《从算式到方程》教学设计教学内容
七年级数学《从算式到方程》教案设计
七年级数学《从算式到方程》教案设计方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。
接下来是小编为大家整理的七年级数学《从算式到方程》教案设计,希望大家喜欢!七年级数学《从算式到方程》教案设计一一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义. 通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,根据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫. 对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解. 例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当,,时,求式子的值.答案:,, .通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+继续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数= .问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程中的的值吗?分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程. 由于表示月份,是正整数,不妨让,,……分别代入方程算一算.由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为方便起见,可以列一个表格:1 2 3 4 5 6 7 … 1850 2000 2150 2300 2450 2600 2750 … 从表中发现:当时,的值是,也就是,当时,方程中等号的左边: . 等号的右边:2450. 由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5. 所以,方程的解就是 .教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.从表中你还能发现哪个方程的解?(引导学生得出)如方程的解是;方程的解是等等,使学生进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思考:你能估算方程和方程的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.怎样检验一个数是否是方程的解呢?七年级数学《从算式到方程》教案设计二目标1.使学生初步掌握一元一次方程应用题的设未知数和列方程;2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯. 教重难点重点:从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?难点:师生共同分析、研究利用等式的性质解一元一次方程和根据实际问题设未知数和列方程。
人教版七年级数学上册《从算式到方程》教学设计 (1)
《从算式到方程》教学设计课题 3.1.1从算式到方程
重难点重点:设未知数、列出方程
难点:找等量关系,会用方程解决简单的实际问题
教学目标基础知
识
了解方程及一元一次方程的概念.
基本技
能
根据等量关系,会列方程
思想方
法
学习过程中体会转化和建模的数学思想
德育目
标
通过学习,培养学生分析问题,解决问题的能力。
环节内容个人备
课
复案与
集备
情境导入一、创设情境、引入课题:
1.看微课
2.归纳方程的定义
学习目标根据实际问题,能找到等量关系,从而设未知数列方程解决问题
教学环节3.巩固练习,总结判定方程的关键条件
二、探索一元一次方程的定义
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700 h ,预计每月再使用150 h ,经过多少月这台计算机的使用时间达到规定 的检修时间2450 h ?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 1.归纳一元一次方程的定义:
_____________________________________________
2.练习:下列式子____________是方程, ____________是一元一次方程?
3.解方程:求方程的解的过程。
4.方程的解:使方程中等号左右两边相等的
121
() x +22153() m +=33554
() -=+x x 24260() +-x x =53915
() a +>24
65x π
+
=()。
人教版七年级数学上册一元一次方程《从算式到方程(第1课时)》示范教学设计
从算式到方程(第1课时)教学目标1.感受运用代数法解决问题的必要性,体会“方程”是解决实际问题的有效工具.2.理解方程的定义,会设未知数,列方程.3.感受用方程解决实际问题的优越性,体会从算式到方程是数学的进步.教学重点会设未知数,列方程.教学难点分析实际问题中的相等关系,并利用相等关系正确列出方程.教学过程新课导入【思考】小明向小蓝询问年龄,小蓝说:“我的年龄乘2减5得21”.小明立刻说出了小蓝的年龄,你会吗?【师生活动】学生回答:年龄=(21+5)÷2=13.教师提问:问题中蕴含的数量关系是什么?学生回答:年龄×2-5=21.【设计意图】从学生熟知的问题入手,引出用算式解决问题的本质是找出问题中的数量关系,为进一步根据具体问题列方程做好铺垫.新知探究一、探究学习【问题】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?列算式试试.【师生活动】教师提问1:如何表示客车和卡车“同时同向行驶”?教师提问2:如何表示“客车比卡车早1 h经过B地”?教师提问3:如何用算术方法求“A,B两地间的路程”?学生思考并回答:行驶1 km 的路程,客车所用时间是170h ;行驶1 km 的路程,卡车所用时间是160h ; 行驶1 km 的路程,客车比卡车少用170160⎛⎫- ⎪⎝⎭h ;行驶1170160⎛⎫÷- ⎪⎝⎭km 的路程,客车比卡车少用1 h .教师总结:可见,列算式比较困难,不容易想.教师追问4:如果设A ,B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?教师分析,学生回答. (1)列表:(2)在上面的表格中,有一些未知的量,根据设A ,B 两地相距x km ,分别列式表示客车和卡车从A 地到B 地的行驶时间,完成表格.教师提问5:如何用式子表示两车的行驶时间之间的关系? 学生分作讨论并回答,教师总结:寻找相等关系,列方程. 卡车行驶时间-客车行驶时间=1,列方程:16070x x -=. 教师总结:我们已经知道,方程是含有未知数的等式,上面的等式中的x 是未知数,这个等式是一个方程.【新知】方程必须满足两个条件: (1)是等式;(2)化简后含有未知数.注意:方程是等式,但等式不一定是方程,如3+1=4是等式,但不含未知数,所以不是方程.教师提问6:用算术方法和用列方程法解决这个问题,各有什么特点?学生回答:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只包含已知数.用列方程法解题时,方程中既含有已知数,又含有用字母表示的未知数.教师提问7:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生回答:设卡车从A地到B地的行驶时间为t h,则客车从A地到B地的行驶时间为(t-1) h,依据路程相等可得:70(t-1)=60t.求出t之后,60t就是路程.【归纳】列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x.(2)分析题意,找相等关系.(3)根据相等关系列方程.【设计意图】教师引导学生采用不同设未知数的方法列方程,让学生体会解题策略的多样性.二、典例精讲【例1】根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h,预计每个月再使用150 h,经过多少个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【答案】解:(1)设正方形的边长为x cm.列方程为4x=24.(2)设x个月后这台计算机的使用时间达到2 450 h,那么在x个月里这台计算机使用了150x h.列方程为1 700+150x=2 450.(3)设这个学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x.列方程为0.52x-(1-0.52)x=80.【设计意图】将简单的列方程题目大胆地放给学生自主、合作学习,学生通过展示自己的学习成果,进一步激发学习兴趣.通过例题1的练习与讲解,让学生学会如何列方程解决实际问题.课堂小结板书设计一、方程的定义二、列方程的一般步骤课后任务完成教材第80页练习1~4题.。
5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册
4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。
从算式到方程教学设计教案
从算式到方程教学设计教案
一、教学目标
1、基本掌握从算式到方程的概念,能够把算式转化为方程,能解决
一元一次方程组;
2、能够灵活运用适当的算法解决算式转化为方程的问题,熟练掌握
解一元一次方程的方法。
二、教学重点
1、掌握从算式到方程的概念;
2、掌握从算式转化为方程的算法;
3、掌握解一元一次方程的方法。
三、教学过程
1.交流提问:本节课将学习从算式到方程的概念,在开始本节课前,
大家交流一下以前对方程的了解情况。
让学生说出他们之前对方程的认知,让孩子们了解方程的概念,让他们更加熟悉方程的概念。
2.精讲从算式到方程的概念:老师结合部分例题,举一反三,讲解从
算式到方程的概念。
让学生熟悉从算式到方程的概念,通过演示好例子,
让学生更好地理解从算式到方程的概念,以促使他们更好地记住和使用概念。
3.练习练习:结合老师讲课的知识点,让学生认真完成练习题,让学
生运用所学知识,便于他们更好地理解从算式到方程的概念,以及从算式
转化为方程的方法,有效帮助学生学习从算式到方程。
4.要点梳理:把学生练习完后,老师需要复习答案,结合学生的实际情况,把重要的考点和重点再次仔细梳理。
七年级数学上册《从算式到方程》教案、教学设计
3.突破重难点,循序渐进:针对重难点,设计梯度性的问题和练习,帮助学生逐步掌握方程求解的方法和技巧。
4.拓展思维,提升能力:通过变式练习和拓展性问题,培养学生的逻辑思维和数学思维能力,提高他们解决实际问题的能力。
5.课堂小结,巩固提升:在课堂小结环节,引导学生总结本节课所学内容,强化对方程概念和求解方法的理解,提高学生的归纳总结能力。
1.导入新课:以一个简单的实际问题的视频引入,如“小明的年龄问题”,让学生从算式的角度解决问题,进而引导学生思考如何用方程来表示这个问题。
2.探究新知:
(1)让学生回顾算式的知识,引导他们发现算式与方程的关系。
3.讲解一元一次方程的求解步骤,包括移项、合并同类项、化简等。
4.结合具体例子,让学生了解未知数在方程中的意义,以及如何求解未知数。
5.强调一元一次方程在实际问题中的应用,让学生体会数学的实用价值。
(三)学生小组讨论,500字
在学生小组讨论环节,我将:
1.将学生分成若干小组,每组选择一个实际问题进行讨论。
(2)通过小组合作,让学生尝试将实际问题转化为方程,并讨论求解方程的方法。
(3)教师引导学生总结一元一次方程的求解步骤,并强调未知数在方程中的意义。
3.实践应用:
(1)设计不同类型的实际问题,让学生独立完成方程的建立和求解。
(2)针对学生的解答,进行点评和指导,强调解题过程中的注意事项。
4.知识拓展:
(1)引入一元一次方程的复杂情境,如含括号、分数等,培养学生的思维灵活性。
(2)设计开放性问题,让学生尝试用方程解决更多实际问题,提高他们的创新意识。
初中七年级上册数学《从算式到方程》教案
初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。
学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。
从算式到方程教研活动(3篇)
第1篇一、活动背景数学是一门逻辑严谨、抽象思维的学科,从算式到方程的学习过程是学生数学思维从具体到抽象、从数量关系到关系式的转变。
为了提高学生对方程的理解和应用能力,本教研活动旨在探讨如何引导学生从算式到方程的过渡,提升学生的数学思维能力。
二、活动目标1. 使教师了解从算式到方程的教学策略,提高教学效果。
2. 培养学生的抽象思维能力,提高学生的数学素养。
3. 促进教师之间的交流与合作,共同探讨数学教学中的问题。
三、活动内容1. 算式与方程的关系(1)算式与方程的区别与联系算式是数学表达式的基本形式,用于表示数量关系。
方程则是含有未知数的等式,它表示未知数与已知数之间的数量关系。
算式是方程的基础,方程是算式的升华。
(2)算式到方程的过渡策略教师在教学过程中,应注重引导学生从算式到方程的过渡,具体策略如下:a. 从具体的实例出发,让学生感受未知数的存在。
b. 通过实际问题引入方程,让学生体会方程的应用价值。
c. 利用图形、表格等直观工具,帮助学生理解方程的意义。
2. 方程的教学方法(1)概念教学教师在讲解方程的概念时,要注重引导学生从算式到方程的思维转变,让学生理解方程的本质。
(2)解题教学教师在解题教学中,要注重培养学生的逻辑思维能力和运算能力,让学生掌握方程的解法。
(3)应用教学教师在应用教学中,要注重引导学生将方程应用于实际问题,提高学生的数学素养。
3. 案例分析(1)案例一:一元一次方程的应用问题:小明有10个苹果,给了小红5个,还剩几个?分析:这是一个一元一次方程的应用问题。
设小明原来有x个苹果,根据题意可列出方程x - 5 = 10。
解方程得到x = 15,即小明原来有15个苹果。
(2)案例二:二元一次方程组的应用问题:小明和小红一共有15元,如果小明买2元一支的铅笔,小红买3元一支的铅笔,他们各买几支?分析:这是一个二元一次方程组的应用问题。
设小明买了x支铅笔,小红买了y支铅笔,根据题意可列出方程组:2x + 3y = 15x + y = 15解方程组得到x = 6,y = 9,即小明买了6支铅笔,小红买了9支铅笔。
人教版七年级数学上册教学设计:3、1从算式到方程
2.谈谈自己在解决实际问题时的体会,如何将问题转化为方程模型。
3.分享在小组讨论中的收获,以及与其他同学的互动体验。
五、作业布置
为了巩固本节课的学习内容,检验学生对方程知识的掌握程度,特布置以下作业:
1.基础巩固题:完成教材第3.1节后的练习题1、2、3,重点巩固方程的基本概念和性质,以及解方程的基本方法。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础题目:旨在巩固方程的基本概念和解法。
2.提高题目:旨在培养学生解决实际问题的能力。
3.拓展题目:旨在拓展学生的思维,提高学生的创新能力。
在练习过程中,我会关注学生的解题方法、步骤和答案,及时给予反馈和指导。
(五)总结归纳
在总结归纳环节,我会引导学生从以下几个方面进行:
此外,学生在解决实际问题时,往往难以将问题抽象成数学模型,尤其是将问题转化为方程的能力较弱。因此,在教学过程中,教师应关注学生对实际问题与数学模型之间联系的理解,帮助学生建立方程思想。
此外,学生在学习过程中,对合作交流、探究学习的认识尚浅,需要教师在课堂上给予充分的时间和空间,引导学生积极参与,培养他们的合作意识和探究精神。在此基础上,关注学生的情感态度,激发他们对数学学科的兴趣,使他们在学习过程中保持积极、主动的心态。
4.反思总结题要真实反映学生的学习情况,鼓励学生提出问题,激发学生主动学习的积极性。
人教版七年级数学上册教学设计:3、1从算式到方程
一、教学目标
(一)知识与技能
1.理解算式与方程的概念及其之间的关系,能够识别并写出不同类型的方程。
2.学会使用等式的性质解方程,掌握移项、合并同类项、去括号等基本运算方法。
人教版七年级数学上册从算式到方程教学设计
七年级的学生在数学学习上,已经具备了一定的算术基础和简单的代数知识。他们对算式的理解和运算能力较为熟练,但对于方程这一概念还相对陌生。因此,在进行“从算式到方程”的教学过程中,需要关注以下学情:
1.学生在认知上需要完成从具体的数字运算到抽象的字母表示的过渡。他们对未知数的概念和运用尚需加强,教学中应注重引导学生理解未知数在方程中的作用。
4.课后作业:布置与本节课相关的课后作业,要求学生课后复习,巩固所学知识。
五、作业布置
为了巩固学生对一元一次方程的理解和应用,以及提高他们的解题能力,特布置以下作业:
1.必做题:
-请学生完成课本第23页的练习题1、2、3,这些题目涵盖了本节课所学的方程的基本概念和解法,旨在帮助学生巩固基础知识。
-从生活中选取一个实际问题,建立一元一次方程模型,并求解。要求学生将问题解决的过程和结果写下来,以培养他们学以致用的能力。
3.精讲多练,掌握解法
-教师通过例题讲解,示范解一元一次方程的方法,强调移项、合并同类项等关Байду номын сангаас步骤。
-设计不同层次的练习题,让学生反复练习,巩固所学解法。
4.合作交流,解决问题
-组织学生进行小组合作,共同解决实际问题,培养团队协作能力和沟通能力。
-鼓励学生分享解题思路,相互学习,共同提高。
5.反思总结,提升认知
2.学生在思维方式上,需要从直观的算术思维向逻辑推理的代数思维转变。教学中,应注重培养学生的逻辑推理能力和抽象思维能力。
3.学生在实际问题解决中,可能存在将问题转化为数学方程的困难。因此,教学中应注重引导学生学会从实际问题中提炼出数学关系,建立方程模型。
4.部分学生对数学学习存在恐惧心理,容易在学习方程过程中产生挫败感。教学中,教师要关注学生的情感态度,鼓励他们克服困难,增强自信心。
新人教版七年级数学上册3.1《从算式到方程》教学设计
新人教版七年级数学上册3.1《从算式到方程》教学设计一. 教材分析新人教版七年级数学上册3.1《从算式到方程》是学生在学习了整数和分数的基础上,开始接触代数的知识。
本节课主要让学生了解方程的概念,学会将实际问题转化为方程,从而解决实际问题。
教材通过丰富的实例,引导学生认识方程,理解方程的含义,并掌握方程的解法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对整数和分数有了深入的理解。
但是,对于代数知识,尤其是方程,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中发现方程,理解方程,并掌握解方程的方法。
三. 教学目标1.让学生了解方程的概念,理解方程的含义。
2.培养学生将实际问题转化为方程,并解决实际问题的能力。
3.引导学生掌握方程的解法,提高学生的数学素养。
四. 教学重难点1.重点:方程的概念,方程的解法。
2.难点:将实际问题转化为方程,并解决实际问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生认识方程,理解方程。
2.启发式教学法:在教学过程中,引导学生主动思考,发现规律,掌握方法。
3.合作学习法:鼓励学生之间相互讨论,共同解决问题。
六. 教学准备1.准备相关实例,用于引导学生认识方程。
2.准备练习题,用于巩固学生对方程的理解。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生认识方程。
例如:小明有2个苹果,小红的苹果数是小明的3倍,请问小红有多少个苹果?让学生尝试用数学语言表述这个问题,从而引出方程的概念。
2.呈现(15分钟)呈现一组实际问题,让学生尝试用方程来解决。
例如:甲车和乙车同时出发,甲车每小时行驶60公里,乙车每小时行驶80公里,请问甲车追上乙车需要多少时间?引导学生发现实际问题中存在的等量关系,并将其转化为方程。
3.操练(15分钟)让学生分组讨论,尝试解决呈现的实际问题。
教师巡回指导,解答学生的疑问。
在这个环节中,重点让学生掌握方程的解法,并能够将实际问题转化为方程。
七年级上册数学教案《从算式到方程》
教学计划:《从算式到方程》一、教学目标1.知识与技能:学生能够理解方程的概念,掌握从具体问题的算式表达转化为方程表达的方法,初步学会解一元一次方程。
2.过程与方法:通过实例分析,引导学生经历从实际问题抽象出数学问题的过程,培养学生的数学建模能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生运用数学知识解决实际问题的意识,以及探索未知、追求真理的科学态度。
二、教学重点和难点●重点:方程的概念、从算式到方程的转化过程、一元一次方程的解法。
●难点:如何从实际问题中准确抽象出方程,以及如何设置恰当的未知数。
三、教学过程1. 引入新课(5分钟)●情境导入:通过一个贴近学生生活的实际问题(如购物找零、路程速度时间关系等),引出传统算式解法的局限性,激发学生思考更高效的解题方式。
●概念引入:介绍方程的概念,强调方程是描述相等关系的数学语言,是解决实际问题的一种有力工具。
●目标明确:阐述本节课的学习目标,让学生明确学习方向。
2. 新知讲授(15分钟)●方程构建:以实际问题为例,引导学生逐步将文字信息转化为数学符号,设置未知数,构建方程。
强调设置未知数的技巧和方法。
●方程解析:详细讲解方程的结构,包括未知数、系数、常数项等,以及方程与算式的主要区别。
●解方程示例:选取简单的一元一次方程作为示例,展示解方程的基本步骤和注意事项。
3. 互动探究(15分钟)●小组合作:将学生分组,每组分配一个实际问题,要求他们合作讨论,尝试将问题转化为方程,并初步求解。
●成果展示:各小组选派代表展示他们的方程构建过程和求解结果,其他同学和老师进行评价和反馈。
●问题解决:针对小组展示中出现的问题和疑惑,进行集体讨论,共同解决。
4. 巩固练习(10分钟)●分层练习:设计不同难度的练习题,包括直接给出条件求方程的题目、根据实际问题构建方程并求解的题目等,以满足不同层次学生的需求。
●即时反馈:学生完成练习后,教师巡视指导,及时发现并纠正学生的错误。
《从算式到方程》公开课教案
《从算式到方程》公开课教案XX中学王老师一、教学目标1. 知识与技能理解算式与方程的区别和联系。
掌握将实际问题转化为方程的基本方法。
2. 过程与方法通过实际案例分析,培养学生的抽象思维和逻辑推理能力。
3. 情感、态度与价值观激发学生对数学的兴趣,培养他们解决实际问题的能力和信心。
二、教学重点与难点1. 教学重点理解方程的概念及其表示形式。
掌握列方程解决实际问题的方法。
2. 教学难点将实际问题转化为数学方程的过程。
理解方程与算式的区别。
三、教学过程1. 导入(10分钟)故事导入:讲述一个生活中的小故事,比如购物时的找零问题,引出方程的概念。
互动提问:请同学们分享他们在生活中遇到的类似问题,鼓励他们思考这些问题是如何解决的。
2. 新课讲授(25分钟)概念讲解:通过简单的例子,讲解什么是算式,什么是方程。
算式:2+3,5×4方程:2x+3=7,5x-4=16案例分析:以找零问题为例,将实际问题转化为方程。
比如:你买了一本书,花了30元,找零5元,书的原价是多少?列出方程:设书的原价为x元,则x = 30 5互动练习:提供几个生活中的实际问题,学生们分组讨论并列出相应的方程。
例如:一袋苹果重3公斤,又买了几袋同样重量的苹果,总重量达到15公斤。
问又买了几袋苹果?列出方程:设又买了x袋苹果,则3x = 15 33. 巩固练习(15分钟)课堂练习:提供几道练习题,让学生独立完成,并请几位学生上台讲解他们的解题思路。
例如:一个游泳池注水,每小时注水50升,已经注入了100升,注满需要300升,还需要多长时间?列出方程:设还需要x小时,则50x = 300 1004. 回顾反思、课堂小结(5分钟)总结:回顾本节课的主要内容,强调将实际问题转化为方程的方法。
反思:请学生们思考今天的学习内容,并分享自己的收获和疑问。
5. 布置作业练习题:将几道生活中的实际问题转化为方程并求解。
例如:一个长方形的周长是40厘米,宽是10厘米,求它的长。
从算式到方程教案
从算式到方程教案一、教学目标1.了解算式和方程的概念及区别2.学习将问题转化为算式和方程的过程3.掌握解一元一次方程的方法二、教学重点1.算式和方程的概念及区别2.将问题转化为算式和方程的过程3.解一元一次方程的方法三、教学内容及方法1. 算式和方程的概念及区别教学内容1.什么是算式2.什么是方程3.算式和方程的区别和联系教学方法1.通过例题介绍算式和方程的概念2.分组讨论,让学生自己总结算式和方程的区别和联系2. 将问题转化为算式和方程的过程教学内容1.问题的解法方法2.如何将问题转化为算式3.如何将算式转化为方程教学方法1.通过举例的方式,让学生了解问题的解法方法2.指导学生借助关键词、逻辑关系等方法将问题转化为算式3.指导学生将算式转化为方程,学生可以通过试误法、平衡法等方法进行转化3. 解一元一次方程的方法教学内容1.一元一次方程的定义2.解一元一次方程的步骤3.解一元一次方程的常见方法教学方法1.通过例题,让学生了解一元一次方程的定义2.指导学生掌握解一元一次方程的步骤,如整理方程、移项、消元、求解等3.介绍解一元一次方程的常见方法,如代入法、等式法、消元法等,并通过例题进行讲解和练习。
四、教学过程1.引入:通过生活中的例子和问题,让学生了解算式和方程的概念。
2.讲解:介绍算式和方程的概念及区别,指导学生如何将问题转化为算式和方程。
3.练习:分组讨论,解决一些常见问题和案例,学生通过实践了解如何将问题转化为算式和方程。
4.讲解:介绍一元一次方程的定义和解法步骤。
5.练习:通过例题辅导学生解一元一次方程,指导学生掌握解一元一次方程的方法。
6.总结:通过学生的回答和讨论梳理本课内容,强化学生认识和掌握。
五、教学评价1.以评价分组讨论的结果,是否能准确转化问题为算式和方程为主2.提供每组邀约的同学回答,根据回答多少得到得分3.搜集家庭作业中,学生对一元一次方程解法的掌握情况,整理汇报考核结果六、教学反思1.整合教材内容,重点突出和疏通,实现了既考查学生思维能力,又强化了技能巩固。
2024年人教版七年级上册教学设计第五章5.1 方程
解:可以发现,当 x=5 时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边
的值相等.
教师引导学生归纳:
一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5 就
是方程 1.2x+1=0.8x+3 的解.求方程的解的过程,叫作解方程.
关系,列出一个含有未知数的等式,这样的等式叫作方程.
教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?
(2)对于根据问题中的相等关系列方程,说说你的体会?
学生思考,小组讨论交流.
教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方
程,是用数学解决实际问题的一种方法.这个过程可以表示如下:
因此,只要设出长方形的长或宽,就可以列出方程了.
5
解:设这枚纪念币的长为 x mm,则纪念币的宽可以表示为 x mm,面积可以表
8
5
5
示为8x2 mm2.已知纪念币的面积为 4 000 mm2,所以8x2=4 000.
由这个含有未知数 x 的等式可以求出这枚纪念币的长,进而可以求出纪念币
的宽.
教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等
甲队距大本营的路程=乙队距大本营的路程,于是 1.2x+1=0.8x+3.
设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数
学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并
进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本
特征,为引出方程的概念作铺垫.
人教版七年级数学上册3.1从算式到方程《一元一次方程》教案
举例:解方程5x+3=2x+7,先将同类项移项得3x=4,进而求解得x=4/3。
2.教学难点
(1)理解一元一次方程的一般形式,特别是a≠0的条件,这是学生容易忽视的地方;
解释:当a=0时,方程不再是一元一次方程,而成为0=0,这是一个恒等式,没有实际意义。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在本次教学过程中,我发现学生们对一元一次方程的概念和解法的掌握程度参差不齐。有的同学能够迅速理解并熟练运用,而有的同学则在移项和合并同类项时出现错误。这让我意识到,在教学过程中,我们需要针对不同水平的学生进行分层次教学,因材施教。
在讲授一元一次方程时,我尽量用简单明了的语言和丰富的例子来解释概念,让学生更好地理解。同时,通过设置实际问题,让学生感受到数学知识在实际生活中的应用,提高他们的学习兴趣。这一点在课堂上取得了较好的效果,同学们积极参与,课堂氛围活跃。
人教版七年级数学上册3.1从算式到方程《一元一次方程》教案
一、教学内容
本节课选自人教版七年级数学上册第三章3.1节“从算式到方程”,主要教学内容为一元一次方程。具体包括以下内容:
1.认识一元一次方程及其一般形式:ax+b=0(a≠0);
2.学会解一元一次方程的步骤,包括移项、合并同类项、系数化为1;
数学人教版(2024版)七年级初一上册 5.1.1 从算式到方程 教学教案 教学设计01
第五章一元一次方程5.1.1 从算式到方程【学习目标】1.让学生在掌握算式和简单方程的基础上,过渡到一元一次方程的学习;2.理解方程的意义,会根据实际情境列方程;3.掌握方程的解的概念,会判断方程的解;4.掌握一元一次方程的概念,会判断所给方程是否为一元一次方程.【学习重难点】重点:掌握一元一次方程的概念.难点:从实际问题中寻找等量关系,进而列出方程.【教学内容】新知探究1:方程的概念甲、乙两支登山队沿同一条路线同时向一山峰进发,甲队从距大本营1km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km,多长时间后,甲队在途中追上乙队?你会用算术方法解决这个问题吗?列算式试试.甲、乙两队相距km,甲、乙两队的速度差是km/h,所以甲队追上乙队需要h.下面,我们引入一种新的方法来解决这个问题.思考:在这个问题中,已知:甲乙两队的行进速度及甲乙两队到大本营的距离.未知:行进的时间和路程.如果设两队的行进时间为x h,根据“路程=速度×时间”,甲队和乙队行进路程可以分别表示为1.2x km和0.8x km.甲队距大本营的路程:(1.2x+1)km乙队距大本营的路程:(0.8x+3)km想一想,甲队追上乙队时,他们距大本营的路程之间有什么关系?甲队追上乙队时,他们距大本营的路程相等.比较:列算式和列方程用算术方法解题时,列出的算式只含有已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,解决问题比较方便.问题探究问题1 用买12个大水杯的钱,可以买16个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?思考:本题的等量关系是什么?设大水杯的单价为x元,那么小水杯的单价为(x-5)元.根据“单价×数量=总价”,可以列方程12x = 16(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.思考:若将小水杯的单价设为x元?你会列方程吗?设小水杯的单价为x元,那么大水杯的单价为元.根据“单价×数量=总价”,可以列方程12(x+5)=16x.由这个含有未知数x的等式可以求出小水杯的单价,进而可以求出大水杯的单价.问题2 下图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为8:5(即宽是长的58). 这枚纪念币的长和宽分别是多少毫米?如果设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,依据长方形的面积公式,面积可以表示为58x2 mm.已知纪念币面积为4 000mm2,所以58x2 =4 000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.注意:方程必须满足两个条件:(1)是等式;(2)化简后含有未知数. 二者缺一不可.考点解析例下列式子中,是方程的有()①8+2=10;② 3x+y=10;③x-1;④1x - 1y=1;⑤x >3;⑥x=1;⑦a2-1=0;⑧b2 ≠-1.A.4个B.5个C.6个D.7个注意:方程一定是等式,但等式不一定是方程.巩固练习1.下列各式中,是方程的是( )A.4-5=-1B.x+3y-1C.s+2t= -5D.a-6<32.下列各式中,不是方程的是.(填序号)①3x+1=4;②x2+2x+1=0;③ 4-3=1;④ |x|-1=0;⑤3x+1;⑥1a=a+1. ⑦x>0.3. 判断下列各式哪些是方程?是的标记“√”,不是的标记“×”.(1) 5x+3y-6x=37 ( ) (2) 4x-7 ( )(3) 5x ≥ 3 ( ) (4) 1+2=3 ( )(5) 6x2+x-2=0 ( ) (6) -7x- m=11 ( )注意:(1)方程中的未知数可以用字母x表示,也可以用其他字母表示,如y、z等.(2)方程中未知数的个数可以是一个,也可以是两个或两个以上,如x+y=12等.总结归纳用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.通过今后的学习,你会逐步认识到:从算式到方程是数学的一大进步.新知探究2:列方程典例解析例1 根据下列问题,设未知数并列出方程:(1) 某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?思考:本题的等量关系是什么?解:设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x - (1-0.52)x = 80.(2) 如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:设正方形绿地的边长为x m,依据扩大后的绿地面积= 500m2女生人数-男生人数=80.列得方程x(x+5)=500→x2+5x=500.巩固练习1.《算法统宗》是我国古代数学著作,其中记载了一道数学问题,大意如下:用绳子测水井深度,若将绳子折成三等份,则井外余绳4尺;若将绳子折成四等份,则井外余绳1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为.解析:根据将绳三折测之,绳多四尺,则绳长为:3(x+4);根据绳四折测之,绳多一尺,则绳长为:4(x+1).故3(x+4)=4(x+1).2.甲、乙两人分别从相距30千米的A,B两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发25分钟后,乙骑车出发,问乙出发后多少小时两人相遇?(只列方程)莉莉:设乙出发后x小时两人相遇,列出的方程为25×10+8x+10x=30.请问莉莉列出的方程正确吗?如果不正确,请说明理由并列出正确的方程.解:莉莉列出的方程不正确.理由:列方程时未统一单位.正确方程:设乙出发后x小时两人相遇,等量关系为:甲的路程+乙的路程=30千米依×10+10x+8x=30.题意得2560总结提升归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 这个过程可以表示如下:列方程的基本思路:(1)理解题意,弄清已知是什么,未知是什么;(2)找出题目中的相等关系;(3)根据相等关系列方程。
人教版七年级上数学《 从算式到方程 》教案
《从算式到方程》教案【教学目标】1.掌握方程的概念,了解方程与代数式之间的区别与联系。
2.学会用方程解决简单的实际问题,感受方程的实用价值。
3.培养学生的数学思维能力和解决问题的能力,激发学生对数学的兴趣。
【教学重点】掌握方程的概念,学会用方程解决简单的实际问题。
【教学难点】理解方程与代数式之间的区别与联系,感受方程的实用价值。
【教具准备】多媒体课件、小黑板、练习纸。
【教学过程】一、导入新课1.通过多媒体展示一些简单的数学问题,如计算人数、重量、长度等,让学生用算式来表示。
2.引导学生回顾算式和方程的概念,并思考算式和方程之间的区别与联系。
3.引出本节课的主题:从算式到方程。
二、探索新知1.通过实例讲解方程的概念和特点。
2.通过例题的解析,让学生理解如何用方程解决实际问题。
3.通过多个例题的讲解,让学生掌握用方程解决简单实际问题的技巧和方法。
4.引导学生自主探究和合作交流,鼓励他们提出问题和解决问题。
5.总结从算式到方程的思路和方法:首先分析问题中的等量关系,然后用字母代替未知数,建立方程,最后解方程求出未知数的值。
三、巩固提高1.通过一系列的练习题,让学生进一步巩固所学的知识。
2.通过一些实际问题,让学生应用所学的知识解决实际问题。
3.通过一些拓展性问题,激发学生的思维能力和创新能力。
四、课堂小结1.回顾本节课所学的知识点,让学生再次明确从算式到方程的概念和方法。
2.引导学生总结用方程解决简单实际问题的思路和方法。
3.强调数学思维能力和解决问题的能力在数学学习中的重要性。
初中数学《从算式到方程》教案设计范文
初中数学《从算式到方程》教案设计范文一、教学目标1.知识与技能:a)理解方程的概念,掌握方程的书写方法。
b)学会从实际问题中抽象出方程,解决实际问题。
c)掌握方程的解法,包括一元一次方程和简单的一元二次方程。
2.过程与方法:a)通过观察、分析、归纳,培养学生的逻辑思维能力。
b)通过小组讨论,培养学生的合作能力。
3.情感态度与价值观:a)培养学生对数学的兴趣,增强学习的积极性。
b)培养学生独立解决问题的能力,提高自信心。
二、教学重点与难点1.教学重点:a)方程的概念及其书写方法。
b)方程的解法。
2.教学难点:a)从实际问题中抽象出方程。
b)方程的解法,尤其是二次方程。
三、教学过程1.导入a)引导学生回顾算式的概念,如加法、减法、乘法、除法等。
b)提问:算式与方程有什么区别?2.知识讲解a)介绍方程的定义:含有未知数的等式。
b)举例说明方程的书写方法,如2x+3=7。
c)讲解方程的解法,如一元一次方程、一元二次方程等。
3.实例分析a)分析教材中的实例,如“小明的年龄是妈妈的1/3,妈妈的年龄是多少?”b)引导学生从实际问题中抽象出方程,如设妈妈的年龄为x,则小明的年龄为1/3x。
c)指导学生用方程解决问题。
4.练习与讨论a)让学生独立完成教材中的练习题,如“已知一个数的平方减去这个数等于2,求这个数。
”b)组织学生进行小组讨论,交流解题过程和心得。
b)提问:方程在实际生活中有哪些应用?c)拓展:介绍二元一次方程、三元一次方程等。
6.作业布置a)布置教材中的课后习题,如一元一次方程、一元二次方程的练习题。
b)鼓励学生从生活中发现方程的应用,记录下来并与同学分享。
四、教学反思1.课堂效果:a)观察学生在课堂上的反应,了解他们对方程的理解程度。
b)反思教学过程中的不足,如讲解是否清晰、例题是否典型等。
2.学生反馈:a)收集学生的反馈意见,了解他们对课堂内容的掌握程度。
b)根据反馈调整教学方法,提高教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《从算式到方程》教学设计
设计教师:薛俊龙
教材分析:本节课是人教版七年级数学上册第三章第一节内容,在掌握整式的基本性质以后,本章利用整式的性质和基本运算对方程求解,建立方程模型是本章的重点之一。
从算数到方程正是本章第一节,它是本章的一个窗口,理解方程的列法及列方程的必要性是本节的一个重点。
学情分析:七年级学生正处于从感性认识到理性认识,从形象思维到抽象思维转变时期,从算式到方程正好符合学生的认识特点;另外,学生有求知的需求,有独立思考,协作探究的能力,这就要求教师来合理的引导,并且开发、利用学生的思维特点。
学习目标:1.初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
学习重点和难点
一元一次方程解简单的应用题的方法和步骤.
学习过程设计:
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
问题1:某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观上述问题的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
问题2 一辆汽车匀速行驶,途中经王家庄、青山、秀水三地的时间和王家庄、青山、秀水的位置如下图所示:
观察上图,根据图表中给出的信息,回答以下问题.
(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,•你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?
(2)青山与翠湖、秀水到翠湖的距离分别是多少?
(3)本问题要求什么?
(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.
(5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?
解:(1)汽车从王家庄行驶到青山用了小时,青山到秀水用了小时.
(2)青山与翠湖的距离为千米,秀水与翠湖的距离为千米.
(3)王家庄到翠湖的距离是多少千米?
(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,•而王家庄到青山的时间为小时,所以必需求汽车的速度.
如何求汽车的速度呢?
这里青山到秀水的时间为小时,路程为千米,因此可求的汽车的平均速度为(千米/时)
王家庄到青山的路程为:(千米)
所以王家庄到翠湖的路程为:(千米)
列综合算式为:。
(5)分析:先画出示意图,示意图往往有助于分析问题.
从上图中可以用含x的式子表示关于路程的数量:
王家庄距青山千米,王家庄距秀水千米.
从章前图表中可以得出关于时间的数量:
从王家庄到青山行车小时,从王家庄到秀水行车小时.
由路程数量和行车时间的数量,可以得到行车速度的表达式.
汽车从王家庄开往青山时的速度为千米/时,汽车从王家庄开往秀水的速度为千米/时.
要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?
根据汽车是匀速行驶的,可知各段路程的车速相等.
于是列出方程:。
以后我们将学习如何解这个方程,求出未知数x的值,•从而得出王家庄到翠湖的路程.思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?
根据汽车匀速行驶,可知各段路程的车速相等.
所以还可以列方程:
50
3
x-
=
5070
2
+
或
70
5
x+
=
5070
2
+
(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等)
比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问
题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.
有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.
列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.
例1:根据下列问题,设未知数并列出方程.
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?
三、一元一次方程的概念.
观察以上所列出的各方程,有什么特点?每个方程有几个未知数,•未知数的指数是多少?
只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程.
以上分析过程可归纳为:
分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).
列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.
解方程就是求出使方程中等号两边相等的未知数的值的过程,•这个值就是方程的解.
四、巩固练习
课本第80页练习.
五、课堂小结
方程在小学里已初步学过,对于方程中的一些概念,如:方程的解和解方程等,要进一步弄清楚,今天还学习了一元一次方程的定义,“一元”是指方程中只有一个未知数,“一次”是指方程中未知数的指数是一,这样的方程才是一元一次方程.
用估算求方程的解,实际上是检验一个数是否为方程的解,方法是:把这个数分别代入方程的左、右两边,看是否相等,若方程只有一边含有未知数,而另一边只有一个数,则只需代入只有未知数的一边,计算出结果,看其是否和另一边相等.
列方程是本节课重点,掌握列方程解决实际问题方法步骤:
设未知数──用含未知数的式子表示问题中的数量关系.
找出相等关系──列出一元一次方程.
其中找相等关系是关键也是一个难点,这个相等关系要能够表示应用题全部含义的相等关系,也就是题目中给出的条件应予充分利用,不能把同一条件重复利用.
六、作业布置
课本第80页习题3.1第1、2、5、6、9题.。