左权县第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左权县第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如果定义在R 上的函数)(x f 满足:对于任意21x x ≠,都有)()(2211x f x x f x +
)()(1221x f x x f x +>,则称)(x f 为“H 函数”.给出下列函数:①13++-=x x y ;
②)cos sin (23x x x y --=;③1+=x e y ;④⎩⎨⎧=≠=00
||ln x x x y ,其中“H 函数”的个数是( )
A .4
B .3
C .2
D .1
2. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)
3. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
4. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥α
B .m ⊂α,n ⊥m ⇒n ⊥α
C .m ⊂α,n ⊂β,m ∥n ⇒α∥β
D .n ⊂β,n ⊥α⇒α⊥β
5. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )
A .(﹣∞,﹣1]
B .[﹣1,+∞)
C .(﹣1,+∞)
D .(﹣∞,﹣1)
6. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)

的最小值是( )
A .1
B .﹣1
C .﹣2
D .0
7. 命题“若α=,则tan α=1”的逆否命题是( )
A .若α≠
,则tan α≠1 B .若α=
,则tan α≠1
C .若tan α≠1,则α≠
D .若tan α≠1,则α=
8. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1
B .2
C .3
D .4
9. 已知
11x
yi i
=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -
10.三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a
11.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )
A .x y z <<
B .z x y <<
C .z y z <<
D .y x z <<
12.已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )
A .6
B .0
C .2
D .2
二、填空题
13.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;
②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .
14.已知(x 2﹣
)n
)的展开式中第三项与第五项的系数之比为
,则展开式中常数项是 .
15.已知函数f (x )=恰有两个零点,则a 的取值范围是 .
16.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .
17.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和
的最小值为 .
18.计算:
×5﹣1
= .
三、解答题
19.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
20.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).
(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?
21.对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =
.若集合A 满足下
列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω. 如当n=2时,E 2={1,2},P 2=.∀x 1,x 2∈P 2,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,
所以P 2具有性质Ω.
(Ⅰ)写出集合P 3,P 5中的元素个数,并判断P 3是否具有性质Ω. (Ⅱ)证明:不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B . (Ⅲ)若存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B ,求n 的最大值.
22.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且
,PA PB AC BC ==.
(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .
23.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=

(Ⅰ)求;
(Ⅱ)若三角形△ABC 的面积为,求角C .
24.(本小题满分12分)111]
在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .
左权县第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】C
【解析】∵1122()()x f x x f x +)()(1221x f x x f x +>, ∴1212()[()()]0x x f x f x -->,∴)(x f 在R 上单调递增.
①231y x '=-+, (x ∈-∞,0y '<,不符合条件;
②32(cos +sin )=3)04
y x x x π
'=--+>,符合条件;
③0x
y e '=>,符合条件;
④()f x 在(,0)-∞单调递减,不符合条件; 综上所述,其中“H 函数”是②③. 2. 【答案】A
【解析】解:根据题意,可作出函数图象:
∴不等式f (x )<0的解集是(﹣∞,﹣1)∪(0,1) 故选A .
3. 【答案】D
【解析】解:双曲线
(a >0,b >0)的渐近线方程为y=±x
联立方程组,解得A (,),B (,﹣),
设直线x=与x 轴交于点D
∵F为双曲线的右焦点,∴F(C,0)
∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA
∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1
∴离心率的取值范围是1<e<
故选D
【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.
4.【答案】D
【解析】解:在A选项中,可能有n⊂α,故A错误;
在B选项中,可能有n⊂α,故B错误;
在C选项中,两平面有可能相交,故C错误;
在D选项中,由平面与平面垂直的判定定理得D正确.
故选:D.
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
5.【答案】B
【解析】解:∵M={x|x≥﹣1},N={x|x≤k},
若M∩N≠¢,
则k≥﹣1.
∴k的取值范围是[﹣1,+∞).
故选:B.
【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.
6.【答案】C
【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),
且sin2θ+cos2θ=1,
∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),
即﹣=cos2θ•(﹣),
可得=cos2θ•,
又∵cos2θ∈[0,1],∴P在线段OC上,
由于AB边上的中线CO=2,
因此(+)•=2•,设||=t,t∈[0,2],
可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,
∴当t=1时,(
+
)•
的最小值等于﹣2.
故选C .
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.
7. 【答案】C
【解析】解:命题“若α=,则tan α=1”的逆否命题是
“若tan α≠1,则α≠”.
故选:C .
8. 【答案】A
【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),
∴a n =5t 2
﹣4t=
﹣,
∴a n ∈

当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.
∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,
属于中档题.
9. 【答案】D
【解析】
1
()1,2,1,12
x x xi yi x y i =-=-∴==+故选D 10.【答案】A
【解析】解:∵a=0.52=0.25, b=log 20.5<log 21=0, c=20.5>20=1, ∴b <a <c . 故选:A .
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
11.【答案】A
【解析】
考点:对数函数,指数函数性质.
12.【答案】A
解析:解:由作出可行域如图,
由图可得A(a,﹣a),B(a,a),
由,得a=2.
∴A(2,﹣2),
化目标函数z=2x﹣y为y=2x﹣z,
∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.
故选:A.
二、填空题
13.【答案】①②④.
【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.
②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积
最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.
③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.
④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.
故答案为:①②④.
【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.
14.【答案】45.
【解析】解:第三项的系数为C n2,第五项的系数为C n4,
由第三项与第五项的系数之比为可得n=10,则T i+1=C10i(x2)10﹣i(﹣)i=(﹣1)i C10i=,
令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C108=45,
故答案为:45.
15.【答案】(﹣3,0).
【解析】解:由题意,a≥0时,
x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,
f(x)在(0,+∞)上至多一个零点;
x≥0,函数y=|x﹣3|+a无零点,
∴a≥0,不符合题意;
﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;
a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;
a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;
综上所述,a的取值范围是(﹣3,0).
故答案为(﹣3,0).
16.【答案】2
【解析】解:设f(x)=﹣,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,
即f(x)的最大值与最小值之和为0.
将函数f(x)向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x∈R)
的最大值与最小值的和为2.
故答案为:2.
【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.
17.【答案】.
【解析】解:设大小正方形的边长分别为x,y,(x,y>0).
则+x+y+=3+,
化为:x+y=3.
则x2+y2=,当且仅当x=y=时取等号.
∴这两个正方形的面积之和的最小值为.
故答案为:.
18.【答案】9.
【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,

×5﹣1=9,
故答案为:9.
三、解答题
19.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-.
【解析】

题解析:
(1)设()(0)f x kx b k =+>,111]
由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,5,k b =⎧⎨=⎩ ∴()5f x x =+,[]3,2x ∈-.
(2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法. 20.【答案】
【解析】(本小题满分12分)
解:(1)甲、乙两人从5道题中不重复各抽一道,共有5×4=20种抽法
记“甲抽到选择题,乙抽到判断题”为事件A ,
则事件A 含有的基本事件数为3×2=6…(4分)
∴,
∴甲抽到选择题,乙抽到判断题的概率是…(6分)
(2)记“甲、乙二人中至少有一人抽到选择题”为事件B,
其对立事件为“甲、乙二人都抽到判断题”,记为事件C,
则事件C含有的基本事件数为2×1=2…(8分)
∴,
∴,…(11分)
∴甲、乙二人中至少有一人抽到选择题的概率是.…(12分)
【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件、对立事件概率计算公式的合理运用.
21.【答案】
【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.
∴集合P3,P5中的元素个数分别为9,23,
∵集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,
∴P3不具有性质Ω.…..
证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.
因为1∈E15,所以1∈A∪B,
不妨设1∈A.因为1+3=22,所以3∉A,3∈B.
同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.
所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..
解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,
取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},
则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.
当b=4时,集合中除整数外,其余的数组成集合为

令,,
则A2,B2具有性质Ω,且A2∩B2=∅,使.
当b=9时,集中除整数外,其余的数组成集合

令,.
则A3,B3具有性质Ω,且A3∩B3=∅,使

集合中的数均为无理数,
它与P14中的任何其他数之和都不是整数,
因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.
综上,所求n的最大值为14.…..
【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.
22.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考点:平面与平面平行的判定;空间中直线与直线的位置关系.
23.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,
则=,即有sinA﹣sinAcosC=cosAsinC,
所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,
由正弦定理,a=b,则=1;…
(Ⅱ)因为三角形△ABC的面积为,a=b、c=,
所以S=absinC=a2sinC=,则,①
由余弦定理得,=,②
由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,
又0<C <π,则C+<,即C+=,
解得C= …. 【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.
24.【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.
试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .
如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥.
又D DF BD = ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .
考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.
【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.。

相关文档
最新文档