功能高分子材料的合成与性能测定

合集下载

常用高分子材料性能检测国家标准

常用高分子材料性能检测国家标准

常用高分子材料性能检测国家标准标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]1 GB/T 1033-1986 塑料密度和相对密度试验方法2 GB/T 1034-1998 塑料吸水性试验方法3 GB/T 1036-1989 线膨胀系数测定方法4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法6 GB/T 1039-1992 塑料力学性能试验方法总则7 GB/T 1040-1992 塑料拉伸性能试验方法8 GB/T 1041-1992 塑料压缩性能试验方法9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法11 GB/T 固体绝缘材料电气强度试验方法工频下的试验13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验16 GB/T 1446-2005 纤维增强塑料性能试验方法总则17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法20 GB/T 纤维增强塑料层间剪切强度试验方法21 GB/T 纤维增强塑料冲压式剪切强度试验方法22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法25 GB/T 1462-2005 纤维增强塑料吸水性试验方法26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定28 GB/T 塑料负荷变形温度的测定第1部分:通用试验方法29 GB/T 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料30 GB/T 塑料负荷变形温度的测定第3部分:高强度热固性层压材料31 GB/T 1636-1979 模塑料表观密度试验方法32 GB/T 1843-1996 塑料悬臂梁冲击试验方法33 GB/T 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能34 GB/T 塑料及树脂缩写代号第二部分:填充及增强材料35 GB/T 塑料及树脂缩写代号第三部分:增塑剂36 GB/T 2035-1996 塑料术语及其定义37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法40 GB/T 2409-1980 塑料黄色指数试验方法41 GB/T 2410-1980 透明塑料透光率和雾度试验方法42 GB/T 2411-1980 塑料邵氏硬度试验方法43 GB/T 塑料聚丙烯(PP)模塑和挤出材料第2部分:试样制备和性能测定44 GB/T 2547-1981 塑料树脂取样方法45 GB/T 2572-2005 纤维增强塑料平均线膨胀系数试验方法46 GB/T 2573-1989 玻璃纤维增强塑料大气暴露试验方法47 GB/T 2574-1989 玻璃纤维增强塑料湿热试验方法48 GB/T 2575-1989 玻璃纤维增强塑料耐水性试验方法49 GB/T 2576-2005 纤维增强塑料树脂不可溶分含量试验方法50 GB/T 2577-2005 玻璃纤维增强塑料树脂含量试验方法51 GB/T 2578-1989 纤维缠绕增强塑料环形试样制作方法52 GB/T 2913-1982 塑料白度试验方法53 GB/T 2914-1999 塑料氯乙烯均聚和共聚树脂挥发物(包括水)的测定54 GB/T 2916-1997 塑料氯乙烯均聚和共聚树脂用空气喷射筛装置的筛分析55 GB/T 2918-1998 塑料试样状态调节和试验的标准环境56 GB/T 3139-2005 纤维增强塑料导热系数试验方法57 GB/T 3140-2005 纤维增强塑料平均比热容试验方法58 GB/T 3354-1999 定向纤维增强塑料拉伸性能试验方法59 GB/T 3355-2005 纤维增强塑料纵横剪切试验方法60 GB/T 3356-1999 单向纤维增强塑料弯曲性能试验方法61 GB/T 3365-1982 碳纤维增强塑料孔隙含量检验方法(显微镜法)62 GB/T 3366-1996 碳纤维增强塑料纤维体积含量试验方法63 GB/T 3398-1982 塑料球压痕硬度试验方法64 GB/T 3399-1982 塑料导热系数试验方法护热平板法65 GB/T 3400-2002 塑料通用型氯乙烯均聚和共聚树脂室温下增塑剂吸收量的测定66 GB/T 塑料氯乙烯均聚和共聚树脂第1部分:命名体系和规范基础67 GB/T 3403-1982 氨基模塑料命名68 GB/T 3681-2000 塑料大气暴露试验方法69 GB/T 3682-2000 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定70 GB/T 3807-1994 聚氯乙烯微孔塑料拖鞋71 GB/T 3854-2005 增强塑料巴柯尔硬度试验方法72 GB/T 3855-2005 碳纤维增强塑料树脂含量试验方法73 GB/T 3856-2005 单向纤维增强塑料平板压缩性能试验方法74 GB/T 3857-2005 玻璃纤维增强热固性塑料耐化学介质性能试验方法75 GB/T 3960-1983 塑料滑动摩擦磨损试验方法76 GB/T 3961-1993 纤维增强塑料术语77 GB/T 4170-1984 塑料注射模具零件技术条件78 GB/T 4217-2001 流体输送用热塑性塑料管材公称外径和公称压力79 GB/T 4550-2005 试验用单向纤维增强塑料平板的制备80 GB/T 4610-1984 燃烧性能试验方法点着温度的测定81 GB/T 4616-1984 酚醛模塑料丙酮可溶物(未模塑态材料的表观树脂含量)的测定82 GB/T 4944-2005 玻璃纤维增强塑料层合板层间拉伸强度试验方法83 GB/T 5258-1995 纤维增强塑料薄层板压缩性能试验方法84 GB/T 5349-2005 纤维增强热固性塑料管轴向拉伸性能试验方法85 GB/T 5350-2005 纤维增强热固性塑料管轴向压缩性能试验方法86 GB/T 5351-2005 纤维增强热固性塑料管短时水压失效压力试验方法87 GB/T 5352-2005 纤维增强热固性塑料管平行板外载性能试验方法88 GB/T 5470-1985 塑料冲击脆化温度试验方法89 GB/T 5471-1985 热固性模塑料压塑试样制备方法90 GB/T 5472-1985 热固性模塑料矩道流动固化性试验方法91 GB/T 5478-1985 塑料滚动磨损试验方法92 GB/T 5563-1994 橡胶、塑料软管及软管组合件液压试验方法93 GB/T 5564-1994 橡胶、塑料软管低温曲挠试验94 GB/T 5565-1994 橡胶或塑料软管及纯胶管弯曲试验95 GB/T 5566-2003 橡胶或塑料软管耐压扁试验方法96 GB/T 5567-1994 橡胶、塑料软管及软管组合件真空性能的测定97 GB/T 5568-1994 橡胶、塑料软管及软管组合件无屈挠液压脉冲试验98 GB/T 6011-2005 纤维增强塑料燃烧性能试验方法炽热棒法99 GB/T 6111-2003 流体输送用热塑性塑料管材耐内压试验方法100 GB/T 6342-1996 泡沫塑料与橡胶线性尺寸的测定101 GB/T 6343-1995 泡沫塑料和橡胶表观(体积)密度的测定102 GB/T 塑料聚苯乙烯(PS)模塑和挤出材料第2部分: 试样制备和性能测定103 GB/T 6670-1997 软质聚氨酯泡沫塑料回弹性能的测定104 GB/T 6671-2001 热塑性塑料管材纵向回缩率的测定105 GB/T 6672-2001 塑料薄膜和薄片厚度测定机械测量法106 GB/T 6673-2001 塑料薄膜和薄片长度和宽度的测定107 GB/T 7129-2001 橡胶或塑料软管容积膨胀的测定108 GB/T 7139-2002 塑料氯乙烯均聚物和共聚物氯含量的测定109 GB/T 7141-1992 塑料热空气暴露试验方法110 GB/T 7142-2002 塑料长期热暴露后时间-温度极限的测定111 GB/T 玻璃纤维增强塑料冷却塔第1部分:中小型玻璃纤维增强塑料冷却塔112 GB/T 玻璃纤维增强塑料冷却塔第2部分:大型玻璃纤维增强塑料冷却塔113 GB/T 7559-2005 纤维增强塑料层合板螺栓连接挤压强度试验方法114 GB/T 7948-1987 塑料轴承极限PV试验方法115 GB/T 8323-1987 塑料燃烧性能试验方法烟密度法116 GB/T 8324-1987 模塑料体积系数试验方法117 GB/T 8332-1987 泡沫塑料燃烧性能试验方法水平燃烧法118 GB/T 8333-1987 硬泡沫塑料燃烧性能试验方法垂直燃烧法119 GB/T 8802-2001 热塑性塑料管材、管件维卡软化温度的测定120 GB/T 热塑性塑料管材拉伸性能测定第1部分:试验方法总则121 GB/T 热塑性塑料管材拉伸性能测定第2部分: 硬聚氯乙烯(PVC-U)、氯化聚氯乙烯(PVC-C)和高抗冲聚氯乙烯(PVC-HI)管材122 GB/T 热塑性塑料管材拉伸性能测定第3部分:聚烯烃管材123 GB/T 8805-1988 硬质塑料管材弯曲度测量方法124 GB/T 8806-1988 塑料管材尺寸测量方法125 GB/T 8807-1988 塑料镜面光泽试验方法126 GB/T 8808-1988 软质复合塑料材料剥离试验方法127 GB/T 8809-1988 塑料薄膜抗摆锤冲击试验方法128 GB/T 8810-1988 硬质泡沫塑料吸水率试验方法129 GB/T 8810-2005 硬质泡沫塑料吸水率的测定130 GB/T 8811-1988 硬质泡沫塑料尺寸稳定性试验方法131 GB/T 8812-1988 硬质泡沫塑料弯曲试验方法132 GB/T 8813-1988 硬质泡沫塑料压缩试验方法133 GB/T 8815-2002 电线电缆用软聚氯乙烯塑料134 GB/T 8846-1988 塑料成型模具术语135 GB/T 8846-2005 塑料成型模术语136 GB/T 8924-2005 纤维增强塑料燃烧性能试验方法氧指数法137 GB/T 9341-2000 塑料弯曲性能试验方法138 GB/T 9342-1988 塑料洛氏硬度试验方法139 GB/T 9343-1988 塑料燃烧性能试验方法闪点和自燃点的测定140 GB/T 9345-1988 塑料灰分通用测定方法141 GB/T 9350-2003 塑料氯乙烯均聚和共聚树脂水萃取液pH值的测定142 GB/T 9352-1988 热塑性塑料压缩试样的制备143 GB/T 9572-2001 橡胶和塑料软管及软管组合件电阻的测定144 GB/T 9573-2003 橡胶、塑料软管及软管组合件尺寸测量方法145 GB/T 9575-2003 工业通用橡胶和塑料软管内径尺寸及公差和长度公差146 GB/T 9639-1988 塑料薄膜和薄片抗冲击性能试验方法自由落镖法147 GB/T 9641-1988 硬质泡沫塑料拉伸性能试验方法148 GB/T 9647-2003 热塑性塑料管材环刚度的测定149 GB/T 9979-2005 纤维增强塑料高低温力学性能试验准则150 GB/T 10006-1988 塑料薄膜和薄片摩擦系数测定方法151 GB/T 10007-1988 硬质泡沫塑料剪切强度试验方法152 GB/T 10009-1988 丙烯腈-丁二烯-苯乙烯(ABS)塑料挤出板材153 GB/T 10703-1989 玻璃纤维增强塑料耐水性加速试验方法154 GB/T 10798-2001 热塑性塑料管材通用壁厚表155 GB/T 10799-1989 硬质泡沫塑料开孔与闭孔体积百分率试验方法156 GB/T 10802-1989 软质聚氨酯泡沫塑料157 GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法158 GB/T 11546-1989 塑料拉伸蠕变测定方法159 GB/T 11547-1989 塑料耐液体化学药品(包括水)性能测定方法160 GB/T 11548-1989 硬质塑料板材耐冲击性能试验方法(落锤法)161 GB/T PVC 塑料窗力学性能、耐候性技术条件162 GB/T PVC 塑料窗力学性能、耐候性试验方法163 GB/T 11997-1989 塑料多用途试样的制备和使用164 GB/T 11998-1989 塑料玻璃化温度测定方法热机械分析法165 GB/T 11999-1989 塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法166 GB/T 12000-2003 塑料暴露于湿热、水喷雾和盐雾中影响的测定167 GB/T 未增塑聚氯乙烯窗用模塑料第3部分:性能试验方法168 GB/T 12003-1989 塑料窗基本尺寸公差169 GB/T 12027-2004 塑料薄膜和薄片加热尺寸变化率试验方法170 GB/T 12584-2001 橡胶或塑料涂覆织物低温冲击试验171 GB/T 12586-2003 橡胶或塑料涂覆织物耐屈挠破坏性的测定172 GB/T 12587-2003 橡胶或塑料涂覆织物抗压裂性的测定173 GB/T 12588-2003 塑料涂覆织物聚氯乙烯涂覆层融合程度快速检验法174 GB/T 12600-2005 金属覆盖层塑料上镍+铬电镀层175 GB/T 12722-1991 橡胶和塑料软管组合件屈挠液压脉冲试验(半Ω试验)176 GB/T 12811-1991 硬质泡沫塑料平均泡孔尺寸试验方法177 GB/T 12812-1991 硬质泡沫塑料滚动磨损试验方法178 GB/T 12833-1991 橡胶和塑料撕裂强度及粘合强度多峰曲线的分析方法179 GB/T 12949-1991 滑动轴承覆有减摩塑料层的双金属轴套180 GB/T 13022-1991 塑料薄膜拉伸性能试验方法181 GB/T 拉挤玻璃纤维增强塑料杆拉伸性能试验方法182 GB/T 拉挤玻璃纤维增强塑料杆弯曲性能试验方法183 GB/T 拉挤玻璃纤维增强塑料杆面内剪切强度试验方法184 GB/T 拉挤玻璃纤维增强塑料杆表观水平剪切强度短梁剪切试验方法185 GB/T 13376-1992 塑料闪烁体186 GB/T 13455-1992 氨基模塑料挥发物测定方法187 GB/T 13525-1992 塑料拉伸冲击性能试验方法188 GB/T 13541-1992 电气用塑料薄膜试验方法189 GB/T 14152-2001 热塑性塑料管材耐外冲击性能试验方法时针旋转法190 GB/T 14153-1993 硬质塑料落锤冲击试验方法通则191 GB/T 14154-1993 塑料门垂直荷载试验方法192 GB/T 14155-1993 塑料门软重物体撞击试验方法193 GB/T 14205-1993 玻璃纤维增强塑料养殖船194 GB/T 14216-1993 塑料膜和片润湿张力试验方法195 GB/T 14234-1993 塑料件表面粗糙度196 GB/T 14447-1993 塑料薄膜静电性测试方法半衰期法197 GB/T 14484-1993 塑料承载强度试验方法198 GB/T 14519-1993 塑料在玻璃板过滤后的日光下间接曝露试验方法199 GB/T 14520-1993 气相色谱分析法测定不饱和聚酯树脂增强塑料中的残留苯乙烯单体含量200 GB/T 14522-1993 机械工业产品用塑料、涂料、橡胶材料人工气候加速试验方法201 GB/T 14694-1993 塑料压缩弹性模量的测定202 GB/T 14904-1994 钢丝增强的橡胶、塑料软管和软管组合件屈挠液压脉冲试验203 GB/T 14905-1994 橡胶和塑料软管各层间粘合强度测定204 GB/T 15047-1994 塑料扭转刚性试验方法205 GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法206 GB/T 15560-1995 流体输送用塑料管材液压瞬时爆破和耐压试验方法207 GB/T 15596-1995 塑料暴露于玻璃下日光或自然气候或人工光后颜色和性能变化的测定208 GB/T 15598-1995 塑料剪切强度试验方法穿孔法209 GB/T 15662-1995 导电、防静电塑料体积电阻率测试方法210 GB/T 15738-1995 导电和抗静电纤维增强塑料电阻率试验方法211 GB/T 15907-1995 橡胶、塑料软管燃烧试验方法212 GB/T 15908-1995 织物增强液压型热塑性塑料软管和软管组合件213 GB/T 15928-1995 不饱和聚酯树脂增强塑料中残留苯乙烯单体含量测定方法214 GB/T 16276-1996 塑料薄膜粘连性试验方法215 GB/T 16419-1996 塑料弯曲性能小试样试验方法216 GB/T 16420-1996 塑料冲击性能小试样试验方法217 GB/T 16421-1996 塑料拉伸性能小试样试验方法218 GB/T 塑料实验室光源曝露试验方法第1部分:通则219 GB/T 塑料实验室光源暴露试验方法第2部分:氙弧灯220 GB/T 塑料实验室光源曝露试验方法第3部分:荧光紫外灯221 GB/T 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯222 GB/T 16578-1996 塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法223 GB/T 16778-1997 纤维增强塑料结构件失效分析一般程序224 GB/T 16779-1997 纤维增强塑料层合板拉-拉疲劳性能试验方法225 GB/T 热塑性塑料材料注塑试样的制备第1部分;一般原理及多用途试样和长条试样的制备226 GB/T 塑料热塑性塑料材料注塑试样的制备第3部分: 小方试片227 GB/T 塑料热塑性塑料材料注塑试样的制备第4部分: 模塑收缩率的测定228 GB/T 17200-1997 橡胶塑料拉力、压力、弯曲试验机技术要求229 GB/T 17603-1998 光解性塑料户外暴露试验方法230 GB/T 18022-2000 声学 1~10 MHz频率范围内橡胶和塑料纵波声速与衰减系数的测量方法231 GB/T 18042-2000 热塑性塑料管材蠕变比率的试验方法232 GB/T 18252-2000 塑料管道系统用外推法对热塑性塑料管材长期静液压强度的测定233 GB/T 18422-2001 橡胶和塑料软管及软管组合件透气性的测定234 GB/T 18423-2001 橡胶和塑料软管及非增强软管液体壁透性测定235 GB/T 18424-2001 橡胶和塑料软管氙弧灯曝晒颜色和外观变化的测定236 GB/T 18426-2001 橡胶或塑料涂覆织物低温弯曲试验237 GB/T 18743-2002 流体输送用热塑性塑料管材简支梁冲击试验方法238 GB/T 18943-2003 多孔橡胶与塑料动态缓冲性能测定239 GB/T 18949-2003 橡胶和塑料软管动态条件下耐臭氧性能的评定240 GB/T 18950-2003 橡胶和塑料软管静态下耐紫外线性能测定241 GB/T 塑料抗冲击聚苯乙烯(PS-I)模塑和挤出材料第2部分:试样制备和性能测定242 GB/T 19089-2003 橡胶或塑料涂覆织物耐磨性的测定马丁代尔法243 GB/T 19280-2003 流体输送用热塑性塑料管材耐快速裂纹扩展(RCP)的测定小尺寸稳态试验(S4试验)244 GB/T 小艇艇体结构和构件尺寸第1部分:材料:热固性树脂、玻璃纤维增强塑料、基准层合板245 GB/T 塑料差示扫描量热法(DSC)第1部分:通则246 GB/T 塑料差示扫描量热法(DSC)第2部分:玻璃化转变温度的测定247 GB/T 塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定248 GB/T 塑料可比单点数据的获得和表示第1部分:模塑材料249 GB/T 塑料可比单点数据的获得和表示第2部分:长纤维增强材料250 GB/T 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头偏角密封试验方法251 GB/T 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头负压密封试验方法252 GB/T 19532-2004 包装材料气相防锈塑料薄膜253 GB/T 19603-2004 塑料无滴薄膜无滴性能试验方法254 GB/T 19687-2005 闭孔塑料长期热阻变化的测定实验室加速测试方法255 GB/T 19712-2005 塑料管材和管件聚乙烯(PE)鞍形旁通抗冲击试验方法256 GB/T 19789-2005 包装材料塑料薄膜和薄片氧气透过性试验库仑计检测法257 GB/T 19806-2005 塑料管材和管件聚乙烯电熔组件的挤压剥离试验258 GB/T 19808-2005 塑料管材和管件公称外径大于或等于90mm的聚乙烯电熔组件的拉伸剥离试验259 GB/T 19811-2005 在定义堆肥化中试条件下塑料材料崩解程度的测定260 GB/T 19993-2005 冷热水用热塑性塑料管道系统管材管件组合系统热循环试验方法261 GB/T 20022-2005 塑料氯乙烯均聚和共聚树脂表观密度的测定262 GB/T 20024-2005 内燃机用橡胶和塑料燃油软管可燃性试验方法263 GB/T 20026-2005 橡胶和塑料软管内衬。

高分子材料的性能与研究方法(ppt 28页)

高分子材料的性能与研究方法(ppt 28页)


医用高分子
概念:可应用于医药的人工合成(包括改性)的
高分子材料,不包括天然高分子材料、生物高分子 材料、无机(高分子)材料等在内。
分 类
基本:(1)、组织相容性:材料自身稳定性及于机 要求 体组织亲和性(容忍性),材料对集体的影
响; (2)、酶生物老化性:材料对人体复杂环境 的适应性(抗“体内老化”性) (3)、血液适应性:不凝血、不溶血、不改 变血液中的蛋白、不破坏血小板、不在引发 血栓形成等。
功能高分子材料
分类:(1)化学功能:感光高分子、氧化还原树脂、离子交

换树脂、高分子催化剂、光降解塑料、固体电介质等;

(2)物理功能:导电高分子、压电高分子、高分子极 驻体、旋光性高分子、磁记录高分子、荧光体等; (3)化学、物理复合功能:高分子吸附剂、絮凝剂、
子 发 光 板
表面活性剂、染料、稳定剂、高吸水材料等;
2、连锁聚合反应(链式聚合、链式反应): 单体被某种能量激活,是指链接到具有能量 的基团上,从而再激发另一个单体使之在连 接到这个增长的基团上,如此往复连成高分 子。包括自由基聚合与离子聚合。
4、高分子共混:多种高分子共混,形成有 特点的新的高分子材料。包括机械粉末共混、 溶液共混、乳液共混、熔融共混、化学反应 性共混等。
复合材料:以一种材料为基体(基体材料),另一
种材料为增强体(增强材料)组合而成的材料。 聚合物基复合材料通常以塑料或橡胶为基体,以纤维 为增强材料。
优势性能:强度高、力学性能好,抗疲劳性能好,
减震性能好,热变形温度高。
应用领域:
(1)航天航空(机翼、卫星天线、太阳能电池翼、大型运载火箭壳体等); (2)汽车工业(车身、受力构件、传动轴、发动机架及内部构件等); (3)化工、纺织、机械制造(化工设备、纺织机、复印机、高速机床等); (4)医学领域(医用X光机、矫形支架等)。

高分子材料专业实验

高分子材料专业实验

《高分子材料专业实验》实验指导书王炳喜 林起浪 吕秋丰 谢琼琳编福州大学材料科学与工程学院实验教学中心二○○七年三月福州大学材料科学与工程学院实验教学中心目 录实验一偏光显微镜法观察聚合物球晶形态 (1)实验二粘度法测定高分子溶液的相对分子质量 (6)实验三GPC法测聚合物的分子量及分布 (10)实验四傅里叶红外表征有机物结构 (14)实验五聚合物的差热分析 (18)实验六聚合物的蠕变 (22)实验七聚合物流变性能测定 (25)实验八聚合物的电性能测定 (28)《高分子材料专业实验》实验指导书实验一偏光显微镜法观察聚合物球晶形态一.实验目的1.了解偏光显微镜的基本结构和原理。

2.掌握偏光显微镜的使用方法和目镜分度尺的标定方法。

3.学习用熔融法制备聚合物球晶,观察聚合物的结晶形态,并测量聚合物的球晶半径。

二. 实验原理众所周知,随着结晶条件的不同,聚合物的结晶可以具有不同的形态,如单晶、球晶、纤维晶及伸直链晶体等,当结晶性的高聚物从熔体冷却结晶时,在不存在应力或流动的情况下,聚合物倾向于生成球状多晶聚集体,通常呈球形,故称为球晶。

球晶是高聚物结晶的一种最常见的特征形式。

球晶可以长的很大,直径甚至可达厘米数量级。

对于几微米以上的球晶,用普通的偏光显微镜可以进行观察;对于小于几微米的球晶,则用电子显微镜或小角放光散射法进行研究。

结晶聚合物材料的使用性能,如光学透明性、抗冲击强度等与材料内部的结晶形态,晶粒大小及完善程度有着密切的联系。

因此,对于聚合物结晶形态的研究具有重要的理论和实际意义。

球晶的基本结构单元是具有折叠链结构的晶片,厚度在10nm左右。

许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。

电子衍射实验证明了球晶分子链总是垂直于球晶半径方向排列的。

球晶的生长过程如图1所示。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点发生分叉,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分叉形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

MDI_50型聚氨酯弹性体材料合成及性能研究

MDI_50型聚氨酯弹性体材料合成及性能研究
称取 90g 的 预 聚 体,按 扩 链 系 数 [- OH]/[- NCO]为0.9加入 MOCA 扩 链 剂,搅 拌 均 匀 后 倒 入 预 热好的模 具 (模 具 规 格:170mm×170mm×2mm)中, 放在硫化机硫化0.5h,然 后 放 入 110℃ 的 烘 箱 中 二 次 硫化10h。得 MDI-50型聚氨酯弹性体试样,进行各项 性能测试。 1.3 性 能 测 试
表1 预聚体游离-NCO 质量分数对 MDI-50 聚氨酯弹性体力学性能的影响
Table 1 Effect of the content of free -NCO in prepolymer
on the mechanical property of MDI-50PUE
Mass fraction Hardness of-NCO/% (shore A)
从图1可以看出mdi50型预聚体在2279cm1处出现nco的吸收峰在1720cm1处出现氨基甲酸酯中的co的伸缩振动吸收峰且在3283cm1出现了nh伸缩振动峰吸收峰表明已合成mdipue的曲线可以看出在合成mdi50型聚氨酯弹性体后2279cm1出现nco的吸收峰基本消失而在3283cm1处出现的nh伸缩振动峰吸收峰的强度明显增2974cm1处和2877cm1处的两个吸收峰是聚醚软段ch2的变形振动1112cm1醚键coc对称伸缩振动1537cm1处的吸收峰为苯环骨架上cc的伸缩振动表明该样品的异氰酸酯是芳香族异氰酸酯软段为聚醚型
FTIR 分析:用 FTIR-8400s型红外 光 谱 仪 进 行 红 外 光 谱 测 试,测 试 采 用 溴 化 钾 片 涂 膜 法,分 辨 率 4cm-1,扫描次数为 36 次,波 数 范 围 500~4000cm-1。 TG 分析:用 WCT22型 微 机 差 热 天 平 进 行 热 重 分 析, 试样为4~10mg,N2 气 氛,气 流 量 为 80mL/min,测 试 范围50~600℃,升 温 速 率 10℃/min。DSC 分 析:用 Q2100型示差扫描量热仪进行 DSC 分析,N2 气氛,流 量 为 35mL/min,升 温 速 率 10℃/min,温 度 范 围 -85~250℃。 力 学 性 能 测 试:力 学 性 能 测 试 用 WDW-20微机控制电子万能 试 验 机,并 参 照 GB528— 1998 硫 化 橡 胶 性 能 的 测 定 方 法 进 行 。

高性能高分子材料的合成与性能表征

高性能高分子材料的合成与性能表征

高性能高分子材料的合成与性能表征一、引言高性能高分子材料是一类应用广泛的材料。

它的特点是具有较好的物理、化学性能和高温、高压、高强度等性能。

高性能高分子材料可以分为多种类型,应用于自动化、汽车制造、电子、机械、医药和环保等领域。

本文将着重讨论高性能高分子材料的合成和性能表征。

二、高性能高分子材料的合成1. 多元醇、异氰酸酯合成聚氨酯材料聚氨酯材料是一种重要的高性能高分子材料。

通常采用多元醇和异氰酸酯进行合成。

以1,6-二异氰酸己酯和聚丙二醇为例,将两种物质混合后反应,生成聚氨酯脲键,最终形成聚氨酯材料。

2. 高性能共聚物材料的合成常见的高性能共聚物材料有氟碳树脂、三元共聚物、均聚物、无规共聚物等。

其中,氟碳树脂是由含有氟和碳的单体合成的,具有耐腐蚀、防火等特点。

三元共聚物由三种或三种以上的单体聚合而成,大多用于电子元器件、汽车零部件等。

均聚物和无规共聚物具有良好的物理力学性能和加工性能,应用广泛。

三、高性能高分子材料的性能表征高性能高分子材料的性能表征方法有很多,下面介绍其中几种常用的方法。

1. 热重分析(TGA)热重分析是测定材料在不同温度下失重的一种方法。

在热重分析中,材料样品加热至一定温度时,根据其失重不同,可以分析出其热稳定性。

热重分析广泛应用于各种高分子材料的热稳定性评测。

2. 差示扫描量热(DSC)差示扫描量热是测量材料在加热或冷却过程中释放或吸收热能的一种方法。

通过测定材料热力学性质,可以了解其结构和性质相关信息。

差示扫描量热广泛应用于高分子材料的热力学性质分析。

3. 分子量测定分子量是高分子材料的一个重要指标,影响着高分子材料的物理力学性能和加工性能。

分子量测定方法有很多种,主要包括粘度法、光散射法、凝胶渗透色谱法等。

分子量测定是高分子材料性能表征的核心内容之一,在高分子材料合成前、中、后都需要进行分子量测定。

四、结论高性能高分子材料是一类应用广泛的材料,主要包括聚氨酯材料、共聚物材料等。

高分子材料的制备与性质实验——聚乙烯制备

高分子材料的制备与性质实验——聚乙烯制备
实验过程中可能出现反应时间控制不准确的问题,建议采用更精确的时间控制系统。
对实际生产的指导意义
实验结果:聚乙烯的制备方法和性质
实验结果对实际生产的影响和改进
实验结果对实际生产的经济效益和社会效益的影响
实际生产中可能遇到的问题和解决方案
感谢观看
汇报人:XX
结论:总结实验结果,提出改进措施和建议
实验结果总结和讨论
实验目的:制备聚乙烯,并研究其性质
实验材料:聚乙烯单体、引发剂、溶剂等
实验步骤:聚合反应、分离、纯化等
实验结果:得到了聚乙烯样品,并对其进行了性质测试
讨论:分析了实验结果,讨论了聚乙烯的性质和应用
实验结果分析
5
聚乙烯的分子量和分子量分布
实验方法:凝胶渗透色谱法(GPC)
聚乙烯的制备方法:自由基聚合
反应条件:温度、压力、催化剂等
实验结果与理论值的比较:分析误差原因及改进措施
实验中存在的问题和改进建议
实验过程中可能出现温度控制不准确的问题,建议采用更精确的温度控制系统。
实验过程中可能出现产物分离不完全的问题,建议采用更先进的分离技术。
实验过程中可能出现原料配比不准确的问题,建议采用更精确的计量设备。
单击添加项标题
单击添加项标题
过滤洗涤:过滤出聚乙烯晶体,并用溶剂洗涤
单击添加项标题
实验数据记录和分析
实验目的:制备聚乙烯并分析其性质
实验材料:聚乙烯单体、引发剂、溶剂等
实验步骤:混合、加热、反应、冷却、分离、洗涤、干燥等
实验数据:反应温度、反应时间、产物颜色、分子量等
数据分析:通过图表展示实验数据,分析反应条件对聚乙烯性质的影响
检查仪器设备的完好性和安全性,确保实验过程中不会出现故障。

高分子材料结构与成分分析的方法有哪些

高分子材料结构与成分分析的方法有哪些

高分子材料结构与成分分析的方法有哪些篇一:高分子材料分析测试与研究方法复习材料一. 傅里叶红外光谱仪1. 什么是红外光谱图当一束连续变化的各种波长的变动红外光照射样品时,其中一小部分被吸收,吸收的这样一来光能就能量转变为分子的振动能量和转动能量;另一部分光透过,若将需要进行其透过的光用单色器进行色散,就可以得到一谱带。

若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带著记录下来,就给予了该样品的红外吸收光谱图,也有称红外振-转光谱图2. 红外光谱仪基本工作原理用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收同样频率的红外线,把分子吸收的红外线的情况用复述仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物推测的类型和结构中。

3. 红外光谱产生的条件(1) 应具有能满足物质产生振动跃迁所需的能量;(2) 辐射与物质间有相互偶合作用。

4. 红外光谱图的三要素峰位、峰强和峰形5. 红外光谱样品的制备方法1) 固体样品的制备a. 压片法b. 糊状法:c. 溶液法2) 液体样品的制备a. 液膜法b. 液体吸收池法3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试4) 特殊样品的制备—薄膜法a. 熔融法b. 热压成膜法c. 溶液制膜法6. 红外对供试样品的要求① 试样纯度应大于98%,或者符合文化娱乐规格,这样才便于与纯化合物的标准光谱比对或商业光谱进行对照,多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相交叉,难予解析。

② 试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的食盐窗。

所用试样应当经过干燥处理。

③ 试样浓度和厚度要适当以使最强吸收透光度在5~20%之间7. 红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物皆均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定水分子基团、分子结构;4)分析速度快;5)固、液、气态样均可用,且用量少、不破坏样品;6)与色谱等联用(GC-FTIR)蕴含强大的定性功能;7)可以需要进行定量分析;二. 紫外光谱1. 什么是紫外-可见分光光度法?产生的其原因及其特点?紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。

高分子材料专业实验-高分子材料性能测试

高分子材料专业实验-高分子材料性能测试

高分子材料性能测试拉伸实验实验目的①熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作②了解测试条件对测定结果的影响实验原理将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力~应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力~应变曲线上屈服点处的应力(拉伸屈服应力)、应力~应变曲线偏离直线性达规定应变百分数(偏置)时的应力(偏置屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率。

以百分率表示)。

实验步骤①试样的状态调节和实验环境按GB2918规定进行。

②测试样件中间平行部分的宽度和厚度,精确到0.01㎜.Ⅱ型试样中间平行部分的宽度,精确至0.05㎜。

每个试样测量三点,取算数平均值。

③在试样中间平行部分做标线示明标距,此标线对测试结果不应有影响.。

④夹持试样,夹具夹持试样时,要是试样纵轴与上、下夹具中间连线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内。

⑤选定试验速度,进行实验。

⑥记录屈服时的负荷,或断裂负荷及标距间伸长。

若试验断裂在中间平行部分之外时,此试样作废,另取试样补做。

实验试样本实验采用的是PS(燕山石化666D)实验设备实验机:数字化电子万能试验机型号3010 深圳瑞格尔公司实验数据I思考题1.分析试样断裂在先的外在原因。

答:试样断裂在先的外在原因有:①试样本身存在缺陷,产生了气泡,试样内杂质的分布也不不均匀;②安装的误差,浇口位置处造成断裂.。

2.拉伸速度对测试结果有何影响?答:拉伸速度过快,冲击强度变大,断裂会较早发生;拉伸速度过慢,分子发生取向,断裂将较晚发生。

3.同样是PS材料,为什么测定的拉伸性能(强度、断裂伸长率、模量)有差异?答:因为PS材料本身品质不同,多多少少存在缺陷,各材料的内部杂质分布不均匀,材料内部有起泡等方面也就有所不同。

高分子材料测试技术(精华版)

高分子材料测试技术(精华版)

高分子材料的测试方法综述前言:高分子材料及其成品的性能与其化学,物理的组成,结构以及加工条件亲密相关;为了表征性能与组成,结构和加工参数之间的关系,分析测试技术将起到唯独的打算作用; 并为评定材料质量,改进产品性能和研制新材料供应依据;不管是基本的材料性质,仍是加工性质( 或加工参数) 以及产品性质,客观标准的评定都需要某种测试技术供应参数进行表征;摘要:DTA DSC 红外光谱1 差热分析和差示扫描量热法差热分析1,差热分析的定义差热分析是布程控温度下,测量物质和参比物之间的温度差与温度关系的技术;这种. 关系可用数学式表示为温度;TR 参比物温度;,式中Ts 为试样2,差热分析的测试原理与仪器组成根据热分析定义,全部热分析仪器,差热分析仪器也不例外,它们都是田三大部分组成:(1) 被测物质的物理性质检测装置部分;如图 1.} 虚线内组成一也称主体部分;(2) 温度程序掌握装置部分制和数据处理装置部分;;(3) 显示记录装置部分;此外,仍有气氛控差热分析仪器的组成如下列图,虚线内为其测里原理S为试样;UTC为由控温热电偶送出的微伏信一号;R 为参比吻;UT 为由试样的热电偶送出的毫伏信号;E 为电炉;U T 为由差示热散偶送出的毫伏信号l程序掌握器;2. 氛掌握;3. 差热放大器;4. 记录仪差示扫描量热法1,差示扫描量热法定义差示扫描量热法是在程控温度下,测量输入到物质和参比物之间的功率差与温度关系的技术,用数学式表示为2,外加热式的功率补偿型差示扫描量热仪器的结构组成1. 温度程序掌握器;2. 气氛掌握;3. 差热放大器;4. 功率补偿放大器;5. 记录仪由于扫描量热法是在差热分析基础上进展起来的,因此,差示扫描量热仪在仪器结构组成上与差热分析仪特别相像;热流型兼示扫描量热法,实际上就是定量差热分析;功率补偿型差示扫描量热仪与差热分析仪的主要区分是前者在试样S侧和参比物R侧/l 面分别增加一个功率补偿加热丝( 或称加热器) ,此外仍增加一个功率补偿放大器;而内加热式功率补偿型差示扫描量热仪结构组成特点是测温敏锐. 元件是用铂电阻处而不是热电偶;高分子材料讨论中的应用差热分析技术和差示扫描里热技术在高分子材料科学与工程中的详细应用;为了实际应用时到底采纳哪种技术更为有益,先将这两种技术作比较;DTA 和DSC的主要区分:DTA 测定的是试样和参比物之间的温度差; 而DAC 测定的是热流率dH/dt, 定量便利;因此,DSC主要优点是热量定里便利,辨论率高,灵敏度好;. 其缺点是使用温度低,以功率补偿型DSC为例,最高温度只能到725;对于DTA,目前超高温DTA可作到2400 C,一般高温炉也能作到1500;所以,需要用高温的矿物,冶金等领域仍只能用DTA.但是对于需要温度不高, 灵敏度要求很高的有机,高分子及生物化学领域,DSC就是一种很有用的技术,正因如此,其进展也特别快速;近年来,DTA和DSC在高分子方而的应用特殊广泛,如讨论聚合物的相转变,测定结晶温度T, 结晶度θ,熔点Tm,等温结晶动力学参数和玻璃化转变温度以及讨论聚合,同化,交联,氧化,分解等反应,并测定反应温度或反应温区,TR,反应热,反应动力学参数等;2 热重法和微商热重法热重法和微商热重法定义热重法:根据ICTAC命名,热重法是在程序掌握温度下,测量物质的质量与温度关系的一种技术;用数学表达式为W=f(T 或t )式中:W 为物质重量;T 为温度;t 为时间微商热重法: 将热重法得到的热重曲线对时间或温度一阶微商的方法;记录的曲线为微商热重曲线简称DTG曲线,纵坐标为质量变化速率,dm/dt 或dm/dT;横坐标为时间或温度;测试原理由上述TG(DTG 定)义,可知其简洁原理;粗略的说;热重分析技术就是把物质放在炉子里进行加热称量的技术;也可在降温下称量;能够进行这种测量的仪器就是热天平(Therrnobalanee} ;下图分别表示热天平简洁示意图(简易的热重分析技术的简洁原理)和近代热天平的原理图;热重法( 微商热重法) 在高分子材料讨论中的应用热重法的主要特点是定量性强,能准地测量物质的质量变化及变化的速率;然而热重法的试验结果与试验条件有关;但是,对商品化的热天平而言,只要选用相同的试验条件,同种样品的热重数据是能重现的;试验证明,热重法广泛地应用在化学及化学有关的领域中,20 世纪50 岁月,热重法曾有力地推动了无机分析化学的进展,到幼岁月,热重法又在聚合物科学领域发挥根大作用;近年来,可以说在冶金学,漆料及油墨科学,制陶学,食品工艺学,无机化学,有机化学,生物化学及地球化学等学科中,热重法都有广泛的应用,发挥重要的作用;随着高分子材料与工程的. 进展,人们广泛应用热重法来讨论其中包括评估高分子材料的热稳固性,添加剂对热稳固的影响,氧化稳固性的测定,含湿量和添加剂含量的测定,反应动力学的讨论和共聚物,共混物体系的定量分析,聚合物和共聚物的热裂解以及热老化的讨论,等等;热重法现已成为生产部门和讨论单位讨论高分子材料热变化过程的重要手段,生产中可直接用于掌握工艺过程,理论土就可讨论聚合物分子链的端基情形;通过反应动力学的讨论,可以求得降解反应的速度常数,反应级数,频率因子及活化能;由于热重法具有分析速度快,样品用量少的特点,因而在高分子材料热老化方面的讨论中也口益引人注目;3 红外吸取光谱法红外吸取光谱特点红外吸取光谱最突出的特点是具有高度的特点性,除光学异构体外,每神化合物都有自己的红外吸取光谱;因此,红外光谱法特殊适于鉴定有机物,高聚物,以及其它复杂结构的自然及人工合成产物;固态,液态,气态样品均可测定,测试过程不破坏样品,分析速度快,样品用量少,操作简便;由于红外光潜法具有这些优点,现已成为化学试验室必不行少的分析仪器;但红外光谱法在定量分析. 方面精确度不高;在对复杂的未知物进行结构鉴定上,由丁它主要的特点是供应关于官能团的结构信息;故尚须结合紫外,核磁,质谱(U V,NMR,MS)及其它理化数据. 进行综合判定;目前在我国航空二二业系统中已广泛使用红外光谱代替传统的化学分析方法,对各种非金属材料进行质量监控; 并已制定了相应的检验标准,在各单位推广应用,取得了明显的经济效益;红外光谱仪,特殊是配有衰减全反射(ATR)漫反射(DRS)和光声池(PAS)等附件的傅里叫‘变换红外光谱仪,在涂料,胶粘剂,工程塑料以及树脂基复合材料的讨论中发挥着越来越大的作用;红外光谱仪器目前生产和使用的红外光谱仪主要有两大类,即色散型红外分光光度计和于涉分光——傅里叶变换红外光谱仪;用激光做光源的激光红外光谱仪尚处于研制阶段;1,色散型双光束红外分光光度计色散型红外分光光度计是由光源,单色器,检测器和放大记录系统等几个基术部分组成的;下图是红外分光光度计的方块图2,傅里叶变换红外光谱仪( 简称FT-IR)博里叶变换红外光谱仪与上述的色散型红外光谱仪的工作原理有很大不同,FT-IR 主要是由光源,迈克尔逊干涉仪,探测器和运算机等几部分组成;其工作原理如下列图;光源发出的红外辐射,通过迈克尔逊千涉仪变成干涉图,通过祥品后即得到带有样品信息的干涉图,经放大器将信号放大,记录在磁带或穿孔卡片或纸带. 上,输入通用电子运算机处理或直接输入到专用运算机的磁芯储备体系中;当十涉图经模拟一数字转换器(A/D)) 进行运算后,再经数字模拟转换(D/A) ,由波数分析器扫描,便可由X 一Y 记录器绘出通常的透过率对应波数关系的红外光谱;R—红外. 光源;M1肯定镜:M2 一一动镜;B —光束分裂器;S—样品;D—探测器;A—放大器;F—滤光器;A/D 模数转换骼;D/A 一数模转换器3,傅里叶变换红外光谱仪与一般色散型红外分光光度计相比的优点:①具有很高的辨论力;②波数精度高;③扫描时闻快;④光谱范畴宽;⑤灵敏度高;高聚物方面的应用红外光谱是讨论高聚物的一个很有成效的工具;讨论内容也很广泛,不仅可以鉴定米知聚合物的结构,剖析各种高聚物中添加剂,助剂,定量分析共聚物的组成,而且可以考察聚合物的结构,讨论聚合反应,测定聚合物的结晶度,取向度,判别它的立休构型等;.。

合成高分子材料的一般合成方法以及表征手段

合成高分子材料的一般合成方法以及表征手段

合成高分子材料的一般合成方法以及表征手段
合成高分子材料的一般合成方法主要有以下几种:
1. 聚合反应:将单体分子通过化学反应的方式,以链延长的形式连接在一起,形成高分子链。

常见的聚合反应有自由基聚合、阴离子聚合、阳离子聚合等。

2. 缩聚反应:通过将小分子化合物按照一定的条件和顺序反应,逐步缩小分子尺寸,形成高分子。

常见的缩聚反应有酯化反应、酰胺反应、酰基化反应等。

3. 共聚反应:将两种或多种单体分子按照一定的条件同时聚合,形成共聚物。

常见的共聚反应有乙烯-丙烯共聚、苯乙烯-丙烯
腈共聚等。

4. 交联反应:通过引入交联剂,在高分子链上形成交联结构,提高高分子材料的性能。

常见的交联反应有热交联、辐射交联等。

表征高分子材料的手段主要包括以下几种:
1. 粘度测量:通过测量高分子材料的溶液或溶胶的粘度,来了解高分子链之间的相互作用、聚合度等。

2. 拉伸性能测试:通过拉伸实验来测试高分子材料的抗拉强度、延伸率、断裂强度等力学性能。

3. 热分析:通过热重分析、差热分析、热膨胀等手段,了解高分子材料的热性能,如熔点、玻璃化转变温度等。

4. 分子量测定:通过凝胶渗透色谱、静电平衡、光散射等手段,测定高分子材料的分子量,从而了解其分子量分布、聚合度等参数。

5. 表面形态观察:通过扫描电子显微镜(SEM)、透射电子
显微镜(TEM)等手段观察材料的表面形貌,了解高分子材
料的微观结构。

通过上述合成方法和表征手段,可以合成和了解高分子材料的结构、性质和应用范围,为高分子材料的研究和应用提供基础数据。

高分子专业实验教程

高分子专业实验教程

高分子专业实验教程
高分子专业实验教程主要包括以下内容:
1. 高分子化学实验:涉及聚合物的合成、改性、交联等反应,包括自由基聚合、离子聚合、配位聚合等。

2. 高分子物理实验:研究聚合物的结构、形态、相态、热性能、力学性能等,包括X射线衍射、红外光谱、热重分析、流变学测试等。

3. 高分子材料加工实验:涉及塑料、橡胶、纤维等聚合物的成型工艺,包括挤出、注射、压延、纺丝等。

4. 高分子材料性能测试实验:对高分子材料进行各种性能测试,如拉伸强度、冲击强度、耐候性等。

5. 综合性实验:涉及高分子材料的设计、制备、性能测试及应用,旨在提高学生的实践能力和综合素质。

6. 创新性实验:学生自主选题,进行实验设计、实验操作及数据分析,旨在培养学生的创新意识和实践能力。

具体实验内容可能会因专业方向和课程设置而有所不同,建议查阅所在学校或专业的实验教材或课程大纲以获取更详细的信息。

聚丙烯酸水凝胶的合成及基本性能的测定

聚丙烯酸水凝胶的合成及基本性能的测定

综合实验报告题目:聚丙烯酸水凝胶的合成及基本性能的测定A1组聚丙烯酸水凝胶的合成及基本性能测定摘要:交联聚丙烯酸系高分子合成时,先用氢氧化钠碱溶液使丙烯酸部分中和。

再加入引发剂,得到反应液。

并测定吸水率、溶解度等性能,关键词:交联聚丙烯酸系高分子;吸水效率;高吸水性;水凝胶1.前言1.1实验目的通过交联丙烯酸钠高吸水性的合成,掌握其合成方法。

根据对其性能测试,了解影响高吸水树脂的性能因素。

1.2实验原理水凝胶是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。

凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。

交联聚丙烯酸系高分子的合成主要以丙烯酸或丙烯酸酯为单体进行聚合,后者还需在聚合后进行水解,也可以上述单体与丙烯酰胺,丙烯酸酯或醋酸乙烯酯等非离子性单体进行共聚,以调节网络中的亲水和疏水部分。

本实验采用溶液聚合法,通过较高浓度的部分中和的丙烯酸钠自交联.用氧化还原引发剂,合成具有一定交联度的聚丙烯酸钠。

中和度一般控制在50-90%,PH3-9。

单体浓度则必须高于40%,否则无法完成交联;但过高会引起散热问题,易于爆聚。

反映温度过低,难于发生自交联,严重影响性能;而过高则聚合物分子量低且分布宽;一般控制于80-250℃。

1.3性能指标高吸水树脂的性能主要表现在:⑴吸水率及吸水速度;⑵保水性;⑶稳定性;⑷机械强度;⑸增粘性;⑹安全性吸水率是高吸水性树脂的最基本性能指标,即单位重量树脂的饱和吸水量。

除取决于吸水树脂的组成,结构,形态,分子量及交联度外,还受到被吸液体的组成,性质等不同程度的影响,特别是液体中的电解质盐类及PH值的影响很大。

溶液中含有无机盐,或酸(碱)性较强,都使吸水能力显著降低。

因此对于含盐的血液,尿液等的吸水率都比吸纯水率降低。

因为血,尿等含盐类0.9%,故高吸水树脂对0.9%-1%的生理盐水的吸收能力基本可反映对血液及尿的吸收能力,也成为一个重要吸收性能指标。

新型聚合物材料的合成及其性能研究

新型聚合物材料的合成及其性能研究

新型聚合物材料的合成及其性能研究一、引言新型聚合物材料是目前高分子材料研究领域的重要热点之一。

它具有结构新颖、性能优异、功能多样化等优点,在能源、环境、光电等领域具有广泛的应用前景。

为了提高聚合物材料的性能、降低成本、设计新型功能,科学家们一直在不断地开发新的聚合物材料。

本文主要介绍了新型聚合物材料的合成及其性能研究,涉及到合成方法、表征方法及其应用领域等方面。

二、聚合物材料的分类聚合物材料是一类具有大分子结构、由低分子单体反应而成的高分子化合物。

根据单体的种类和特性,聚合物材料可以分为以下几类:1. 丙烯酸类聚合物材料丙烯酸类聚合物材料是一种重要的高分子材料,在农药、固定剂、粘合剂等领域有广泛的应用。

其聚合物主链上含有大量的羧基,因此可与金属离子等形成络合物,具有良好的固化性能和化学稳定性。

2. 聚酰亚胺类聚合物材料聚酰亚胺类聚合物材料是一类优良的高分子材料,具有尺寸稳定性、机械性能优异、耐高温等特点。

它在飞机、卫星、电子等领域有广泛的应用。

聚酰亚胺类聚合物材料的主要链上含有强极性的酰亚胺基团,可形成较强的分子间作用力。

3. 聚氨酯类聚合物材料聚氨酯类聚合物材料是一类多元醇和多元异氰酸酯缩合而成的聚合物材料,具有优异的力学性能、耐热性、耐腐蚀性等特点。

它在涂料、密封胶、内部电子、汽车皮革等领域有广泛的应用。

4. 聚酰胺类聚合物材料聚酰胺类聚合物材料是一种重要的高分子材料,普遍应用于衣物、绳索、刷子等制品。

它具有优异的耐磨性、耐腐蚀性、耐温性等特点,能够承受高张力的拉伸作用。

三、合成方法新型聚合物材料的合成方法主要有以下几种:1. 自由基聚合法自由基聚合法是指在自由基催化作用下,单体在温度和反应条件下自由接枝而成的聚合物材料。

其反应简单、反应时间短、单体易得、产品种类丰富等特点,使其广泛应用于材料化学领域。

2. 阴离子聚合法阴离子聚合法是指在酸性或碱性条件下,由于阴离子催化作用而聚合单体。

其反应过程相对规律、聚合体分子量均匀、反应条件选择广泛、反应活性较高等优点,使其应用领域不断扩大。

功能化水性聚氨酯的合成及其光致变色性能研究

功能化水性聚氨酯的合成及其光致变色性能研究

第50卷第11期 辽 宁 化 工 Vol.50,No.11 2021年11月 Liaoning Chemical Industry November,2021基金项目: 福州市科技成果转移转化项目(项目编号:2020-GX -10)。

功能化水性聚氨酯的合成 及其光致变色性能研究林芙蓉(福建宝利特科技股份有限公司,福建 福清 350309)摘 要:采用共聚法将光致变色化合物罗丹明-乙二胺引入水性聚氨酯,合成了一种对可见光具有光致变色响应的功能化水性聚氨酯材料。

考察了罗丹明-乙二胺添加量对聚氨酯乳液以及薄膜性能的影响。

采用荧光光谱法分别研究了罗丹明-乙二胺添加量和光照时间,对功能化水性聚氨酯薄膜荧光光谱的影响。

关 键 词:光致变色;水性聚氨酯;罗丹明;功能材料中图分类号:TQ630.4 文献标识码: A 文章编号: 1004-0935(2021)11-1619-04光致变色材料由于其光致变色性而被广泛的应用于强光防护、光学信息存储、分子开关等领域,近年来已成为功能材料领域的研究热点之一[1]。

水性聚氨酯具有优良机械性能、绿色环保特性,近年来广泛地应用于皮革、建材、家居用品等领域[2-3]。

将光致变色性质与水性聚氨酯的优良性能结合起来,发展出的具有光致变色性能的水性聚氨酯材料是一种新型的功能高分子材料,可用于制造柔性智能器件、智能可穿戴鞋服和高端防护用品[2-4]。

将光致变色化合物通过共价键引入水性聚氨酯结构中,是制备光致变色水性聚氨酯的一般方法。

常用的光致变色化合物有偶氮化合物[5]、螺吡喃化合物[6]。

这两种化合物的光物理性质决定了,以其为原料制备的光致变色水性聚氨酯,只能对紫外区或者近紫外区光产生变色响应。

罗丹明酰胺衍生物具有独特的螺环酰胺结构,在可见光照条件下发生螺环打开,从而可以产生荧光发射和相应的颜色变化,而在加热的情况下螺环又可以关闭,相应的荧光和颜色消失[7]。

罗丹明酰胺衍生物可以对可见光产生光致变色响应,是理想的光致变色化合物。

高分子科学实验

高分子科学实验
3.在装有电动搅拌器、温度计(液滴漏斗)、冷凝管的250ml三颈瓶中加入50g蒸馏水,再加入全部乳化剂和混合原料的一半,同时加入一半引发剂,开始搅拌,在78~83℃下反应20min。
4.滴加剩余的原料和引发剂,在40~50min内滴完,然后在85~87℃下反应2h,降温至40℃以下,加入磷酸三丁酯等助剂后放料。
悬浮聚合实质上是单体小液滴内的本体聚合,在每一个单体小液滴内单体的聚合过程与本体聚合是相类似的,但由于单体在体系中被分散成细小的液滴,因此,悬浮聚合又具有它自己的特点。由于单体以小液滴形式分散在水中,散热表面积大,水的比热大,因而解决了散热问题,保证了反应温度的均一性,有利于反应的控制。悬浮聚合的另一优点是由于采用悬浮稳定剂,所以最后得到易分离、易清洗、纯度高的颗粒状聚合产物,便于直接成型加工。
高分子科学实验
材料科学与工程学院
高分子教研室
2008-09-01
(一)高分子化学实验目录
试验一甲基丙烯酸甲酯的本体聚合
实验二丙烯酰胺溶液聚合
实验三苯丙乳液聚合
实验四界面聚合
实验五苯乙烯悬浮聚合
试验六强酸离子交换树脂的合成及性能测定
试验一甲基丙烯酸甲酯的本体聚合
一、目的要求
1.认识并了解本体聚合及其反应原理
8.反应结束,清理实验台。
五、思考题
1、溶液聚合有何突出优缺点?为什么?应用情况怎样?
2、影响溶液聚合的因素是什么?具体影响如何?
3、用溶液聚合为什么所得聚合物分子量低?
实验三苯丙乳液聚合
一、试验目的
1、了解乳液聚合特点、配方及各组分的作用。
2、熟悉苯丙乳液的制备及用途,掌握实验室制备苯丙乳液的聚合方法。
要使界面聚合反应成功地进行,需要考虑的因素有:将生成的聚合物及时移走,以使聚合反应不断进行;采用搅拌等方法提高界面的总面积;反应过程有酸性物质生成,则要在水相中加入碱;有机溶剂仅能溶解低分子量聚合物;单体最佳浓度比应能保证扩散到界面处的两种单体为等摩尔比时的配比,并不是1:1。

高分子材料性能实验指导书

高分子材料性能实验指导书

实验一聚合物热变形温度、维卡软化点的测定一、实验目的通过实验测定高聚物维卡软化点温度,掌握维卡软化点温度测试仪的使用方法和高聚物维卡软化温度的测试方法。

二、实验原理维卡软化温度是指一个试样被置于所规定的试验条件下,在一定负载的情况下,一个一定规格的针穿透试样1mm深度的温度。

这个方法适用于许多热塑性材料,并且以此方法可用于鉴别比较热塑性软化的性质。

图1. 维卡软化点试验装置图三、实验仪器维卡软化点测试仪主要由浴槽和自动控温系统两大部分组成。

浴槽内又装有导热液体、试样支架、砝码、指示器、温度计等构件,其基本结构见图1。

(1)传热液体:一般常用的矿物油有硅油、甘油等,最常用的是硅油。

本仪器所用传热液体为硅油,它的绝缘性能好,室温下黏度较低,并使用试样在升温时不受影响。

(2)试样支架:支架是由支撑架、负载、指示器、穿透针杆等组成。

都是用同样膨胀系数的材料制成。

+0.05mm的设有毛边的圆形(3)穿透针:常用的针有两种,一种是直径为1-0。

02mm平头针,另一种为正方形平头针。

(4)砝码和指示器:常用的砝码有两种,1kg和5kg;指示器为一百分表,精确度可达0.02mm。

(5)温度计:温度计测温精确度可达0.5℃,使用范围为0~360℃。

(6)等速升温控制器:采用铂电阻作感温元件与可变电压器、恒速电动机构组成。

作不定时等速运动来调整可变电位器的阻值,以达到自动平衡(可变电位器调整阻值的变化即为铂电阻受热后的阻值),电桥输出信号经晶体管放大输出脉冲,推动可控管工作,并控制了加热器工作时间,以(5±0.5)℃/6min的速度来提高浴槽温度。

(7)加热器:一个1000W功率的电炉丝直接加热传热液体。

四、试样与测试条件(1)试样:所用的每种材料的试样最少要有2个。

一般试样的厚度必须大于3mm,面积必须大于10mm×10mm 。

(2)测试条件:保持连续升温速度为(5±0.5)℃/min,并且穿透针必须垂直地压入试样,压入载荷为5kg。

聚苯乙烯-丙烯酸磁性高分子微球的制备及性能

聚苯乙烯-丙烯酸磁性高分子微球的制备及性能

第25卷第7期高分子材料科学与工程Vol.25,No.7 2009年7月POL YM ER MA TERIAL S SCIENCE AND EN GIN EERIN GJ ul.2009聚(苯乙烯2丙烯酸)磁性高分子微球的制备及性能杨瑞成1,2,郧 栋1,穆元春1(1.兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室;2.兰州理工大学有色金属合金省部共建教育部重点实验室,甘肃兰州730050)摘要:以苯乙烯为单体、丙烯酸为功能基单体、N ,N ′2亚甲基双丙烯酰胺为交联剂,加入自制的纳米Fe 3O 4磁流体,采用分散聚合的方法制备出聚(苯乙烯2丙烯酸)磁性高分子微球。

采用XRD 、FT 2IR 、SEM 、752N 型分光光度计和化学滴定法,对所制得的磁性高分子微球进行了表征及性能分析,研究了交联剂N ,N ′2亚甲基双丙烯酰胺的加入对其性能的影响。

结果表明,所制磁性微球粒径在017μm ~2m 之间,单分散性好;交联剂对微球性能有着明显的影响,随着交联剂的增加,微球粒径变小、粒径分布变宽、表面羧基含量增加、耐酸碱性增强,最佳含量应为单体用量的4%。

关键词:Fe 3O 4纳米微粒;磁性高分子微球;分散聚合;交联剂中图分类号:TB383 文献标识码:A 文章编号:100027555(2009)0720114204收稿日期:2008206204基金项目:甘肃省有色金属新材料省部共建国家重点实验室基金(SK L05011)通讯联系人:杨瑞成,主要从事材料微观结构与性能研究, E 2mail :yangruic @ 磁性高分子微球是指通过用适当的方法将纳米无机磁性粒子与高分子结合起来形成的具有一定磁性和特殊结构的复合材料[1,2]。

由于其既具有磁性又具有不同的功能性基团(-OH 、-COH 、-COOH 、-N H 2、-OH 等),因此在生物工程、有机与生化合成、分析化学、标准计量等方面都有着广泛的应用前景[3,4]。

高分子材料性能测试

高分子材料性能测试
除了熔体质量流动速率(MFR),还可以用熔体体积流动速率 (MVR)来进行测定。
熔体流动速率仪
材料名 称 PA
PP PS AS ABS PC
数据
32 6 2 28 14 7
四,维卡软化温度
维卡软化温度(Vicat Softening Temperature)是将热塑性 塑料放于液体传热介质中,在一定的负荷和一定的等速升温条 件下,试样被1平方毫米的压针头压入1毫米时的温度,对应的 国标是GB1633-79(目前已被GB/T 1633-2000所代替);维 卡软化温度是评价材料耐热性能,反映制品在受热条件下物理 力学性能的指标之一。材料的维卡软化温度虽不能直接用于评 价材料的实际使用温度,但可以用来指导材料的质量控制。维 卡软化温度越高,表明材料受热时的尺寸稳定性越好,热变形 越小,即耐热变形能力越好,刚性越大,模量越高 。
马弗炉
测定灰分的意义非 常重要,灰分可能 是医疗器械中热原 的重要来源
六,硬度
表示材料抗穿透、耐磨和抗划痕等综合性能的一个尺度。根据测 试仪器不同分为邵氏硬度、洛氏硬度、巴氏硬度等。 邵氏硬度:测定弹性体和热塑性软塑料的穿透硬度。 洛氏硬度:按照不同的标度顺序号测定硬度,这些标度号与所用 的球形压针的大小相对应。 巴氏硬度: 以特定的压头在标准弹簧的压力作用下压入试样,以压 痕的深浅来表征式样的硬度,压痕深度为零时表头读数为100. 划痕硬度:可按莫斯(Mohs)标度测定,莫斯标度范围从云母的 1到金刚石的10,也可用一种特定硬度的笔进行划痕测定。
X射线衍射:鉴别聚合物是否结晶、结晶类别、结 晶度,聚合物鉴定;
拉曼光谱:用于研究聚合物的微结构,如碳-碳双 键的伸展震动。
热分析
➢ 原理:是通过定量检测热量变化来表征物质理 或化学性能变化过程的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能高分子材料的合成与性能测定
一、实验目的
1. 了解高吸水性树脂的基本功能及其用途;
2. 了解合成聚合物类高吸水性树脂制备的基本方法;
3. 掌握反相悬浮聚合的机理、体系组成及作用等工艺特点。

二、实验原理
高吸水性树脂(Super Absorbent Resin,SAR)又称超强吸水剂,是一种具有卓越吸水性和保水性的新型功能高分子材料,能迅速吸收是其自重成百上千倍的水分,即使加压也不滴漏,明显优于海绵、吸水纸、脱脂棉等传统吸水材料,已广泛应用于农林园艺、医疗卫生、环境保护、土木建筑、石油化工等诸多领域作为土壤改良剂、保水剂、纸尿布、卫生巾、增稠剂、脱水剂、堵水剂等。

高吸水树脂的吸水原理:高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。

吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。

与水接触时,因为吸水树脂上含有多个亲水基团,故首先进行水润湿,然后水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。

由于链上同离子之间的静电斥力而使高分子链伸展溶胀。

由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。

水在反渗透压的作用下进一步进入树脂中,形成水凝胶。

同时,树脂本身的交联网状结构及氢键作用,又限制了凝胶的无限膨胀。

根据原料和合成方法的不同,SAR可分为合成聚合物系、淀粉系和纤维素系等3大类,其中聚丙烯酸(盐)体系是产量最大、应用最广的一类。

本实验采用丙烯酸经氢氧化钠等强碱物质处理,将—COOH转变为—COONa,再将其与少量N,N-亚甲基双丙烯酰胺共聚,形成适度交联的网络结构高分子,反应方程式如下:
CH2=CH
COONa +
CH2=CH
CONH
CH2
CH2
CONH
CH2CH CH2CH
CONH
CH2
CH2CH
COONa
CH2CH
CONH
聚丙烯酸钠吸水树脂吸水前,高分子链相互靠拢缠绕在一起,彼此交联成网状结构。

其高分子链上有强吸水基团—COONa,它在水中电离,由于—COO-基团吸附水分子的作用和基团间的静电排斥作用,可以使弯曲分子伸展,分子链间的距离增大,水分子更容易进入分子链间,使其体积膨胀。

此外当—COONa发生电离后,在高分子网络结构内外产生离子浓度差,从而在网络结构内外产生渗透压,水分子在渗透压作用下向网络结构中渗透,使其体积进一步膨胀,所以聚丙烯酸钠吸水树脂具有高的吸水性和保水性。

通常,悬浮聚合是采用水作分散介质,在搅拌和分散的双重作用下,单体被分散成细小的颗粒进行的聚合。

由于丙烯酸是水溶性单体,以水作为聚合介质得到的产品成块状不易粉
碎,而反相悬浮聚合法合成的产品为粉状,所以采用反相悬浮聚合法制备聚丙烯酸钠高吸水树脂。

三、仪器与试剂
2. 试剂
四、实验步骤
1. 称取20.0g丙烯酸于100 mL的烧杯中,然后将烧杯放在冰水中,在搅拌的条件下缓慢加入50 mL20%的NaOH水溶液,加入0.10g过硫酸钾,搅拌,待其溶解后,移至滴液漏斗中。

2. 称取1.0g span-60、0.040g N,N—亚甲基双丙烯酰胺和60.0g正己烷于三口烧瓶中,然后把三口烧瓶放入恒温水浴中。

合成反应装置图
3. 按从下到上的顺序将水浴装置、三口烧瓶、聚四氟乙烯搅拌棒、冷凝管、滴液漏斗电动搅拌器依次装好(如图所示),应确保从正面和侧面看都呈一条直线。

(注:应保证搅拌
棒底部与三口烧瓶底部接触和搅拌翅子打开;应保证搅拌棒与瓶口密封,防止溶剂挥发)
4. 开动搅拌并升温至70℃,得到乳白色液体,然后滴加溶液,半小时左右滴完,加料完毕后,反应1~2小时,得到白色膏状物,停止加热,将产物倒入到蒸发皿中,在120℃的烘箱中烘干至恒重。

5. 吸水率的测定
(1)取布袋一只,于自来水中浸透,沥去滴水,并用滤纸将表面水分吸干,称重,记下布袋的质量m 0。

(2)称取上述已烘干并研碎的吸水树脂2.0g 左右,放入布袋中,将布袋口扎紧。

(3)将500mL 中烧杯中装满蒸馏水,将装有吸水树脂的布袋置于水中,静置0.5h ,取出,沥干水。

当布袋无水滴后,再用滤纸将布袋表面檫干,称重,记为m 2。

(4)吸水树脂吸水率S 由下式计算:
201
1
%100%m m m S m --=

式中: S —吸水率;
m 2—浸水后装有吸水树脂的布袋的质量/g ; m 0—浸水后空布袋的质量/g ; m 1 —吸水树脂的质量/g 。

五、注意事项
1、逆向悬浮聚合的分散稳定性往往不够好,因此,聚合过程中,搅拌要平稳,千万不要中途停下。

2、高吸水性树脂制备过程中避免与水接触。

六、数据处理
计算吸水率
实验中测得:浸水后空布袋的质量为: m 0 = 5.7171 g 吸水树脂的质量为: m 1 = 2.3427 g 浸水后装有吸水树脂的布袋的质量为: m 2 = 16.8310 g
所以,吸水率为:201
1%100%
m m m S m --=
⨯ %
1003417.23417.27171.58310.16⨯--=
%
6.374≈
所以实验制得的树脂的吸水率为374.6%,即吸水量为自重的3.746倍。

七、思考题
1. 讨论高吸水性树脂的吸水机理。

答:高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。

吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。

与水接触时,因为吸水树
脂上含有多个亲水基团,故首先进行水润湿,然后水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。

由于链上同离子之间的静电斥力而使高分子链伸展溶胀。

由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。

水在反渗透压的作用下进一步进入树脂中,形成水凝胶。

本实验制得的吸水树脂为聚丙烯酸钠吸水树脂,吸水前,高分子链相互靠拢缠绕在一起,彼此交联成网状结构。

其高分子链上有强吸水基团—COONa,它在水中电离,由于—COO-基团吸附水分子的作用和基团间的静电排斥作用,可以使弯曲分子伸展,分子链间的距离增大,水分子更容易进入分子链间,使其体积膨胀。

此外当—COONa发生电离后,在高分子网络结构内外产生离子浓度差,从而在网络结构内外产生渗透压,水分子在渗透压作用下向网络结构中渗透,使其体积进一步膨胀,所以聚丙烯酸钠吸水树脂具有高的吸水性和保水性。

2. 悬浮聚合与反相悬浮聚合有何异同?
答:悬浮聚合是采用水作分散介质,单体和引发剂存在于油相中,在搅拌和分散的双重作用下,单体被分散成细小的颗粒进行的聚合。

反相悬浮聚合恰好相反,是用油相作为分散介质,单体和引发剂存在于水相中,即把单体溶于水溶液中被搅拌成小液珠,用不溶解单体的有机溶剂作为分散介质进行的聚合。

3. 影响高吸水性树脂吸水率的工艺参数有哪些?
答:影响参数有:聚合温度、反应时间、引发剂的种类及质量分数、中和度、单体的组成、交联剂的种类及用量等因素。

4. 举出几例你所知道的高吸水性树脂应用的例子。

(卫生及医用材料、农业园艺、土木建设、食品加工和日常用品)
答:(1)作为干燥剂;
(2)为生用品及医用;
(3)栽培植物用的保水剂;
(4)食品保鲜材料;
(5)光纤电缆用的防漏剂;
(6)工艺品。

相关文档
最新文档