启东市二中学校2018-2019学年高二上学期二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启东市第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知平面向量与的夹角为,且||=1,|+2|=2
,则||=( )
A .1
B .
C .3
D .2
2. 如图,空间四边形OABC 中,,
,
,点M 在OA 上,且
,点N 为BC 中点,
则
等于( )
A .
B .
C .
D .
3. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形
B .等边三角形
C .等腰直角三角形
D .等腰三角形
4. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A
B =ð( )
A .{}2,4,6
B .{}1,3,5
C .{}2,4,5
D .{}2,5 5. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 6. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )
A .该几何体体积为
B .该几何体体积可能为
C .该几何体表面积应为+
D .该几何体唯一
7. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5}
C .{1,2,3,4,5}
D .∅
8. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.
9. ()0
﹣(1﹣0.5﹣2
)÷
的值为( )
A .﹣
B .
C .
D .
10.如图框内的输出结果是( )
A.2401 B.2500 C.2601 D.2704
11.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()
A.0 B.2 C.3 D.6
12.过点(2,﹣2)且与双曲线﹣y2=1有公共渐近线的双曲线方程是()
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
二、填空题
13.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.
14.已知函数为定义在区间[﹣2a,3a﹣1]上的奇函数,则a+b=.
15.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .
16.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)=.
17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.
18.正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为.
三、解答题
19.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.
20.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.
(Ⅰ)证明:CQ∥平面PAB;
(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.
21.已知m∈R,函数f(x)=(x2+mx+m)e x.
(1)若函数f(x)没有零点,求实数m的取值范围;
(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
(3)当m=0时,求证:f(x)≥x2+x3.
22.已知,其中e是自然常数,a∈R
(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.
23.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.
24.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.
启东市第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:由已知,|+2|2
=12,即,所以||2+4||||×+4=12,所以||=2;
故选D.
【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.
2.【答案】B
【解析】解:===;
又,,,
∴.
故选B.
【点评】本题考查了向量加法的几何意义,是基础题.
3.【答案】D
【解析】解:∵A+B+C=180°,
∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,
∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,
∴A=C 即为等腰三角形.
故选:D.
【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.
4.【答案】A
考点:集合交集,并集和补集.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并
集和补集的题目.
5.【答案】C
【解析】
试题分析:()2222
==+=+,故向上平移个单位.
g x x x x
log2log2log1log
考点:图象平移.
6.【答案】C
【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到
且该三棱锥有条过同一顶点且互相垂直的棱长均为1
该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成
故其表面积S=3•(1×1)+3•(×1×1)+•()2
=.
故选:C.
【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.
7.【答案】B
【解析】解:∵C U A={1,5}
∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.
故选B.
8.【答案】B
9.【答案】D
【解析】解:原式=1﹣(1﹣)÷
=1﹣(1﹣)÷
=1﹣(1﹣4)×
=1﹣(﹣3)×
=1+
=.
故选:D.
【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.
10.【答案】B
【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,
故选:B.
【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.11.【答案】D
【解析】解:根据题意,设A={1,2},B={0,2},
则集合A*B中的元素可能为:0、2、0、4,
又有集合元素的互异性,则A*B={0,2,4},
其所有元素之和为6;
故选D.
【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.12.【答案】A
【解析】解:设所求双曲线方程为﹣y2=λ,
把(2,﹣2)代入方程﹣y2=λ,
解得λ=﹣2.由此可求得所求双曲线的方程为.
故选A.
【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.
二、填空题
13.【答案】1.
【解析】解:点P(2,)化为P.
直线ρ(cosθ+sinθ)=6化为.
∴点P到直线的距离d==1.
故答案为:1.
【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
14.【答案】2.
【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,
∴定义域关于原点对称,
即﹣2a+3a﹣1=0,
∴a=1,
∵函数为奇函数,
∴f(﹣x)==﹣,
即b•2x﹣1=﹣b+2x,
∴b=1.
即a+b=2,
故答案为:2.
15.【答案】
【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
16.【答案】4.
【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1
所以f(1)+f′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).
17.【答案】9.
【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,
平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,
所以平均气温不低于25.5℃的城市个数为50×0.18=9.
故答案为:9
18.【答案】cm2.
【解析】解:如图所示,是正六棱台的一部分,
侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.
取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,
则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.
根据正六棱台的性质得OC=,O
C1==,
1
∴CC1==.
又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.
∴正六棱台的侧面积:
S=.
=
=(cm2).
故答案为:cm2.
【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.
三、解答题
19.【答案】
【解析】解:由题意得
命题P真时0<a<1,
命题q真时由(2a﹣3)2﹣4>0解得a>或a<,
由p∨q真,p∧q 假,得,p,q一真一假
即:或,
解得≤a<1或a>.
【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.
20.【答案】
【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.
∵Q,N是PD,PA的中点,
∴QN∥AD,且QN=AD.
∵PA=2,PD=2,PA⊥PD,
∴AD=4,
∴BC=AD.又BC∥AD,
∴QN∥BC,且QN=BC,
∴四边形BCQN为平行四边形,
∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,
∴CQ∥平面PAB.
(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.
由(Ⅰ)知PA=AM=PM=2,
∴△APM为等边三角形,
∴PO⊥AM.同理:BO⊥AM.
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,
∴PO⊥平面ABCD.
以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,
则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).
∴=(,3,0),=(0,3,﹣),=(0,,).
设平面AQC的法向量为=(x,y,z),
∴,令y=﹣得=(3,﹣,5).
∴cos<,>==﹣.
∴直线PD与平面AQC所成角正弦值为.
21.【答案】
【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.
因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.
(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,
令f'(x)=0,得x=﹣2,或x=﹣m,
当m>2时,﹣m<﹣2.列出下表:
x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)
f'(x)+0 ﹣0 +
f(x)↗me﹣m↘(4﹣m)e﹣2↗
当x=﹣m时,f(x)取得极大值me﹣m.
当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,
所以f(x)无极大值.
当m<2时,﹣m>﹣2.列出下表:
x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)
f'(x)+0 ﹣0 +
f(x)↗(4﹣m)e﹣2↘me﹣m↗
当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,
所以
(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,
当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,
所以当x=0时,φ(x)取得最小值0.
所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,
因此x2e x≥x2+x3,即f(x)≥x2+x3.
【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.
22.【答案】
【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,
∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.
当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.
所以函数f(x)的极小值为f(1)=1.
(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.
又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.
所以g(x)的最大值为g(e)=,
所以f(x)min﹣g(x)max>,
所以在(1)的条件下,f(x)>g(x)+.
【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..
23.【答案】
【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,
所以,圆心坐标是(0,﹣7),半径长r=5.…
因为直线l被圆所截得的弦长是,
所以,弦心距为,
即圆心到所求直线l的距离为.…
因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.
所以圆心到直线l的距离为,…
因此,
解得b=﹣2,或b=﹣12.…
所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.
即2x﹣y﹣2=0,或2x﹣y﹣12=0.…
【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.
24.【答案】
【解析】解:如图,设所截等腰三角形的底边边长为xcm,
在Rt△EOF中,,
∴,
∴
依题意函数的定义域为{x|0<x<10}
【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.。