,∴AB=AN,
∵AH⊥BN,
∴BH=HN=HD+CD.
【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.
3.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.
【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62
23
.
【解析】
【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;
(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;
(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.
【详解】(1)如图1中,延长EO交CF于K,
∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,
∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,
∵△EFK是直角三角形,∴OF=1
2
EK=OE;
(2)如图2中,延长EO交CF于K,
∵∠ABC=∠AEB=∠CFB=90°,
∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,
∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,
∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,
∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;
(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,
∵|CF ﹣AE|=2,EF=23,AE=CK ,∴FK=2, 在Rt △EFK 中,tan ∠FEK=
33,∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=12
EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=
12PF=1,HF=3,OH=2﹣3, ∴OP=()2212362+-=-.
如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,
∴∠BOP=90°,
∴OP=33OE=233
, 综上所述:OP 的长为62-或
23. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.
4.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:
(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;
(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.
【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣
【解析】
【分析】
(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,
NC=NM=BM进而得出结论;
(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,
②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;
(3) 在Rt△ABM和Rt△ANM中,,
可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.
【详解】
(1)证明:∵△ABC是等腰直角三角形,
∴∠BAC=∠C=45°,
∵AM是∠BAC的平分线,MN⊥AC,
∴BM=MN,
在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,
∵∠ENF=135°,,
∴∠BME=∠NMF,
∴△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵CN=CF+NF,
∴BE+CF=BM;
(2)针对图2,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=NF﹣CF,
∴BE﹣CF=BM;
针对图3,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=CF﹣NF,
∴CF﹣BE=BM;
(3)在Rt△ABM和Rt△ANM中,,
∴Rt△ABM≌Rt△ANM(HL),
∴AB=AN=+1,
在Rt△ABC中,AC=AB=+1,
∴AC=AB=2+,
∴CN=AC﹣AN=2+﹣(+1)=1,
在Rt△CMN中,CM=CN=,
∴BM=BC﹣CM=+1﹣=1,
在Rt△BME中,tan∠BEM===,
∴BE=,
∴①由(1)知,如图1,BE+CF=BM,
∴CF=BM﹣BE=1﹣
②由(2)知,如图2,由tan∠BEM=,
∴此种情况不成立;
③由(2)知,如图3,CF﹣BE=BM,
∴CF=BM+BE=1+,
故答案为1,1+或1﹣.
【点睛】
本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解. 5.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,
设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,
∴BD=AF,BF=AD.
∵AC=BD,CD=AE,
∴AF=AC.
∵∠FAC=∠C=90°,
∴△FAE≌△ACD,
∴EF=AD=BF,∠FEA=∠ADC.
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD.
∵AD ∥BF ,
∴∠EFB=90°.
∵EF=BF ,
∴∠FBE=45°,
∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵3BD ,3AE , ∴
3AC CD BD AE
==. ∵BD=AF , ∴
3AC CD AF AE
==. ∵∠FAC=∠C=90°,
∴△FAE ∽△ACD , ∴
3AC AD BF AF EF EF
===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD .
∵AD ∥BF ,
∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=
3EF BF = ∴∠FBE=30°,
∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,
∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,
∴BE=DH ,EH=BD .
∵AC=3BD ,CD=3AE , ∴
3AC CD BD AE
==. ∵∠HEA=∠C=90°,
∴△ACD ∽△HEA , ∴
3AD AC AH EH
==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,
∴∠HAE+∠CAD=90°,
∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=
3AH AD =, ∴∠ADH=30°,
∴∠APE=30°.
点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.
6.已知:△ABC 内接于⊙O ,D 是弧BC 上一点,OD ⊥BC ,垂足为H .
(1)如图1,当圆心O 在AB 边上时,求证:AC=2OH ;
(2)如图2,当圆心O 在△ABC 外部时,连接AD 、CD ,AD 与BC 交于点P ,求证:∠ACD=∠APB ;
(3)在(2)的条件下,如图3,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF ⊥OE 于点R 交DE 于点G ,若∠ACD ﹣
∠ABD=2∠BDN ,AC=,BN=,tan ∠ABC=,求BF 的长.
【答案】(1)证明见解析;(2)证明见解析;(3)24.
【解析】
试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.
在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.
试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,
∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,
∵tan∠ABC=,∴,∴,
∴,∵∠BNQ=∠QHD=90°,
∴∠ABC=∠QDH,∵OE=OD,
∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,
∴BG=BQ=,GN=NQ=,
∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:
AI=25,
设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,
∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,
∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=
∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,
∵tan∠OED=,∴,
∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.
考点:1圆;2相似三角形;3三角函数;4直角三角形.
7.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)tan∠DBC=;
(2)P(﹣,).
【解析】
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、
B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).
试题解析:
(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
当x=3时,y=﹣32+3×3+4=4,
∴D(3,4).
如图,连接CD,过点D作DE⊥BC于点E.
∵C(0,4),
∴CD//AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4.
在直角△CDE中,CD=3.
∴CE=ED=,
∴BE=BC﹣DE=.
∴tan∠DBC=;
(2)过点P作PF⊥x轴于点F.
∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC,
∴tan∠PBF=.
设P(x,﹣x2+3x+4),则=,
解得 x1=﹣,x2=4(舍去),
∴P(﹣,).
考点:1、二次函数;2、勾股定理;3、三角函数
8.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以
为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:
(1)点的坐标(用含的代数式表示);
(2)当点在运动过程中,所有使与菱形的边所在直线相切的的
值.
【答案】解:(1)过作轴于,
,,
,,
点的坐标为.
(2)①当与相切时(如图1),切点为,此时,
,,
.
②当与,即与轴相切时(如图2),则切点为,,
过作于,则,
,.
③当与所在直线相切时(如图3),设切点为,交于,
则,,
.
过作轴于,则,
,
化简,得,
解得,
,
.
所求的值是,和.
【解析】
(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标
⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC,
等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.
9.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).
【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速
【解析】
分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.
详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,
∴∠PAH=∠CAB–∠CAP=30°,
∵∠PHA=∠PHB=90°,PH=50,∴AH=
tan PH PAH
33,
∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴AB=AH+BH=503+50,
∵60千米/时=50
3
米/秒,∴时间t=
50350
50
3
=3+33≈8.1(秒),
即车辆通过AB段的时间在8.1秒以内,可认定为超速.
点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
10.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.
(1)求证:CD是⊙O的切线;
(2)若AB=6,∠ABE=60°,求AD的长.
【答案】(1)详见解析;(2)
9
2
【解析】
【分析】
(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.
【详解】
证明:如图,连接OE,
∵AE平分∠DAC,
∴∠OAE=∠DAE.
∵OA=OE,
∴∠AEO=∠OAE.
∴∠AEO=∠DAE.
∴OE∥AD.
∵DC⊥AC,
∴OE⊥DC.
∴CD是⊙O的切线.
(2)解:∵AB是直径,
∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,
在Rt△ABE中,AE=AB·cos30°=6×3
=33,
在Rt△ADE中,∠DAE=∠BAE=30°,
∴AD=cos30°×AE=3
2×33=
9
2
.
【点睛】
本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.
11.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】主塔BD的高约为86.9米.
【解析】
【分析】
根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.
【详解】
在Rt△ABC中,∠ACB=90°,
sin BC
A
AB
=.
∴sin152sin311520.5279.04 BC AB A︒
=⨯=⨯=⨯=.
79.047.986.9486.9
BD BC CD
=+=+=≈(米)
答:主塔BD 的高约为86.9米.
【点睛】
本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.
12.3米/秒 =65.88千米/小时>60千米/小时.
∴此车超过限制速度.…4分
13.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且32
PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .
(1)用含t 的代数式表示线段PQ 的长.
(2)当点M 落在边BC 上时,求t 的值.
(3)当0t 1<<时,求S 与t 之间的函数关系式, (4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值
【答案】(1)23PQ t =;(2)45
;(3)2193403163t t -+-;(4) 23t = 或87
t = . 【解析】
【分析】
(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;
(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得PN=32
PQ=3t ,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤
45时,3t ,3,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当45
<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,
∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,FN=3NE=3(5t-4),S=矩形PQMN的面积-2△EFN的面积,即可得出结果;
(4)分两种情况:当0<t≤4
5
时,△ACD是等边三角形,AC=AD=4,得出OA=2,OG是
△MNH的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可;
当4
5
<t≤2时,由平行线得出△OEF∽△MEQ,得出
EF OF
EQ MQ
=,即
2
3
3
t
t
EF t
-
=
+
,
解得EF=
2
4
3
2
3
2t t
t
-
-
,得出EQ=
2
33
2
2
3
4
t t
t
t
-
-
+,由三角形面积关系得出方程,解方
程即可.
【详解】
(1)∵在菱形ABCD中,∠B=60°,
∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,
∵PQ⊥AC,
∴△APQ是等腰三角形,
∴PF=QF,PF=PA•sin60°=2t×3=3t,
∴PQ=23t;
(2)当点M落在边BC上时,如图2所示:
由题意得:△PDN是等边三角形,
∴PD=PN,
∵PN=3
2PQ=
3
2
3t=3t,
∴PD=3t,
∵PA+PD=AD,即2t+3t=4,
解得:t=4
5
.
(3)当0<t≤4
5
时,如图1所示:
PQ=23t,PN=
3
2
PQ=
3
2
×23t=3t,
S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;
当4
5
<t<1时,如图3所示:
∵△PDN是等边三角形,
∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,
∴NE=PN-PE=3t-(4-2t)=5t-4,
∴FN=3NE=3(5t-4),
∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×1
2
×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;
(4)分两种情况:当0<t≤4
5
时,如图4所示:
∵△ACD是等边三角形,
∴AC=AD=4,
∵O是AC的中点,
∴OA=2,OG是△MNH的中位线,
∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,
∴△MNH 的面积=12MN×NH=12×23t×(8t-4)=13×63t 2, 解得:t=
23; 当45
<t≤2时,如图5所示:
∵AC ∥QM ,
∴△OEF ∽△MEQ ,
∴EF OF EQ MQ =233t t EF t
-=+, 解得:2
332t t -, ∴2332
34t t t t --+, ∴△MEQ 的面积=12×3t×23322
34t t t t -+)=1332, 解得:t=87
; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为
23或87
. 【点睛】
本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.
14.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y 轴交于点C .
(1)求抛物线表达式;
(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 下方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,
①求点P 坐标;
②过此二点的直线交y轴于F, 此直线上一动点G,当
GB+
2
GF
2
最小时,求点G坐标.
(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值
【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313
【解析】
【分析】
(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式
为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2
×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为
2
GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;
(3)先用面积法求出sin∠ACB=
13
13
,tan∠ACB=
2
3
,在Rt△ABE中,求得圆的直径,
因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MB
BN
=
2
3
,所以BN=
3
2
MB,当MB为
直径时,BN的长度最大.
【详解】
(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),
∴
14
12554
a b
a b
-++
⎧
⎨
-++
⎩
=
,
=
解得
1
6
a
b
⎧
⎨
-
⎩
=
,
=
∴抛物线表达式为y=x²﹣6x+4.
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,
设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),
∴
15
4
k m
m
-+
⎧
⎨
⎩
=
=
,解得
1
4
k
m
=
,
=
-
⎧
⎨
⎩
∴直线BC的解析式为:y=-x+4,
设点P(t,t2-6t+4),R(t,-t+4),
∵▱CBPQ的面积为30,
∴S△PBC=1
2
×(−t+4−t2+6t−4)×5=15,
解得t=2或t=3,
当t=2时,y=-4
当t=3时,y=-5,
∴点P坐标为(2,-4)或(3,-5);
②当点P为(2,-4)时,
∵直线BC解析式为:y=-x+4, QP∥BC,
设直线QP的解析式为:y=-x+n,
将点P代入,得-4=-2+n,n=-2,
∴直线QP的解析式为:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴GB+2
2
GF=GB+GR
当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,
同理可得点G的坐标为(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴26,2,
∵S△ABC=1
2AC×BCsin∠ACB=
1
2
AB×5,
∴sin∠ACB=13
13,tan∠ACB=
2
3
,
∵AE为直径,AB=4,
∴∠ABE=90°,
∵sin∠AEB=sin∠ACB=213
13=
4
AE
,
∴AE=213,
∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,
∴tanN=MB
BN =
2
3
,
∴BN=3
2
MB,
当MB为直径时,BN的长度最大,为313.
【点睛】
题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.
15.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=43,过A,D两点作⊙O,交AB于点E,
(1)求弦AD的长;
(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?
(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.
【答案】(1)23
(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形
(3)不变,理由见解析
【解析】
【分析】
(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD 的长;
(2)连DE 、ME ,易得当ED 和EM 为等腰三角形EDM 的两腰,根据垂径定理得推论得OE ⊥DM ,易得到△ADC 为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后
根据含30°的直角三角形三边的关系得DN=12;
当MD=ME ,DE 为底边,作DH ⊥AE ,由于∠DAE=30°,得到,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,
又∠M=∠DAE=30°,MD=ME ,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到
;
(3)连AP 、AQ ,DP ⊥AB ,得AC ∥DP ,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB ,∠AQC=∠P ,则∠PAQ=60°,∠CAQ=∠PAD ,易证得△AQC ≌△APD ,得到
DP=CQ ,则DP-DQ=CQ-DQ=CD ,而△ADC 为等边三角形,DP-DQ 的值.
【详解】
解:(1)∵∠BAC =90°,点D 是BC 中点,BC =
∴AD
=12
BC = (2)连DE 、ME ,如图,∵DM >DE ,
当ED 和EM 为等腰三角形EDM 的两腰,
∴OE ⊥DM ,
又∵AD =AC ,
∴△ADC 为等边三角形,
∴∠CAD =60°,
∴∠DAO =30°,
∴∠DON =60°,
在Rt △ADN 中,DN =
12AD ,
在Rt △ODN 中,ON DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;
当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,
∵AD =∠DAE =30°,
∴DH ∠DEA =60°,DE =2,
∴△ODE 为等边三角形,
∴OE=DE=2,OH=1,
∵∠M=∠DAE=30°,
而MD=ME,
∴∠MDE=75°,
∴∠ADM=90°﹣75°=15°,
∴∠DNO=45°,
∴△NDH为等腰直角三角形,
∴NH=DH=3,
∴ON=3﹣1;
综上所述,当ON等于1或3﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:
连AP、AQ,如图2,
∵∠C=∠CAD=60°,
而DP⊥AB,
∴AC∥DP,
∴∠PDB=∠C=60°,
又∵∠PAQ=∠PDB,
∴∠PAQ=60°,
∴∠CAQ=∠PAD,
∵AC=AD,∠AQC=∠P,
∴△AQC≌△APD,
∴DP=CQ,
∴DP﹣DQ=CQ﹣DQ=CD=23.
【点睛】
本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.。