必修二_立体几何复习+经典例题

合集下载

高中数学必修二第八章立体几何初步知识点题库(带答案)

高中数学必修二第八章立体几何初步知识点题库(带答案)

高中数学必修二第八章立体几何初步知识点题库单选题1、如图,在一个正方体中,E,G分别是棱AB,CC′的中点,F为棱CD靠近C的四等分点.平面EFG截正方体后,其中一个多面体的三视图中,相应的正视图是()A.B.C.D.答案:D分析:根据条件可得平面EFG经过点B′,然后可得答案.连接EB′,GB′因为E,G分别是棱AB,CC′的中点,F为棱CD靠近C的四等分点所以EB ′//FG ,所以平面EFG 经过点B ′所以多面体A ′D ′DA −EFGC ′B ′的正视图为故选:D2、“迪拜世博会”于2021年10月1日至2022年3月31日在迪拜举行,中国馆建筑名为“华夏之光”,外观取型中国传统灯笼,寓意希望和光明.它的形状可视为内外两个同轴圆柱,某爱好者制作了一个中国馆的实心模型,已知模型内层底面直径为12cm ,外层底面直径为16cm ,且内外层圆柱的底面圆周都在一个直径为20cm 的球面上.此模型的体积为( )A .304πcm 3B .840πcm 3C .912πcm 3D .984πcm 3答案:C分析:求出内层圆柱,外层圆柱的高,该模型的体积等于外层圆柱的体积与上下面内层圆柱高出的几何体的体积之和,计算可得解.如图,该模型内层圆柱底面直径为12cm ,且其底面圆周在一个直径为20cm 的球面上,可知内层圆柱的高ℎ1=2√(202)2−(122)2=16 同理,该模型外层圆柱底面直径为16cm ,且其底面圆周在一个直径为20cm 的球面上,可知外层圆柱的高ℎ2=2√(202)2−(162)2=12此模型的体积为V =π(162)2×12+π(122)2×(16−12)=912π故选:C3、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为( )A .132B .223C .152D .233 答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.4、过半径为4的球O 表面上一点M 作球O 的截面,若OM 与该截面所成的角是30°,则O 到该截面的距离是( )A .4B .2√3C .2D .1答案:C分析:作出球的截面图,根据几何性质计算,可得答案.作出球的截面图如图:设A为截面圆的圆心,O为球心,则OA⊥截面,AM在截面内,即有OA⊥AM,=2 ,故∠OMA=30∘,所以OA=4×12即O到该截面的距离是2,故选:C5、下列命题中,正确的是()A.三点确定一个平面B.垂直于同一直线的两条直线平行C.若直线l与平面α上的无数条直线都垂直,则l⊥αD.若a、b、c是三条直线,a∥b且与c都相交,则直线a、b、c在同一平面上答案:D分析:利用空间点、线、面位置关系直接判断.A.不共线的三点确定一个平面,故A错误;B.由墙角模型,显然B错误;C.根据线面垂直的判定定理,若直线l与平面α内的两条相交直线垂直,则直线l与平面α垂直,若直线l与平面α内的无数条平行直线垂直,则直线l与平面α不一定垂直,故C错误;D.因为a//b,所以a、b确定唯一一个平面,又c与a、b都相交,故直线a、b、c共面,故D正确;故选:D.6、如图.AB是圆的直径,PA⊥AC,PA⊥BC,C是圆上一点(不同于A,B),且PA=AC,则二面角P−BC−A的平面角为()A.∠PAC B.∠CPA C.∠PCA D.∠CAB答案:C解析:由圆的性质知:AC⊥BC,根据线面垂直的判定得到BC⊥面PAC,即BC⊥PC,结合二面角定义可确定二面角P−BC−A的平面角.∵C是圆上一点(不同于A,B),AB是圆的直径,∴AC⊥BC,PA⊥BC,AC∩PA=A,即BC⊥面PAC,而PC⊂面PAC,∴BC⊥PC,又面ABC∩面PBC=BC,PC∩AC=C,∴由二面角的定义:∠PCA为二面角P−BC−A的平面角.故选:C7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果.由题意:SG⊥FG,SG⊥EG,FG ∩EG =G ,FG ,EG ⊂平面EFG所以SG ⊥平面EFG 正确,D 不正确;.又若EG ⊥平面SEF ,则EG ⊥ EF ,由平面图形可知显然不成立;同理GF ⊥平面SEF 不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是( )A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024π81cm3B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、两平行平面截半径为5的球,若截面面积分别为9π和16π,则这两个平面间的距离是()A.1B.3C.4D.7答案:AD解析:对两个平行平面在球心的同侧和异侧两种情况讨论,计算出球心到两截面的距离,进而可求得两平面间的距离.如图(1)所示,若两个平行平面在球心同侧,则CD=OC−OD=√52−32−√52−42=4−3=1;如图(2)所示,若两个平行截面在球心两侧,则CD=OC+OD=√52−32+√52−42=4+3=7.故选:AD.小提示:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质“与底面全等或相似”,同时结合旋转体中的经过旋转轴的截面“轴截面”的性质,利用相似三角形中的相似比,构设相关几何变量的方程组,进而得解.11、下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.B.C.D.答案:AD分析:根据线面平行的判定定理和性质定理分别判断即可解:在A中,连接AC,则AC∥MN,由正方体性质得到平面MNP∥平面ABC,∴AB∥平面MNP,故A成立;对于B,若下底面中心为O,则NO∥AB,NO∩面MNP=N,∴AB与面MNP不平行,故B不成立;对于C,过M作ME∥AB,则E是中点,则ME与平面PMN相交,则AB与平面MNP相交,∴AB与面MNP不平行,故C不成立;对于D,连接CE,则AB∥CE,NP∥CD,则AB∥PN,∴AB∥平面MNP,故D成立.故选:AD.小提示:此题考查线面平行的判定定理和性质定理的应用,属于基础题填空题12、给出下列命题:①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行;④一个平面中的两条直线与另一个平面都平行,则这两个平面平行;其中说法正确的有_____(填序号).答案:②③解析:对四个选项进行逐一分析即可.对①:根据公理可知,只有不在同一条直线上的三点才能确定一个平面,故错误;对②:三条平行线,可以确定平面的个数为1个或者3个,故正确;对③:垂直于同一个平面的两条直线平行,故正确;对④:一个平面中,只有相交的两条直线平行于另一个平面,两平面才平行,故错误. 综上所述,正确的有②③.所以答案是:②③.小提示:本题考查立体几何中的公理、线面平行的判定,属综合基础题.13、正方体ABCD−A′B′C′D′的棱长为a,则异面直线CD′与BD间的距离等于______.答案:√33a分析:作辅助线,找出异面直线CD′与BD的公垂线段,求出公垂线段可得答案.取CD中点M,连接MC′,AM,AM与BD交于P,MC′与CD′交于Q,由正方体的性质可知AC′⊥BD,AC′⊥CD′.由△CMQ与△D′C′Q相似可得MQQC′=MCD′C′=12,同理可得MPPA =12,所以PQ∥AC′,且PQ=13AC′=√33a,所以PQ为CD′与BD间的公垂线段,所以异面直线CD′与BD间的距离等于√33a.所以答案是:√33a.14、如图,A,B是120°的二面角α−l−β棱l上的两点,线段AC、BD分别在平面α、β内,且AC⊥l,BD⊥l,AC=2,BD=1,AB=3,则线段CD的长为______.答案:4分析:作辅助线使∠EAC为二面角的平面角,由余弦定理求出EC,再通过证明ED⊥平面EAC,得出ED⊥EC,通过勾股定理即可求解.如图所示:在平面β中,过A作直线平行于BD,在其上取一点E,使AE=BD,连接EC、ED.由∵BD⊥l,∴AE⊥l,则∠EAC即为a−l−β的平面角,则∠EAC=120°.在△EAC中,由余弦定理得:EC2=EA2+CA2−2EA⋅CA⋅cos∠EAC=1+4−2×1×2×(−12)=7,四边形EABD是平行四边形,则ED=AB=3.由AB⊥平面EAC,结合ED∥AB得ED⊥平面EAC,EC⊂平面EAC,则ED⊥EC,∴△DEC是直角三角形.由勾股定理CD2=CE2+ED2=7+9=16,∴CD=4.所以答案是:4解答题15、如图所示,在长方体ABCD−A1B1C1D1中,AA1=A1D1=a,AB=2a,且E为AB中点.求C1到平面D1DE的距离.答案:√2a.分析:根据V E−DC1D1=V C−D1DE,结合锥体的体积公式,准确运算,即可求解.由题意,可得长方体ABCD−A1B1C1D1中,AA1=A1D1=a,AB=2a,所以V E−DC1D1=13S△DC1C⋅BC=13×12×2a×a×a=13a3.设C1到平面D1DE的距离为ℎ,则V C1−D1DE =13S D1DE⋅ℎ.在直角△DAE中,由勾股定理得DE=√2a,所以S△D1DE =12DD1⋅DE=12×a×√2a=√22a2,所以V C−D1DE =13⋅√22a2⋅ℎ=13a3,解得ℎ=√2a,即C1到平面D1DE的距离为√2a.。

高中数学必修二第八章立体几何初步考点题型与解题方法(带答案)

高中数学必修二第八章立体几何初步考点题型与解题方法(带答案)

高中数学必修二第八章立体几何初步考点题型与解题方法单选题1、下列说法中正确的是()A.如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B.平面α内△ABC的三个顶点到平面β的距离相等,则α与β平行C.α//β,a//α,则a//βD.a//b,a//α,b⊄α,则b//α答案:D分析:根据线面关系,逐一判断每个选项即可.解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内的无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图1,D,E,F,G分别为正方体中所在棱的中点,平面DEFG设为平面β,易知正方体的三个顶点A,B,C到平面β的距离相等,但△ABC所在平面α与β相交,故错误;对于选项C,a可能在平面β内,故错误;对于选项D,正确.故选:D.2、已知直三棱柱ABC−A1B1C1的各顶点都在同一球面上,且该棱柱的体积为√3,AB=2,AC=1,∠BAC=60°,则该球的表面积为()A.4πB.4√2πC.8πD.32π答案:C解析:利用三棱柱ABC −A 1B 1C 1的侧棱垂直于底面,棱柱的体积为√3,AB =2,AC =1,∠BAC =60°,求出AA 1,再求出ΔABC 外接圆的半径,即可求得球的半径,从而可求球的表面积. ∵三棱柱ABC −A 1B 1C 1的侧棱垂直于底面, 棱柱的体积为√3,AB =2,AC =1,∠BAC =60°, ∴12×2×1×sin60°×AA 1=√3,∴AA 1=2∵BC 2=AB 2+AC 2−2AB ⋅ACcos60°=4+1−2=3,∴BC =√3. 设ΔABC 外接圆的半径为R ,则BCsin60°=2R ,∴R =1.∴外接球的半径为√1+1=√2,∴球的表面积等于4π×(√2)2=8π. 故选:C.小提示:本小题主要考查根据柱体体积求棱长,考查几何体外接球有关计算,属于基础题.3、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( ) A .√22B .1C .√2D .2√2 答案:C分析:计算出V 方盖差,V ,即可得出结论.由题意,V 方盖差=r 3−18V 牟=r 3−18×4π×43×π×r 3=13r 3, 所有棱长都为r 的正四棱锥的体积为V 正=13×r ×r ×r 2−(√2r 2)2=√26r 3, ∴V 方盖差V 正=13r 3√2r 36=√2,故选:C .4、已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) A .2πR 2B .94πR 2C .83πR 2D .πR 2答案:B分析:根据圆柱的表面积公式以及二次函数的性质即可解出.设圆柱的底面半径为r,圆柱的高为ℎ,所以在轴截面三角形中,如图所示:由相似可得,rR =3R−ℎ3R,所以,ℎ=3R−3r,即圆柱的全面积为S=2πr2+2πrℎ=2πr2+2πr(3R−3r)=2π(−2r2+3rR)=2π[−2(r−34R)2+98R2]≤9π4R2,当且仅当r=34R时取等号.故选:B.5、如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤答案:D解析:根据平面的表示方法判断.③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.6、如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,BD=2,DE=1,点P在线段EF上.给出下列命题:①存在点P,使得直线DP//平面ACF;②存在点P,使得直线DP⊥平面ACF;,1];③直线DP与平面ABCD所成角的正弦值的取值范围是[√55④三棱锥A−CDE的外接球被平面ACF所截得的截面面积是9π.8其中所有真命题的序号()A.①③B.①④C.①②④D.①③④答案:D分析:当点P是线段EF中点时判断①;假定存在点P,使得直线DP⊥平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出△ACF外接圆面积判断④作答.取EF中点G,连DG,令AC∩BD=O,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则DO//GF且DO=GF,即四边形DGFO是平行四边形,即有DG//FO,而FO⊂平面ACF,DG⊄平面ACF,于是得DG//平面ACF,当点P与G重合时,直线DP//平面ACF,①正确;假定存在点P,使得直线DP⊥平面ACF,而FO⊂平面ACF,则DP⊥FO,又DG//FO,从而有DP⊥DG,在Rt△DEF中,∠DEF=90∘,DG是直角边EF上的中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,则线段EF上的动点P在平面ABCD上的射影在直线BD上,于是得∠PDB是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,∠PDB=∠DPE,sin∠PDB=sin∠DPE=DEDP =√DE2+EP2=√1+EP2,而0<EP≤2,则√55≤sin∠PDB<1,当P与E重合时,∠PDB=π2,sin∠PDB=1,因此,√55≤sin∠PDB≤1,③正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BF⊥BD,BF⊂平面BDEF,则BF⊥平面ABCD,BC=√2,在△ACF中,AF=CF=√BC2+BF2=√3,显然有FO⊥AC,sin∠FAC=FOAF =√BO2+BF2AF=√2√3,由正弦定理得△ACF外接圆直径2R=CFsin∠FAC =√2,R=2√2,三棱锥A−CDE的外接球被平面ACF所截得的截面是△ACF的外接圆,其面积为πR2=9π8,④正确,所以所给命题中正确命题的序号是①③④.故选:D小提示:名师点评两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.7、边长为5 cm的正方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是()A.10cm B.5√2cmC.5√π2+1cm D.52√π2+4cm答案:D分析:将圆柱展开,根据题意即可求出答案.圆柱的侧面展开图如图所示,展开后E′F=12×2π×52=52π(cm),∴E′G=√52+(5π2)2=52√π2+4(cm),即为所求最短距离.8、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/多选题9、(多选题)下列说法中,正确的结论有()A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行答案:BD分析:由等角定理可判断A的真假;根据直线夹角的定义可判断B的真假;举反例可判断C的真假;由平行公理可判断D的真假.对于选项A:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故选项A错误;对于选项B:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等,故选项B正确;对于选项C:如果一个角的两边和另一个角的两边分别垂直,这两个角的关系不确定,既可能相等也可能互补,也可能既不相等,也不互补.反例如图,在立方体中,∠A1D1C1与∠A1BC1满足A1D1⊥A1B,C1D1⊥C1B,但是∠A1D1C1=π2,∠A1BC1=π3,二者不相等也不互补.故选项C错误;对于选项D:如果两条直线同时平行于第三条直线,那么这两条直线平行,故选项D正确.故选:BD.10、矩形ABCD中,AB=2,BC=1,将此矩形沿着对角线BD折成一个三棱锥C−BDA,则以下说法正确的有()A.三棱锥C−BDA的体积最大值为2√515B.当二面角C−BD−A为直二面角时,三棱锥C−BDA的体积为2√515C.当二面角C−BD−A为直二面角时,三棱锥C−BDA的外接球的表面积为5πD.当二面角C−BD−A不是直二面角时,三棱锥C−BDA的外接球的表面积小于5π答案:ABC分析:求出点C到平面ABD的最大距离即可计算棱锥的最大体积判断选项A,B;求出三棱锥C−BDA的外接球的半径即可判断选项C,D作答.过C作CE⊥BD于E,在平面DBA内过E作BD的垂线EG,则∠CEG为二面角C−BD−A的平面角,如图,平面CEG⊥平面DBA,过C作CF⊥EG于F,则CF⊥平面DBA,在直角△BCD中,∠BCD=90∘,BC=1,CD=2,CE=BC⋅CDBD =2√55,显然CF≤CE,当且仅当点E与F重合时取“=”,即点C到平面ABD距离的最大值为CE=2√55,而S△DBA=12AB⋅AD=1,则三棱锥C−BDA的体积最大值为13CE⋅S△DBA=2√515,A正确;当CF取最大值2√55时,CF⊂平面BCD,又CF⊥平面DBA,则平面BCD⊥平面DBA,即二面角C−BD−A为直二面角,三棱锥C−BDA的体积为2√515,B正确;取BD中点O,连接AO,CO,显然有AO=CO=12BD=BO=DO,于是得点A,B,C,D在以O为球心,AO=√52为半径的球面上,显然,无论二面角C−BD−A如何变化,点A,B,C,D都在上述的球O上,其表面积为5π,C正确,D不正确.故选:ABC11、如图,正方体ABCD−A1B1C1D1的棱长为1,则下列四个命题正确的是()A.两条异面直线D1C和BC1所成的角为π4B.直线BC与平面ABC1D1所成的角等于π4C.点D到面ACD1的距离为√33D.三棱柱AA1D1−BB1C1外接球半径为√32答案:BCD分析:对于A:根据异面直线的求法易得:异面直线D1C和BC1所成的角为∠AD1C;对于B:可证B1C⊥平面ABC1D1,则直线BC与平面ABC1D1所成的角为∠CBC1;对于C:根据等体积转换V D−ACD1=V D1−ACD,求点D到面ACD1的距离;对于D:三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球,直接求正方体外接球的半径即可.连接AC、AD1∵AB∥C1D1且AB=C1D1,则四边形ABC1D1为平行四边形,∴异面直线D1C和BC1所成的角为∠AD1C∵AC=AD1=D1C,则△ACD1为正三角形,即∠AD1C=π3A不正确;连接B1C在正方形BB1C1C中,BC1⊥B1C∵AB⊥平面BB1C1C,B1C⊂平面BB1C1C∴AB⊥B1CAB∩BC1=B,则B1C⊥平面ABC1D1∴直线BC与平面ABC1D1所成的角为∠CBC1=π4 B正确;根据等体积转换可知:V D−ACD1=V D1−ACD即13×ℎ×12×√2×√2×√32=13×1×12×1×1,则ℎ=√33C正确;三棱柱AA1D1−BB1C1的外接球即为正方体ABCD−A1B1C1D1的外接球则外接球的半径即为正方体ABCD−A1B1C1D1体对角线的一半,即R=√32 D正确;故选:BCD.填空题12、一个圆锥的母线长为20,母线与轴的夹角为60∘,则圆锥的高为________.答案:10分析:利用圆锥的几何性质可求得该圆锥的高.由题意可知,该圆锥的高为ℎ=20cos60∘=10.所以答案是:10.13、若将两个半径为1的铁球熔化后铸成一个球,则该球的半径为______.答案:√23分析:根据球的体积等于两个半径为1的球的体积之和即可求其半径.设大球的半径为r,则根据体积相同,可知43π+43π=43πr3,则r3=2,解得r=√23.所以答案是:√23.14、已知一三角形ABC用斜二测画法画出的直观图是面积为√3的正三角形A′B′C′(如图),则三角形ABC中边长与正三角形A′B′C′的边长相等的边上的高为______.答案:2√6分析:根据面积公式求出三角形的边长,以及高,利用斜二测画法的原理还原出原三角形的高,并求出答案. 设正三角形A′B′C′的边长为a,∵S△A′B′C′=√34a2=√3∴a=2,DC′=√3O′C′=√6∴O′C=2√6所以答案是:2√6.解答题15、如图,在正方体ABCD−A1B1C1D1中,A1C1与B1D1交于点O1,求证:(1)直线A1B∥平面ACD1;(2)直线BO1∥平面ACD1.答案:(1)证明见解析(2)证明见解析分析:(1)根据题意,先证得四边形A1D1CB是平行四边形,从而证得A1B∥D1C,即可证得线面垂直;(2)连接BD,交AC于O,连接D1O,只需证明O1B∥D1O,即可证得线面垂直;(1)证明:直线A1B在平面ACD1外,因为A1D1∥BC,A1D1=BC,所以四边形A1D1CB是平行四边形,所以A1B∥D1C,而D1C是平面ACD1内的直线,根据判定定理可知,直线A1B∥平面ACD1.(2)证明:如图,连接BD,交AC于O,连接D1O,易知D1O1∥OB,D1O1=OB,则四边形D1O1BO是平行四边形,所以O1B∥D1O,所以D1O在平面ACD1上,根据判定定理可知,O1B∥平面ACD1.。

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。

(word完整版)高一必修二经典立体几何专项练习题

(word完整版)高一必修二经典立体几何专项练习题

高一必修二经典立体几何专项练习题空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:aβbβa∩b =pβ∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。

2.2.3 —2.2.4直线与平面、平面与平面平行的性质1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a ∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。

2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。

符号表示:α∥βα∩γ=a a∥bβ∩γ=b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

PaL2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

(完整版)高中数学必修2空间立体几何大题

(完整版)高中数学必修2空间立体几何大题

必修2空间立体几何大题一.解答题(共18小题)1.如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.9.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点.(Ⅰ)求证:EF∥平面A1B1BA;(Ⅱ)求证:平面AEA1⊥平面BCB1;(Ⅲ)求直线A1B1与平面BCB1所成角的大小.10.如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.(1)求证:MN∥平面BCD;(2)求证:平面BCD⊥平面ABC.11.如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.(1)求证:BF⊥AC;(2)若CE=1,∠CBE=30°,求三棱锥F﹣BCE的体积.12.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.13.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)若BC=4,AB=20,求三棱锥D﹣BCM的体积.14.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC 与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.15.已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.16.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点.(1)证明BC1∥平面A1CD(2)设AA1=AC=CB=2,AB=2,求三菱锥C﹣A1DE的体积.17.如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:(Ⅰ)求证:CB⊥DE;(Ⅱ)求三棱锥C﹣BOD的体积;(Ⅲ)在劣弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.18.如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.必修2空间立体几何大题参考答案与试题解析一.解答题(共18小题)1.(2015?北京)如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB(3)求三棱锥V﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.专题:综合题;空间位置关系与距离.分析:(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面VAB,即可证明平面MOC⊥平面VAB(3)利用等体积法求三棱锥V﹣ABC的体积.解答:(1)证明:∵O,M分别为AB,VA的中点,∴OM∥VB,∵VB?平面MOC,OM?平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面VAB⊥平面ABC,OC?平面ABC,∴OC⊥平面VAB,∵OC?平面MOC,∴平面MOC⊥平面VAB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S△VAB=,∵OC⊥平面VAB,∴V C﹣VAB=?S△VAB=,∴V V﹣ABC=V C﹣VAB=.点评:本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.2.(2015?安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.考点:棱柱、棱锥、棱台的体积;点、线、面间的距离计算.专题:综合题;空间位置关系与距离.分析:(1)利用V P﹣ABC=?S△ABC?PA,求三棱锥P﹣ABC的体积;(2)过B作BN⊥AC,垂足为N,过N作MN∥PA,交PA于点M,连接BM,证明AC⊥平面MBN,可得AC⊥BM,利用MN∥PA,求的值.解答:(1)解:由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以V P﹣ABC=?S△ABC?PA=;(2)解:过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM?平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB?cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.点评:本题考查三棱锥P﹣ABC的体积的计算,考查线面垂直的判定与性质的运用,考查学生分析解决问题的能力,属于中档题.3.(2015?黑龙江)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.考点:棱柱、棱锥、棱台的体积;平面的基本性质及推论.专题:综合题;空间位置关系与距离.分析:(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.解答:解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.点评:本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.4.(2015?湖南)如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明AE⊥BB1,AE⊥BC,BC∩BB1=B,推出AE⊥平面B1BCC1,利用平面余平米垂直的判定定理证明平面AEF⊥平面B1BCC1;(Ⅱ)取AB的中点G,说明直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,求出棱锥的高与底面面积即可求解几何体的体积.解答:(Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面ABC,AE?底面ABC,∴AE⊥BB1,∵直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E分别是BC的中点,∴AE⊥BC,BC∩BB1=B,∴AE⊥平面B1BCC1,∵AE?平面AEF,∴平面AEF⊥平面B1BCC1;(Ⅱ)解:取AB的中点G,连结A1G,CG,由(Ⅰ)可知CG⊥平面A1ABB1,直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,则A1G=CG=,∴AA1==,CF=.三棱锥F﹣AEC的体积:×==.点评:本题考查几何体的体积的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.5.(2015?江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE?平面AA1C1C,AC?平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC?平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1?平面BCC1B1,BC?平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1?平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1?平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.6.(2015?重庆)如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:开放型;空间位置关系与距离.分析:(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC,由EF∥BC可得△AFE≌△ABC,求得S△AFE=S△ABC,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积V P﹣DFBC=S DFBC?PE=7,即可解得线段BC的长.解答:解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE?平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB?BC=x,由EF∥BC知,得△AFE≌△ABC,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD==S△ABC=S△ABC=x,从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD=x﹣x=x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积V P﹣DFBC=S DFBC?PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.点评:本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.7.(2015?福建)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;(Ⅲ)若BC=,点E在线段PB上,求CE+OE的最小值.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(Ⅰ)由题意可证AC⊥DO,又PO⊥AC,即可证明AC⊥平面PDO.(Ⅱ)当CO⊥AB时,C到AB的距离最大且最大值为1,又AB=2,即可求△ABC面积的最大值,又三棱锥P﹣ABC的高PO=1,即可求得三棱锥P﹣ABC体积的最大值.(Ⅲ)可求PB===PC,即有PB=PC=BC,由OP=OB,C′P=C′B,可证E为PB中点,从而可求OC′=OE+EC′==,从而得解.解答:解:(Ⅰ)在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO,又PO垂直于圆O所在的平面,所以PO⊥AC,因为DO∩PO=O,所以AC⊥平面PDO.(Ⅱ)因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1,又AB=2,所以△ABC面积的最大值为,又因为三棱锥P﹣ABC的高PO=1,故三棱锥P﹣ABC体积的最大值为:.(Ⅲ)在△POB中,PO=OB=1,∠POB=90°,所以PB==,同理PC=,所以PB=PC=BC,在三棱锥P﹣ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示,当O,E,C′共线时,CE+OE取得最小值,又因为OP=OB,C′P=C′B,所以OC′垂直平分PB,即E为PB中点.从而OC′=OE+EC′==.亦即CE+OE的最小值为:.点评:本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.8.(2015?河北)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.解答:证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC?平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵AE⊥EC,△EBG为直角三角形,∴BE=x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB?BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBG,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE=,∴从而得AE=EC=ED=,∴△EAC的面积S==3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE=,AF==,则EF=,∴△EAD的面积和△ECD的面积均为S==,故该三棱锥的侧面积为3+2.点评:本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.9.(2015?天津)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F 分别为BC和A1C的中点.(Ⅰ)求证:EF∥平面A1B1BA;(Ⅱ)求证:平面AEA1⊥平面BCB1;(Ⅲ)求直线A1B1与平面BCB1所成角的大小.考点:平面与平面垂直的判定;直线与平面平行的判定;直线与平面所成的角.专题:空间位置关系与距离.分析:(Ⅰ)连接A1B,易证EF∥A1B,由线面平行的判定定理可得;(Ⅱ)易证AE⊥BC,BB1⊥AE,可证AE⊥平面BCB1,进而可得面面垂直;(Ⅲ)取BB1中点M和B1C中点N,连接A1M,A1N,NE,易证∠A1B1N即为直线A1B1与平面BCB1所成角,解三角形可得.解答:(Ⅰ)证明:连接A1B,在△A1BC中,∵E和F分别是BC和A1C的中点,∴EF∥A1B,又∵A1B?平面A1B1BA,EF?平面A1B1BA,∴EF∥平面A1B1BA;(Ⅱ)证明:∵AB=AC,E为BC中点,∴AE⊥BC,∵AA1⊥平面ABC,BB1∥AA1,∴BB1⊥平面ABC,∴BB1⊥AE,又∵BC∩BB1=B,∴AE⊥平面BCB1,又∵AE?平面AEA1,∴平面AEA1⊥平面BCB1;(Ⅲ)取BB1中点M和B1C中点N,连接A1M,A1N,NE,∵N和E分别为B1C和BC的中点,∴NE平行且等于B1B,∴NE平行且等于A1A,∴四边形A1AEN是平行四边形,∴A1N平行且等于AE,又∵AE⊥平面BCB1,∴A1N⊥平面BCB1,∴∠A1B1N即为直线A1B1与平面BCB1所成角,在△ABC中,可得AE=2,∴A1N=AE=2,∵BM∥AA1,BM=AA1,∴A1M∥AB且A1M=AB,又由AB⊥BB1,∴A1M⊥BB1,在RT△A1MB1中,A1B1==4,在RT△A1NB1中,sin∠A1B1N==,∴∠A1B1N=30°,即直线A1B1与平面BCB1所成角的大小为30°点评:本题考查线面垂直与平行关系的证明,涉及直线与平面所成的角,属中档题.10.(2015?醴陵市)如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.(1)求证:MN∥平面BCD;(2)求证:平面BCD⊥平面ABC.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)由中位线定理和线面平行的判定定理,即可得证;(2)由线面垂直的性质和判定定理,可得CD⊥平面ABC,再由面面垂直的判定定理,即可得证.解答:证明:(1)因为M,N分别是AC,AD的中点,所以MN∥CD.又MN?平面BCD且CD?平面BCD,所以MN∥平面BCD;(2)因为AB⊥平面BCD,CD?平面BCD,所以AB⊥CD.又CD⊥BC,AB∩BC=B,所以CD⊥平面ABC.又CD?平面BCD,所以平面BCD⊥平面ABC.点评:本题考查线面平行的判定和面面垂直的判定,考查空间直线和平面的位置关系,考查逻辑推理能力,属于中档题.11.(2015?葫芦岛一模)如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.(1)求证:BF⊥AC;(2)若CE=1,∠CBE=30°,求三棱锥F﹣BCE的体积.考点:旋转体(圆柱、圆锥、圆台).专题:计算题;空间位置关系与距离.分析:(1)欲证BF⊥AC,先证BF⊥平面AEC,根据线面垂直的判定定理可知只需证CE⊥BF,BF⊥AE且CE∩AE=E,即可证得线面垂直;(2)V F﹣BCE=V C﹣BEF=?S△BEF?CE=??EF?BF?CE,即可求出三棱锥F﹣BCE的体积.解答:(1)证明:∵AB⊥平面BEC,CE?平面BEC,∴AB⊥CE∵BC为圆的直径,∴BE⊥CE.∵BE?平面ABE,AB?平面ABE,BE∩AB=B∴CE⊥平面ABE,∵BF?平面ABE,∴CE⊥BF,又BF⊥AE且CE∩AE=E,∴BF⊥平面AEC,∵AC?平面AEC,∴BF⊥AC…(6分)(2)解:在Rt△BEC中,∵CE=1,∠CBE=30°∴BE=,BC=2又∵ABCD为正方形,∴AB=2,∴AE=,∴BF?AE=AB?BE,∴BF=,∴EF=∴V F﹣BCE=V C﹣BEF=?S△BEF?CE=??EF?BF?CE=????1=…(12分)点评:本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力,考查三棱锥F﹣BCE的体积的计算,属于中档题.12.(2015?商丘三模)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)利用面面垂直的性质,证明EC⊥平面ABCD,利用线面垂直的性质证明EC⊥CD;(Ⅱ)在平面BCEG中,过G作GN⊥CE交BE于M,连DM,证明四边形ADMG为平行四边形,可得AG∥DM,即可证明AG∥平面BDE;(Ⅲ)利用分割法即可求出几何体EG﹣ABCD的体积.解答:(Ⅰ)证明:由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE?平面BCEG,∴EC⊥平面ABCD,…(3分)又CD?平面BCDA,故EC⊥CD…(4分)(Ⅱ)证明:在平面BCEG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且,∴MG∥AD,MG=AD,故四边形ADMG为平行四边形,∴AG∥DM…(6分)∵DM?平面BDE,AG?平面BDE,∴AG∥平面BDE…(8分)(Ⅲ)解:…(10分)=…(12分)点评:本题考查面面垂直、线面平行,考查几何体体积的计算,考查学生分析解决问题的能力,正确运用面面垂直、线面平行的判定定理是关键.13.(2015?南昌模拟)如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB 为正三角形.(1)求证:DM∥平面APC;(2)若BC=4,AB=20,求三棱锥D﹣BCM的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)可由三角形的中位线定理得到线线平行,进而得到线面平行.(2)先证明MD⊥底面BCD,进而可计算出体积.解答:(1)证明:∵M为AB的中点,D为PB的中点,∴MD为△PAB的中位线,∴MD∥AP.而AP?平面PAC,MD?平面PAC,∴MD∥平面PAC.(2)解:∵△PMB为正三角形,PD=DB,∴MD⊥PB.∵MD∥AP,AP⊥PC,∴MD⊥PC.又PC∩PB=P,∴MD⊥平面PBC.即MD为三棱锥M﹣BCD的高.由AB=20,∴MB=10,BD=5,∴MD=5.在Rt△PCB中(因为AC⊥BC,所以PC⊥BC),由勾股定理得PC==2.于是S△BCD=S△BCP×==.∴V三棱锥D﹣BCM=V三棱锥M﹣BCD==10.点评:利用三角形的中位线定理证明线线平行是证明线面平行常用的方法之一.先证明线面垂直是求体积的关键.14.(2015?沈阳模拟)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能证明平面EAC⊥平面PBD.(Ⅱ)由已知得PD∥OE,取AD中点H,连结BH,由此利用,能求出三棱锥P﹣EAD的体积.解答:(Ⅰ)证明:∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC?平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,.∴(还可以用VP-ABD-VE-ABD)==.点评:本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.15.(2015?上海模拟)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP两两垂直,能求出四面体C1PQR 的体积.解答:(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.点评:本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.16.(2015?凯里市校级模拟)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点.(1)证明BC1∥平面A1CD(2)设AA1=AC=CB=2,AB=2,求三菱锥C﹣A1DE的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)连结AC1交A1C于点F,连结DF,则BC1∥DF,由此能证明BC1∥平面A1CD.(2)由已知得AA1⊥CD,CD⊥AB,从而CD⊥平面ABB1A1.由此能求出三菱锥C﹣A1DE的体积.解答:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.因为DF?平面A1CD,BC1不包含于平面A1CD,所以BC1∥平面A1CD.(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以三菱锥C﹣A1DE的体积为:==1.点评:本题考查直线与平面平行的证明,考查三菱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.(2015?东城区一模)如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:(Ⅰ)求证:CB⊥DE;(Ⅱ)求三棱锥C﹣BOD的体积;(Ⅲ)在劣弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.考点:棱柱、棱锥、棱台的体积;直线与平面平行的性质.专题:综合题;空间位置关系与距离.分析:(Ⅰ)利用等边三角形的性质可得DE⊥AO,再利用面面垂直的性质定理即可得到DE⊥平面ABC,进而得出结论.(Ⅱ)由(Ⅰ)知DE⊥平面ABC,利用转换底面的方法,即可求三棱锥的体积;(Ⅲ)存在,G为劣弧的中点.连接OG,OF,FG,通过证明平面OFG∥平面ACD,即可得到结论.解答:(Ⅰ)证明:在△AOD中,∵,OA=OD,∴△AOD为正三角形,又∵E为OA的中点,∴DE⊥AO…(1分)∵两个半圆所在平面ACB与平面ADB互相垂直且其交线为AB,∴DE⊥平面ABC.…(3分)又CB?平面ABC,∴CB⊥DE.…5分(Ⅱ)解:由(Ⅰ)知DE⊥平面ABC,∴DE为三棱锥D﹣BOC的高.∵D为圆周上一点,且AB为直径,∴,在△ABD中,由AD⊥BD,,AB=2,得AD=1,.…(6分)∵,∴==.…(8分)(Ⅲ)解:存在满足题意的点G,G为劣弧的中点.…(9分)证明如下:连接OG,OF,FG,易知OG⊥BD,又AD⊥BD∴OG∥AD,∵OG?平面ACD,∴OG∥平面ACD.…(10分)在△ABC中,O,F分别为AB,BC的中点,∴OF∥AC,OF?平面ACD,∴OF∥平面ACD,…(11分)∵OG∩OF=O,∴平面OFG∥平面ACD.又FG?平面OFG,∴FG∥平面ACD.…(12分)点评:本题考查线线、线面、面面关系,考查线线垂直的判定、面面垂直的性质、线面平行的判定及几何体高与体积的计算,考查空间想象能力、推理论证能力、运算求解能力及分析探究问题和解决问题的能力.18.(2015?威海模拟)如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明BD⊥DF,DF⊥BC,利用直线与平面垂直的判定定理证明BC⊥平面CFD,然后证明面BCE⊥面CDF.(Ⅱ)连接OQ,通过证明RQ∥OM,然后证明QR∥平面BCD.(Ⅲ)利用v F﹣BCE=v F﹣BCD﹣v E﹣BCD求解几何体的体积即可.解答:(本小题满分12分)证明:(Ⅰ)∵DF=2,,,∴BF2=BD2+DF2,∴BD⊥DF﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又DF⊥CD,∴DF⊥平面BCD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴DF⊥BC,又BC⊥CD,∴BC⊥平面CFD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵BC?面BCE∴面BCE⊥面CDF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)连接OQ,在面CFD内过R点做RM⊥CD,∵O,Q为中点,∴OQ∥DF,且﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∵DF⊥CD∴RM∥FD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)又FR=3RC,∴,∴,∵E为FD的中点,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴OQ∥RM,且OQ=RM∴OQRM为平行四边形,∵RQ∥OM﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又RQ?平面BCD,OM?平面BCD,∴QR∥平面BCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)∵,∴∠DBC=30°,∴在直角三角形BCD中有,,∴﹣﹣﹣﹣﹣﹣﹣﹣(12分)(或求VB-FCE 1/3*1/2*FE*CD*BC)点评:本题考查直线与平面垂直的判定定理的应用直线与平面平行的判定定理以及几何体的体积的求法,考查空间想象能力以及逻辑推理计算能力.。

必修二立体几何较难题汇总

必修二立体几何较难题汇总

1.四面体ABCD 四个面的重心分别为E 、F 、G 、H ,则四面体EFGH 的表面积与四面体ABCD 的表面积的比值是( ) A)271 B)161 C)91 D)81如图,连接AF 、AG 并延长与BC 、CD 相交于M 、N , 由于F 、G 分别是三角形的重心, 所以M 、N 分别是BC 、CD 的中点, 且AF :AM=AG :AN=2:3, 所以FG :MN=2:3,又MN :BD=1:2,所以FG :BD=1:3, 即两个四面体的相似比是1:3,所以两个四面体的表面积的比是1:9;故选C .如图,平面α∥平面β∥平面γ,两条直线l ,m 分别与平面α,β,γ相交于点A ,B ,C 和点D ,E ,F .已知AC =15cm ,DE =5cm ,AB ︰BC =1︰3,求AB ,BC ,EF 的长设平面α‖β,A 、C ∈α,B 、D ∈β直线AB 与CD 交于S ,若AS=18,BS=9,CD=34,则CS=?68/3或68与空间四边形ABCD 四个顶点距离相等的平面共有多少个? 七个你可以把它想象成一个三棱锥四个顶点各对应一个有四个,两条相对棱对应一个共三组相对棱因此有三个总共有七个如图,在四棱锥P-ABCD中,平面PAD ⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=。

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P-ABCD的体积解:(1)证明:在中,由于,,,所以故又平面平面,平面平面,平面,所以平面,又平面,故平面平面。

C1D1CA1ABDB1(2)过作交于O , 由于平面平面,所以平面因此为四棱锥的高,又是边长为4的等边三角形因此 在底面四边形中,,,所以四边形是梯形,在中,斜边边上的高为,此即为梯形的高,所以四边形的面积为故。

(2008福建)(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为A.63B. 265C.15D.10α•AB•β.(15)如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 . 19.(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD 。

高一数学必修2立体几何精选30题

高一数学必修2立体几何精选30题

立体几何11.一个正方体的表面展开图的五个正方形如图阴影部分,第六个正方形在编号1~5的适当位置,则所有可能的位置编号为__①④⑤______.2.底面是菱形的直平行六面体的高为12cm ,两条体对角线的长分别是15cm 和20cm ,求底面边长.5cm.3,正三棱柱的底面边长是4cm ,过BC 的一个平面交侧棱AA ′于点D ,若AD 的长为2cm ,求截面△BCD 的面积.8cm 24.四棱台的上、下底面均为正方形,它们的边长分别是1、2,侧棱长为2,则该四棱台的高为_______ .62 5.一个正三棱锥的底面边长为3,高为6,则它的侧棱长为______ 36.正三棱台的上、下底面边长及高分别为1、2、2,则它的斜高为__________. 7367.正四棱锥S -ABCD 的所有棱长都等于a ,过不相邻的两条侧棱作截面,则截面面积为__________. 12a 2 8.正四棱台的上、下底面边长分别是5和7,对角线长为9,则棱台的斜高等_______109.一个正三棱锥P -ABC 的底面边长和高都是4,E 、F 分别为BC 、P A 的中点,则EF 的长为__________.2 210.已知正四棱锥P -ABCD 中,底面积为36,一条侧棱长为34,求它的高和斜高.高为4,斜高为5.11.过球面上两点可能作出球的大圆( D )A .0个或1个B .有且仅有一个C .无数个D .1个或无数个12.如果圆台两底面的半径分别是7和1,则与两底面平行且等距离的截面面积是_16π__ 13半径为5的球被一平面所截,若截面圆的面积为16π,则球心到截面的距离为(3 )14.(1)两平行平面截半径为5的球,若截面面积分别为9π和16π,则这两个平面间的距离是__________16π(2)在球内有相距9cm 的两个平行截面,面积分别为49π cm 2和400π cm 2,求此球的半径.2515.已知圆柱的底面半径是20cm ,高是15cm ,则平行于圆柱的轴且与此轴相距12cm的截面面积是________.480cm 216过球半径的中点,作一垂直于这个半径的截面,截面面积为48πcm 2,则球的半径为________.8cm17.一个圆台的母线长为12cm ,两底面的面积分别为4π cm 2和25π cm 2,求:(1)圆台的高315;(2)截得此圆台的圆锥的母线长.20(18.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.7cm 、21cm. 14 2 1419.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度 52_____.20.如图,正方形O ′A ′B ′C ′的边长为a cm(a >0),它是一个水平放置的平面图形的直观图,则它的原图形OABC 的周长是_8a _________21.如图是一个空间几何体的三视图,该几何体是________.表面积 体积公式,,,,22.圆台的母线长是3cm ,侧面展开后所得扇环的圆心角为180°,侧面积为10πcm 2,则圆台的高为________,上、下底面半径分别为________、________.332cm 1112cm 2912cm 23.圆台的上、下底面半径分别是10cm 和20cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积是多少?1100π24.一个正四面体的所有棱长都为2,四个顶点在同一球面上,求此球的表面积.3π. 25,正六棱台的斜高为33cm ,两底面边长的差为10cm ,全面积为4803cm 2,求两底面的边长.上底面边长为4cm ,下底面边长为14cm26.一个圆柱的高缩小为原来的1n,底面半径扩大为原来的n 倍,则所得的圆柱的体积为原来的________.n 倍27.已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E 、F 分别为棱AA 1与CC 1的中点,求四棱锥A 1-EBFD 1的体积 a 36. 28.求棱长都为a 的正四棱锥的体积26a 329,棱台的上底面积为16,下底面积为64,求棱台被它的中截面分成的上、下两部分体积之比.8:27:6430.正方体内切球和外接球的半径比和体积比________________。

必修二立体几何经典证明题

必修二立体几何经典证明题

必修二立体几何经典证明题1.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

Ⅰ)证明:平面BDC ⊥平面BDC1Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。

解析】(Ⅰ)由题设知BC ⊥ CC1,BC ⊥ AC,CC1 ∩AC=C,∴BC ⊥面ACC1,又∵DC1 ⊂面ACC1,∴DC1⊥BC,由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1 ⊥DC,又∵DC ∩ BC=C,∴DC1 ⊥面BDC,∵DC1 ⊂面BDC1,∴面BDC ⊥面BDC1;Ⅱ)设棱锥B-DA1CC1的体积为V1,AC=1,由题意得,V1=1/3*1*1*1=1/3,由三棱柱ABC-A1B1C1的体积V=1,∴(V-V1):V1=1:1,∴平面BDC1分此棱柱为两部分体积之比为1:1.2.如图5所示,在四棱锥P-ABCD中,AB ⊥平面PAD,AB//CD,PD=AD,E是PB的中点,F是CD上的点且DF=1/2AB,PH为△PAD中AD边上的高。

1)证明:PH ⊥平面ABCD;2)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积;3)证明:EF ⊥平面PAB。

解析】(1)证明:因为AB ⊥平面PAD,所以PH ⊥AB。

因为PH为△PAD中AD边上的高,所以PH ⊥AD。

因为ABAD=A,所以PH ⊥平面ABCD。

2)连结BH,取BH中点G,连结EG。

因为E是PB的中点,所以EG//PH。

因为PH ⊥平面ABCD,所以EG ⊥平面ABCD。

则EG=1/2PH=1/2,V(E-BCF)=S△BCF*EG=1/2*1*2*1/2=1.3)证明:取PA中点M,连结MD,ME。

因为E是PB的中点,所以___。

因为DF//AB,所以四边形MEDF是平行四边形,所以EF//MD。

因为PD=AD,所以MD ⊥___。

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

14高中数学必修2 立体几何考题13. 如图所示,正方体 ABCD -A 1B 1C 1D 1 中,M 、N 分别是 A 1B 1,B 1C 1 的中点.问:(1) AM 和 CN 是否是异面直线?说明理由;(2) D 1B 和 CC 1 是否是异面直线?说明理由.解析:(1)由于 M 、N 分别是 A 1B 1 和 B 1C 1 的中点,可证明 MN ∥AC ,因此 AM 与 CN 不是异面直线.(2)由空间图形可感知 D 1B 和 CC 1 为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题, 这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M 、N 分别是 A 1B 1、B 1C 1 的中点,∴MN ∥A 1C 1.又∵A 1A ∥D 1D ,而 D 1D 綊 C 1C ,∴A 1A 綊 C 1C ,∴四边形 A 1ACC 1 为平行四边形.∴A 1A ∥AC ,得到 MN ∥AC ,∴A 、M 、N 、C 在同一个平面内,故 AM 和 CN 不是异面直线.(2)是异面直线.理由如下:假设 D 1B 与 CC 1 在同一个平面 CC 1D 1 内,则 B ∈平面 CC 1D 1,C ∈平面 CC 1D 1.∴BC ⊂平面 CC 1D 1,这与在正方体中 BC ⊥平面 CC 1D 1 相矛盾,∴假设不成立,故 D 1B 与 CC 1 是异面直线.14. 如下图所示,在棱长为 1 的正方体 ABCD -A 1B 1C 1D 1 中,M 为 AB 的中点,N 为 BB 1 的中点,O 为面 BCC 1B 1 的中心.(1) 过 O 作一直线与 AN 交于 P ,与 CM 交于 Q (只写作法,不必证明);(2) 求 PQ 的长(不必证明).解析:(1)由 ON ∥AD 知,AD 与 ON 确定一个平面 α.又 O 、C 、M 三点确定一个平面 β(如下图所示).∵三个平面 α,β 和 ABCD 两两相交,有三条交线 OP 、CM 、DA ,其中交线 DA 与交线 CM 不平行且共面.∴DA 与 CM 必相交,记交点为 Q .∴OQ 是 α 与 β 的交线.连结 OQ 与 AN 交于 P ,与 CM 交于 Q ,故 OPQ 即为所作的直线.(2)解三角形 APQ 可得 PQ = . 15. 如图,在直三棱柱 ABC -A 1B 1C 1 中,AB =BC =B 1B =a ,∠ABC =90°,D 、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE 为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E 作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E 分别是BB1、MM1的中点,可得DE 綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC 得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB 交于点F,连结AF,由条件易证D是C1F 的中点,B 是CF 的中点,又E 是AC1的中点,所以DE∥AF.在△ACF 中,由AB=BC=BF 知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE 的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,2a.所以DE=2反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M 分别是BD1,AA1的中点.(1)求证:MO 是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O 是BD1的中点,∴O 是正方体的中心,∴OA=OA 1,又M 为AA1的中点,即OM 是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O 为BD1的中点知MO⊥BD1,即MO 是异面直线AA1和BD1的公垂线.33333 2(2)由于AA1∥BB1,所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中,设BB1=1,则BD1=3,所以cos∠B1BD1=,故异面直线AA1与BD1所成的角的余弦值等于.(3)由(1)知,所求距离即为线段MO 的长,1 a由于OA=AC1=a,AM=,且OM⊥AM,所以OM=a.2 2 2 213.如图所示,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E、F,且B1E=C1F,求证:EF∥ABCD.证明:解法一:分别过E、F 作EM⊥AB 于M,FN⊥BC 于N,连结MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又B1E=C1F,∴EM=FN,故四边形MNFE 是平行四边形,∴EF∥MN,又MN 在平面ABCD 中,所以EF∥平面ABCD.解法二:过E 作EG∥AB 交BB1于G,B1E B1G连结GF,则1=1,B A B B∵B1E=C1F,B1A=C1B,C1F B1G∴1=1,∴FG∥B1C1∥BC.C B B B又EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD,而EF⊂平面EFG,∴EF∥平面ABCD.14.如下图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC.过BD 作与PA 平行的平面,交侧棱PC 于点E,又作DF⊥PB,交PB 于点F.(1)求证:点E 是PC 的中点;(2)求证:PB⊥平面EFD.证明:(1)连结AC,交BD 于O,则O 为AC 的中点,连结EO.∵PA∥平面BDE,平面PAC∩平面BDE=OE,∴PA∥OE.∴点E 是PC 的中点;(2)∵PD⊥底面ABCD 且DC⊂底面ABCD,∴PD⊥DC,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE⊥PC,①又由PD⊥平面ABCD,得PD⊥BC.∵底面ABCD 是正方形,CD⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,22AB6 3∴DE⊥PB,又DF⊥PB 且DE∩DF=D,所以PB⊥平面EFD.15.如图,l1、l2是互相垂直的异面直线,MN 是它们的公垂线段.点A、B 在l1上,C在l2上,AM=MB=MN.(1)求证AC⊥NB;(2)若∠ACB=60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB 且AN⊥NB.又AN 为AC 在平面ABN 内的射影,∴AC⊥NB.(2)∵Rt△CNA≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC 为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH,∠NBH 为NB 与平面ABC 所成的角.在Rt△NHB 中,3HB 3ABcos∠NBH=NB==.16.如图,在四面体ABCD 中,CB=CD,AD⊥BD,点E、F 分别是AB、BD 的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E、F 分别是AB、BD 的中点,所以EF∥AD.又AD⊂平面ACD,EF✪平面ACD,∴直线EF∥平面ACD. (2)在△ABD 中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD 中,∵CD=CB,F 为BD 的中点,∴CF⊥BD.∵EF⊂平面EFC,CF⊂平面EFC,EF 与CF 交于点F,∴BD⊥平面EFC.又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.13.如图,在四棱锥P-ABCD 中,底面ABCD 是边长为a 的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:平面PAC⊥平面PBD;(2)求二面角B-PC-D 的余弦值.5 6 解析:(1)证明:∵PA ⊥平面 ABCD ,∴PA ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面 PAC ,又 BD 在平面 BPD 内,∴平面 PAC ⊥平面 BPD . (2)在平面 BCP 内作 BN ⊥PC ,垂足为 N ,连结 DN ,∵Rt △PBC ≌Rt △PDC ,由 BN ⊥PC 得 DN ⊥PC ;∴∠BND 为二面角 B -PC -D 的平面角,在△BND 中,BN =DN = a ,BD = 2a , 5 5 a 2+ a 2-2a 2 6 6 ∴cos ∠BND = 5 a 2 31 =- . 5 14. 如图,已知 ABCD -A 1B 1C 1D 1 是棱长为 3 的正方体,点 E 在 AA 1 上,点 F 在 CC 1 上,G 在 BB 1 上,且 AE =FC 1=B 1G =1,H 是 B 1C 1 的中点.(1) 求证:E 、B 、F 、D 1 四点共面;(2)求证:平面 A 1GH ∥平面 BED 1F .证明:(1)连结 FG .∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綊 A 1E ,∴A 1G 綊 BE .∵C 1F 綊 B 1G ,∴四边形 C 1FGB 1 是平行四边形.∴FG 綊 C 1B 1 綊 D 1A 1,∴四边形 A 1GFD 1 是平行四边形.∴A 1G 綊 D 1F ,∴D 1F 綊 EB ,故 E 、B 、F 、D 1 四点共面. 3 (2) ∵H 是 B 1C 1 的中点,∴B 1H = . 2 又 B 1G =1,∴ B 1G 3 = . B 1H 2 FC 2 又 = ,且∠FCB =∠GB 1H =90°, BC 3∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知 A 1G ∥BE ,且 HG ∩A 1G =G ,FB ∩BE =B ,∴平面 A 1GH ∥平面 BED 1F .15. 在三棱锥 P -ABC 中,PA ⊥面 ABC ,△ABC 为正三角形,D 、E 分别为 BC 、AC 的中点,设 AB =PA =2.(1) 求证:平面 PBE ⊥平面 PAC ;(2) 如何在 BC 上找一点 F ,使 AD ∥平面 PEF ,请说明理由;(3) 对于(2)中的点 F ,求三棱锥 B -PEF 的体积.解析:(1)证明:∵PA ⊥面 ABC ,BE ⊂面 ABC ,∴PA ⊥BE .∵△ABC 是正三角形,E 为 AC 的中点,∴BE ⊥AC ,又 PA 与 AC 相交,∴BE ⊥平面 PAC ,∴平面 PBE ⊥平面 PAC .(2) 解:取 DC 的中点 F ,则点 F 即为所求., 3 3 6 2 2 3 3 3∵E ,F 分别是 AC ,DC 的中点,∴EF ∥AD ,又 AD ✪平面 PEF ,EF ⊂平面 PEF ,∴AD ∥平面 PEF . 1 1 1 3 (3) 解 :V B -PEF =V P -BEF = S △BEF ·PA = × × × ×2= . 3 3 2 2 2 416.(2009·天津,19)如图所示,在五面体 ABCDEF 中,FA ⊥平面 ABCD ,AD ∥BC ∥FE , 1 AB ⊥AD ,M 为 CE 的中点,AF =AB =BC =FE = AD . 2(1) 求异面直线 BF 与 DE 所成的角的大小;(2) 求证:平面 AMD ⊥平面 CDE ;(3) 求二面角 A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线 BF与 DE 所成的角.设 P 为 AD 的中点,连结 EP ,PC .因为 FE 綊 AP ,所以 FA綊 EP .同理,A B 綊 PC .又 FA ⊥平面 ABCD ,所以 EP ⊥平面 ABCD .而 PC ,AD都在平面ABCD 内,故EP ⊥PC ,E P ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设FA =a则 EP =PC =PD =a ,CD =DE =EC = 故∠CED =60°.2a .所以异面直线 BF 与 DE 所成的角的大小为 60°.(2) 证明:因为 DC =DE 且 M 为 CE 的中点,所以 DM ⊥CE .连结 MP ,则 MP ⊥CE .又MP ∩DM =M ,故 CE ⊥平面 AMD .而 CE ⊂平面 CDE ,所以平面 AMD ⊥平面 CDE .(3) 设 Q 为 CD 的中点,连结 PQ ,EQ .因为 CE =DE ,所以 EQ ⊥CD .因为 PC =PD ,所以 PQ ⊥CD ,故∠EQP 为二面角 A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ = a ,PQ = a . PQ 于是在 Rt △EPQ 中,cos ∠EQP = = .EQ 3 所以二面角 A -CD -E 的余弦值为 . 13.(2009·重庆)如图所示,四棱锥 P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面 ABCD ,PA 1 1 =AD =DC = AB =1,M 为 PC 的中点,N 点在 AB 上且 AN = NB .2 3(1) 求证:MN ∥平面 PAD ;(2) 求直线 MN 与平面 PCB 所成的角.解析:(1)证明:过点 M 作 ME ∥CD 交 PD 于 E 点,连结 AE . 1 ∵AN = NB , 3 1 1 ∴AN = AB = DC =EM .4 2又 EM ∥DC ∥AB ,∴EM 綊 AN ,∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面 PAD .(2)解:过 N 点作 NQ ∥AP 交 BP 于点 Q ,NF ⊥CB 于点 F .连结 QF ,过 N 点作 NH ⊥QF 于 H ,连结 MH ,易知 QN ⊥面 ABCD ,∴QN ⊥BC ,而 NF ⊥BC ,∴BC ⊥面 QNF ,∵BC ⊥NH ,而 NH ⊥QF ,∴NH ⊥平面 PBC ,∴∠NMH 为直线 MN 与平面 PCB 所成的角.2 2 6 2 2 10 10 5 2 10 53 3 通过计算可得 MN =AE = ,QN = ,NF = 2,4 4 QN ·NF ON ·NF ∴NH = = = ,QF QN 2+NF 2 4 NH 3 ∴sin ∠NMH = = ,∴∠NMH =60°,MN 2∴直线 MN 与平面 PCB 所成的角为 60°.14.(2009·广西柳州三模)如图所示,已知直平行六面体 ABCD -A 1B 1C 1D 1 中,AD ⊥BD , AD =BD =a ,E 是 CC 1 的中点,A 1D ⊥BE .(1) 求证:A 1D ⊥平面 BDE ;(2) 求二面角 B -DE -C 的大小.解析:(1)证明:在直平行六面体 ABCD -A 1B 1C 1D 1 中,∵AA 1⊥平面 ABCD ,∴AA 1⊥BD .又∵BD ⊥AD ,∴BD ⊥平面 ADD 1A 1,即 BD ⊥A 1D .又∵A 1D ⊥BE 且 BE ∩BD =B ,∴A 1D ⊥平面 BDE .(2)解:如图,连 B 1C ,则 B 1C ⊥BE ,易证 Rt △BCE ∽Rt △B 1BC ,CE BC ∴ = 1 ,又∵E 为 CC 1 中点, BC ∴BC 2 B B 1BB 21.BB 1= = 22BC = 2a .取 CD 中点 M ,连结 BM ,则 BM ⊥平面 CC 1D 1C ,作 MN ⊥DE 于 N ,连 NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角 B -DE -C 的平面角. BD ·BC 在 Rt △BDC 中,BM = DC = a , Rt △CED 中,易求得 MN = a , BM Rt △BMN 中,tan ∠BNM = = 5, MN则二面角 B -DE -C 的大小为 arctan 5.15.如图,已知正方体 ABCD -A 1B 1C 1D 1 中,E 为 AB 的中点.(1) 求直线 B 1C 与 DE 所成的角的余弦值;(2) 求证:平面 EB 1D ⊥平面 B 1CD ;(3) 求二面角 E -B 1C -D 的余弦值.解析:(1)连结 A 1D ,则由 A 1D ∥B 1C 知,B 1C 与 DE 所成的角即为 A 1D 与 DE 所成的角. 连结 A 1E ,由正方体 ABCD -A 1B 1C 1D 1,可设其棱长为 a ,则 A 1D = ∴cos ∠A 1DEA 1D 2+DE 2-A 1E 2 2a ,A 1E =DE = a , = 2·A 1D ·DE = . 10∴直线 B 1C 与 DE 所成角的余弦值是 5. (2)证明取 B 1C 的中点 F ,B 1D 的中点 G ,连结 BF ,EG ,GF .∵CD ⊥平面 BCC 1B 1,3 3 33 = 且 BF ⊂平面 BCC 1B 1,∴DC ⊥BF .又∵BF ⊥B 1C ,CD ∩B 1C =C ,∴BF ⊥平面 B 1CD . 1 1 又 ∵GF 綊 CD ,BE 綊 CD ,2 2∴GF 綊 BE ,∴四边形 BFGE 是平行四边形,∴BF ∥GE ,∴GE ⊥平面 B 1CD .∵GE ⊂平面 EB 1D ,∴平面 EB 1D ⊥平面 B 1CD .(3)连结 EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C .又∵GE ⊥平面 B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角 E -B 1C -D 的平面角. 设正方体的棱长为 a ,则在△EFG 中,1 GF = a ,EF = a ,2 2 FG ∴cos ∠EFG =EF = , 3∴二面角 E -B 1C -D 的余弦值为 3 . 16.(2009·全国Ⅱ,18)如图所示,直三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,D 、E 分别为 AA 1、 B 1C 的中点,DE ⊥平面 BCC 1.(1) 求证:AB =AC ;(2) 设二面角 A -BD -C 为 60°,求 B 1C 与平面 BCD 所成的角的大小.解析:(1)证明:取 BC 中点 F ,连结 EF , 1则 EF 綊 2B 1B ,从而 EF 綊 DA . 连结 AF ,则 ADEF 为平行四边形,从而 AF ∥DE .又 DE ⊥平面 BCC 1,故 AF ⊥平面 BCC 1,从而 AF ⊥BC ,即 AF 为 BC 的垂直平分线, 所以 AB =AC .(2)解:作 AG ⊥BD ,垂足为 G ,连结 CG .由三垂线定理知 CG ⊥BD ,故∠AGC 为二面 2 角 A -BD -C 的平面角.由题设知,∠AGC =60°.设 AC =2,则 AG = .又 AB =2,BC =2 2,故 AF = 2. 由AB ·AD =AG ·BD 得 2AD 2 · 3AD 2+22, 解得 AD = 2,故 AD =AF .又 AD ⊥AF ,所以四边形 ADEF 为正方形.因为 BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故 BC ⊥平面 DEF ,因此平面 BCD ⊥平面 DEF . 连结 AE 、DF ,设 AE ∩DF =H ,则 EH ⊥DF ,EH ⊥平面 BCD .连结 CH ,则∠ECH 为 B 1C 与平面 BCD 所成的角.4 17 17 16 17 17 6 因 ADEF 为正方形,AD = 2,故 EH =1,又 EC 1 B C =2, = 1 2所以∠ECH =30°,即 B 1C 与平面 BCD 所成的角为 30°.13. 在正四棱柱 ABCD -A 1B 1C 1D 1 中,底面边长为2的中点.(1) 求证:平面 B 1EF ⊥平面 BDD 1B 1;(2) 求点 D 1 到平面 B 1EF 的距离 d .2,侧棱长为 4,E 、F 分别为棱 AB 、BC分析:(1)可先证 EF ⊥平面 BDD 1B 1.(2)用几何法或等积法求距离时,可由 B 1D 1∥BD , 将点进行转移:D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4 倍,先求 B点到平面 B 1EF 的距离即可.解答:(1)证明:E rr o r !⇒EF ⊥平面 BDD 1B 1⇒平面 B 1EF ⊥平面 BDD 1B 1. (2)解:解法一:连结 EF 交 BD 于 G 点.∵B 1D 1=4BG ,且 B 1D 1∥BG ,∴D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4倍. 利用等积法可求.由题意可知,EF 1 AC =2,B G = 17. S △B EF = 2 1 1 EF ·B G 1 2× 17= 17,1 =2 1 S BE ·BF 1 = × 2 1 △BEF = = × 2 2∵VB -B 1EF =VB 1-BEF , 设 B 到面 B EF 的距离为 h 1 17×h 1 1×4,1 ∴h 1= . 1,则 × 3 1= × 3 ∴点 D 1 到平面 B 1EF 的距离为 h =4h 1= . 1 解法二:如图,在正方形 BDD 1B 1 的边 BD 上取一点 G ,使 BG = BD , 4连结 B 1G ,过点 D 1 作 D 1H ⊥B 1G 于 H ,则 D 1H 即为所求距离. 16 17可求得 D 1H = 17(直接法). 14. 如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC= 2,M 是棱 BC 的中点,N 是 CC 1 中点.求:(1) 二面角 B 1-AN -M 的大小;(2) C 1 到平面 AMN 的距离.解析:(1)∵∠BAC =90°,AB =AC = ∴AM ⊥BC ,BC =2,AM =1.∴AM ⊥平面 BCC 1B 1.∴平面 AMN ⊥平面 BCC 1B 1.2,M 是棱 BC 的中点,作 B 1H ⊥MN 于 H ,HR ⊥AN 于 R ,连结 B 1R ,∴B 1H ⊥平面 AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1是二面角 B 1-AN -M 的平面角.由已知得 AN = 3 23,MN = 2,B 1M = 5=B 1N , 则 B 1H = 2 , RH HN 又 Rt △AMN ∽Rt △HRN , = ,∴RH = .AM AN 6 2× 2=1.7 10 5 ∴B 1R =14 RH 3 ,∴cos ∠B 1RH = 1 = . B R 14 7∴二面角 B 1-AN -M 的大小为 arccos 14. (2)∵N 是 CC 1 中点,∴C 1 到平面 AMN 的距离等于 C 到平面 AMN 的距离. 设 C 到平面 AMN 的距离为 h ,由 V C -AMN =V N -AMC 1 1 1 1 得 × ·MN ·h = × AM ·MC . 3 2 3 2 2∴h = 2. 15.(2009·北京海淀一模)如图所示,四棱锥 P -ABCD 中,PA ⊥平面 ABCD ,底面 ABCD 为直角梯形,且 AB ∥CD ,∠BAD =90°,PA =AD =DC =2,AB =4. (1) 求证:BC ⊥PC ;(2) 求 PB 与平面 PAC 所成的角的正弦值;(3) 求点 A 到平面 PBC 的距离.解析:(1)证明:如图,在直角梯形 ABCD 中,∵AB ∥CD ,∠BAD =90°,AD =DC =2,∴∠ADC =90°,且 AC =2 2.取 AB 的中点 E ,连结 CE ,由题意可知,四边形 ABCD 为正方形,∴AE =CE =2. 1 1 又∵BE = AB =2.∴CE = AB ,2 2∴△ABC 为等腰直角三角形,∴AC ⊥BC .又∵PA ⊥平面 ABCD ,且 AC 为 PC 在平面 ABCD 内的射影,BC ⊂平面 ABCD ,由三垂线定理得,BC ⊥PC .(2) 由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C ,∴BC ⊥平面 PAC .PC 是 PB 在平面 PAC 内的射影,∴∠CPB 是 PB 与平面 PAC 所成的角.又 CB =2 2,PB 2=PA 2+AB 2=20,PB =2 5, BC 10 ∴sin ∠CPB =PB = 5,即 PB 与平面 PAC 所成角的正弦值为 . (3) 由(2)可知,BC ⊥平面 PAC ,BC ⊂平面 PBC ,∴平面 PBC ⊥平面 PAC .过 A 点在平面 PAC 内作 AF ⊥PC 于 F ,∴AF ⊥平面 PBC ,∴AF 的长即为点 A 到平面 PBC 的距离.在直角三角形 PAC 中, PA =2,AC =2 2,2 63 2 6 36 PC =2 3,∴AF = . 即点 A 到平面 PBC 的距离为 . 16.(2009·吉林长春一模)如图所示,四棱锥 P -ABCD 的底面是正方形,PA ⊥底面 ABCD , PA =2,∠PDA =45°,点 E 、F 分别为棱 AB 、PD 的中点.(1) 求证:AF ∥平面 PCE ;(2) 求二面角 E -PD -C 的大小;(3) 求点 A 到平面 PCE 的距离. 解析:(1)证明:如图取 PC 的中点 G ,连结 FG 、EG ,∴FG 为△PCD 的中位线, 1 ∴FG = CD 且 FG ∥CD . 2又∵底面四边形 ABCD 是正方形,E 为棱 AB 的中点, 1 ∴AE = CD 且 AE ∥CD , 2∴AE =FG 且 AE ∥FG .∴四边形 AEGF 是平行四边形,∴AF ∥EG .又 EG ⊂平面 PCE ,AF ✪平面 PCE ,∴AF ∥平面 PCE .(2)解:∵PA ⊥底面 ABCD ,∴PA ⊥AD ,PA ⊥CD .又 AD ⊥CD ,PA ∩AD =A ,∴CD ⊥平面 PAD .又∵AF ⊂平面 PAD ,∴CD ⊥AF .又 PA =2,∠PDA =45°,∴PA =AD =2.∵F 是 PD 的中点,∴AF ⊥PD .又∵CD ∩PD =D ,∴AF ⊥平面 PCD .∵AF ∥EG ,∴EG ⊥平面 PCD .又 GF ⊥PD ,连结 EF ,则∠GFE 是二面角 E -PD -C 的平面角.在 Rt △EGF 中 ,EG =AF = 2,GF =1,GE ∴tan ∠GFE 2.= = GF∴二面角 E -PD -C 的大小为 arctan 2.(3)设 A 到平面 PCE 的距离为 h , 1 1 1 1 由 V A -PCE =V P -ACE ,即 × PC ·EG ·h = PA · AE ·CB ,得 h = , 3 2 3 2 3 6∴点 A 到平面 PCE 的距离为 3. 13.(2009·陕西,18)如图所示,在直三棱柱 ABC -A 1B 1C 1 中,AB =1,AC =AA 1= 3, ∠ABC =60°.,6 2 6 3 6 3 3 4 3 2 3 M(1) 求证:AB ⊥A 1C ;(2) 求二面角 A -A 1C -B 的大小.解析:(1)证明:∵三棱柱 ABC -A 1B 1C 1 为直三棱柱,∴AB ⊥AA 1,在△ABC 中,AB =1,AC = ∴∠BAC =90°,即 AB ⊥AC .3,∠ABC =60°,由正弦定理得∠ACB =30°,∴AB ⊥平面 ACC 1A 1,又 A 1C ⊂平面 ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作 AD ⊥A 1C 交 A 1C 于 D 点,连结 BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角 A -A 1C -B 的平面角. AA 1·AC 3 × 3 在 Rt △AA 1C 中,AD = = = , A 1C 6 AB 6 在 Rt △BAD 中,tan ∠ADB = = ,AD 3 ∴∠ADB =arctan ,即二面角 A -A 1C -B 的大小为 arctan . 14.如图,三棱柱 ABC -A 1B 1C 1 的底面是边长为 a 的正三角形,侧面 ABB 1A 1 是菱形且垂直于底面,∠A 1AB =60°,M 是 A 1B 1 的中点.(1) 求证:BM ⊥AC ;(2) 求二面角 B -B 1C 1-A 1 的正切值;(3) 求三棱锥 M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1 是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形 E rr o r !⇒BM ⊥平面 A 1B 1C 1. E rr o r !⇒BM ⊥AC . E rr o r !⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1 中,ME =MB 1·sin60°= a ,Rt △BMB 1 中,MB =MB 1·tan60°= a , MB ∴tan ∠BEM = =2, E ∴所求二面角的正切值是 2. 1 1 1 1 1 3 1 (3)VM -A 1CB = VB 1-A 1CB = VA -A 1CB = VA 1-ABC = × × a 2· a = a 3. 2 2 2 2 3 4 2 1615.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥ AE AF 平面 BCD ,∠ADB =60°,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1).AC AD(1) 求证:不论 λ 为何值,总有 EF ⊥平面 ABC ; 1 (2) 若 λ= ,求三棱锥 A -BEF 的体积. 2解析:(1)证明:∵AB ⊥平面 BCD ,∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°,∴BC ⊥CD .∵又 AB ∩BC =B ,6 15 = 3,S 15 ∴CD ⊥平面 ABC .AE AF 又∵在△ACD 中,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1), AC AD ∴不论 λ 为何值,都有 EF ∥CD , ∴EF ⊥平面 ABC . (2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2. 又∵AB ⊥平面 BCD , ∴AB ⊥BC ,AB ⊥BD . 又∵在 Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°= 6, 由(1)知 EF ⊥平面 ABC , ∴V A -BEF =V F -ABE 1 = S △ABE ·EF 3 1 1 = × S △ABC ·EF 3 2 1 1 1 = × ×1× 6× = . 6 2 2 24 6 故三棱锥 A -BEF 的体积是 24 . 16.在四棱锥 P -ABCD 中,侧面 PDC 是边长为2 的正三角形,且与底面垂直,底面 ABCD 是面积为 2 3的菱形,∠ADC 为菱形的锐角. (1) 求证:PA ⊥CD ; (2) 求二面角 P -AB -D 的大小; (3) 求棱锥 P -ABCD 的侧面积; 解析:(1)证明:如图所示,取 CD 的中点 E ,由 PE ⊥CD ,得 PE ⊥平面 ABCD ,连结 AC 、AE . ∵AD ·CD ·sin ∠ADC =2 3, AD =CD =2, 3 ∴sin ∠ADC = 2 , 即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥PA (三垂线定理). (2) 解:∵AB ∥CD ,∴AB ⊥PA ,AB ⊥AE , ∴∠PAE 为二面角 P -AB -D 的平面角. 在 Rt △PEA 中,PE =AE ,∴∠PAE =45°. 即二面角 P -AB -D 的大小为 45°. (3) 分别计算各侧面的面积: ∵PD =DA =2,PA = 6, 1 ∴cos ∠PDA = ,sin ∠PDA = . 4 1 1 S AB ·PA = 2· 3= 6, △PCD △PAB = 2 ·2· 2 1 S △PAD =S △PBC = PD ·DA ·sin ∠PDA = . 2∴S P -ABCD 侧 = 3+ 6+ 15.13. 把地球当作半径为 R 的球,地球上 A 、B 两地都在北纬 45°,A 、B 两点的球面距离 π是 3R ,A 点在东经 20°,求 B 点的位置. 解析:如图,求 B 点的位置即求 B 点的经度,设 B 点在东经 α,7 2 7 21 = , π∵A 、B 两点的球面距离是 3R . π ∴∠AOB = ,因此三角形 AOB 是等边三角形,∴AB =R , 3又∵∠AO 1B =α-20°(经度差) 2问题转化为在△AO 1B 中借助 AO 1=BO 1=AO cos45°= 2 R , 求出∠AO 1B =90°,则 α=110°,同理:B 点也可在西经 70°,即 B 点在北纬 45°东经 110° 或西经 70°.14. 在球心同侧有相距 9cm 的两个平行截面,它们的面积分别为 49πcm 2 和 400πcm 2, 求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为 AO 1、BO 2,则 AO 1∥BO 2. 若 O 1、O 2 分别为两截面圆的圆心,则由等腰三角形性质易知 OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为 R ,∵πO 2B 2=49π,∴O 2B =7cm ,同理 O 1A =20cm.设 OO 1=x cm ,则 OO 2=(x +9)cm.在 Rt △OO 1A 中,R 2=x 2+202,在 Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得 x =15cm.∴R =25cm ,∴S 球=2500πcm 2, 4 62500 V 球= πR 3= πcm 3. 3 3 π15. 设 A 、B 、C 是半径为 1 的球面上的三点,B 、C 两点间的球面距离为3,点 A 与 B 、C π两点间的球面距离均为2,O 为球心,求: (1) ∠AOB 、∠BOC 的大小; (2)球心 O 到截面 ABC 的距离. π 解析:(1)如图,因为球 O 的半径为 1,B 、C 两点间的球面距离为3, π π点 A 与 B 、C 两点间的球面距离均为2,所以∠BOC =3,∠AOB =∠AOC = π , 2 3 (2) 因为 BC =1,AC =AB = 2,所以由余弦定理得 cos ∠BAC sin ∠BAC = ,设 4 4 截面圆的圆心为 O 1,连结 AO 1,则截面圆的半径 r =AO 1,由正弦定理得 r = BC = ,所以 OO 1= OA 2-r 2= .2sin ∠BAC 7 716. 如图四棱锥 A -BCDE 中,AD ⊥底面 BCDE ,AC ⊥BC ,AE ⊥BE .(1) 求证:A 、B 、C 、D 、E 五点共球;(2) 若∠CBE =90°,CE = 3,AD =1,求 B 、D 两点的球面距离.解析:(1)证明:取 AB 的中点 P ,连结 PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形. 1 故 PE =PD =PC = AB =PA =PB . 2所以 A 、B 、C 、D 、E 五点在同一球面上.(2)解:由题意知四边形 BCDE 为矩形,所 以 BD =CE = 3,在 Rt △ADB 中,AB =2,AD =1, 2 ∴∠DPB =120°,D 、B 的球面距离为 π. 32 2 15 5 63 5 17.(本小题满分 10 分)如图,四棱锥 S —ABCD 的底面是正方形,SA ⊥底面 ABCD ,E 是 SC 上一点.(1) 求证:平面 EBD ⊥平面 SAC ;(2) 假设 SA =4,AB =2,求点 A 到平面 SBD 的距离;解析:(1)∵正方形 ABCD ,∴BD ⊥AC ,又∵SA ⊥平面 ABCD ,∴SA ⊥BD ,则 BD ⊥平面 SAC ,又 BD ⊂平面 BED ,∴平面 BED ⊥平面 SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO 1 1 AC 2AB 1 · 2·2= 2,SA =4, = = = 2 2 2 则 SO = SA 2+AO 2= 16+2=3 2,S 1 BD ·SO 1 ·2 2·3 2=6.设 A 到面 BSD 的距 △BSD = = 2 2 1 1 4 离为 h ,则 V S -ABD =V A -BSD ,即 3S △ABD ·SA = S △BSD ·h ,解得 h = ,即点 A 到平面 SBD 的距 3 3 4 离为 . 318.(本小题满分 12 分)如图,正四棱柱 ABCD -A 1B 1C 1D 1 中,AA 1=2AB =4,点 E 在 C 1C 上且 C 1E =3EC . (1)证明 A 1C ⊥平面 BED ;(2)求二面角 A 1-DE -B 的大小.解析:依题设知 AB =2,CE =1,(1) 证明:连结 AC 交 BD 于点 F ,则 BD ⊥AC .由三垂线定理知,BD ⊥A 1C .在平面 A 1CA 内,连结 EF 交 A 1C 于点 G , AA 1 AC由于FC =CE=2 , 故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1 互余. 于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD 、EF 都垂直. 所以 A 1C ⊥平面 BED .(2) 作 GH ⊥DE ,垂足为 H ,连结 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1-DE -B 的平面角.EF = CF 2+CE 2= 3, CE × CF2 CG = EF =3 . 3EG = CE 2-CG 2= 3 . EG 1 1 EF × FD = ,GH = × = .EF 3 3 DE 又 A 1C = AA 21+AC 2=2 A 1G6,A 1G =A 1C -CG = , tan ∠A 1HG = HG=5 . 所以二面角 A 1-DE -B 的大小为 arctan5 5.19.(本小题满分12 分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°, AB =BC =SB =SC =2CD =2,侧面 SBC ⊥底面 ABCD .3 3 3 2 3 2= (1) 由 SA 的中点 E 作底面的垂线 EH ,试确定垂足 H 的位置;(2) 求二面角 E -BC -A 的大小.解析:(1)作 SO ⊥BC 于 O ,则 SO ⊂平面 SBC , 又面 SBC ⊥底面 ABCD , 面 SBC ∩面 ABCD =BC , ∴SO ⊥底面 ABCD ① 又 SO ⊂平面 SAO ,∴面 SAO ⊥底面 ABCD , 作 EH ⊥AO ,∴EH ⊥底面 ABCD ② 即 H 为垂足,由①②知,EH ∥SO , 又 E 为 SA 的中点,∴H 是 AO 的中点. (2)过 H 作 HF ⊥BC 于 F ,连结 EF , 由(1)知 EH ⊥平面 ABCD ,∴EH ⊥BC , 又 EH ∩HF =H ,∴BC ⊥平面 EFH ,∴BC ⊥EF , ∴∠HFE 为面 EBC 和底面 ABCD 所成二面角的平面角. 在等边三角形 SBC 中,∵SO ⊥BC , ∴O 为 BC 中点,又 BC =2. ∴SO = 22-12= 3,EH 1SO = , 1 又 HF = AB =1, 2 2 2 3EH 2 ∴在 Rt △EHF 中,tan ∠HFE = = = ,HF 1 2 ∴∠HFE =arctan . 即二面角 E -BC -A 的大小为 arctan. 20.(本小题满分 12 分)(2010·唐山市高三摸底考试)如图,在正四棱柱 ABCD -A 1B 1C 1D 1 中,AB =1,AA 1=2,N 是 A 1D 的中点,M ∈BB 1,异面直线 MN 与 A 1A 所成的角为 90°. (1) 求证:点 M 是 BB 1 的中点;(2) 求直线 MN 与平面 ADD 1A 1 所成角的大小;(3) 求二面角 A -MN -A 1 的大小.解析:(1)取 AA 1 的中点 P ,连结 PM ,PN .∵N 是 A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N ,∴AA 1⊥面 PMN .∵PM ⊂面 PMN ,∴AA 1⊥PM ,∴PM ∥AB ,∴点 M 是 BB 1 的中点.305 2 2 2 2(2) 由(1)知∠PNM 即为 MN 与平面 ADD 1A 1 所成的角.1 在 Rt △PMN 中,易知 PM =1,PN = ,2 PM∴tan ∠PNM =PN =2,∠PNM =arctan2. 故 MN 与平面 ADD 1A 1 所成的角为 arctan2.(3) ∵N 是 A 1D 的中点,M 是 BB 1 的中点,∴A 1N =AN ,A 1M =AM ,又 MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作 AG ⊥MN 交 MN 于 G ,连结 A 1G ,则∠A 1GA 即为二面角 A -MN -A 1 的平面角.在△A 1GA 中,AA 1=2,A 1G =GA = , A 1G 2+GA 2-AA 12 2 2 ∴cos ∠A 1GA = 2A 1G ·GA =- ,∴∠A 1GA =arccos(- ), 3 3 2 故二面角 A -MN -A 1 的大小为 arccos(- ). 321.(2009·安徽,18)(本小题满分 12 分)如图所示,四棱锥 F -ABCD 的底面 ABCD 是菱 形,其对角线 AC =2,BD = 2.AE 、CF 都与平面 ABCD 垂直,AE =1,CF =2. (1) 求二面角 B -AF -D 的大小;(2) 求四棱锥 E -ABCD 与四棱锥 F -ABCD 公共部分的体积.命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接 AC 、BD 交于菱形的中心 O ,过 O 作 OG ⊥AF ,G 为垂足,连接 BG 、DG . 由 BD ⊥AC ,BD ⊥CF 得 BD ⊥平面 ACF ,故 BD ⊥AF .于是 AF ⊥平面 BGD ,所以 BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角 B -AF -D 的平面角.π 由 FC ⊥AC ,FC =AC =2,得∠FAC = ,OG = . 4 2 π 由 OB ⊥OG ,OB =OD = ,得∠BGD =2∠BGO = . (2)解:连接 EB 、EC 、ED ,设直线 AF 与直线 CE 相交于点 H ,则四棱锥 E -ABCD 与四棱锥 F -ABCD 的公共部分为四棱锥 H -ABCD .3 2 3 2 过 H 作 HP ⊥平面 ABCD ,P 为垂足.因为 EA ⊥平面 ABCD ,FC ⊥平面 ABCD ,所以平面 ACEF ⊥平面 ABCD ,从而 P ∈AC ,HP ⊥AC . HP HP AP PC 2 由 + = + =1,得 HP = . CF AE AC AC 3 又因为 S 1 菱形ABCD = AC ·BD = 2, 2 1 2 2 故四棱锥 H -ABCD 的体积 V = S 菱形ABCD ·HP = .3 922.(2009·深圳调考一)(本小题满分 12 分)如图所示,AB 为圆 O 的直径,点 E 、F 在圆 O 上,AB ∥EF ,矩形 ABCD 所在平面和圆 O 所在的平面互相垂直.已知 AB =2,EF =1.(1) 求证:平面 DAF ⊥平面 CBF ;(2) 求直线 AB 与平面 CBF 所成角的大小;(3) 当 AD 的长为何值时,二面角 D -FE -B 的大小为 60°?解析:(1)证明:∵平面 ABCD ⊥平面 ABEF ,CB ⊥AB ,平面 ABCD ∩平面 ABEF =AB ,∴CB ⊥平面 ABEF .∵AF ⊂平面 ABEF ,∴AF ⊥CB ,又∵AB 为圆 O 的直径,∴AF ⊥BF ,∴AF ⊥平面 CBF .∵AF ⊂平面 DAF ,∴平面 DAF ⊥平面 CBF .(2)解:根据(1)的证明,有 AF ⊥平面 CBF ,∴FB 为 AB 在平面 CBF 上的射影,因此,∠ABF 为直线 AB 与平面 CBF 所成的角.∵AB ∥EF ,∴四边形 ABEF 为等腰梯形,过点 F 作 FH ⊥AB ,交 AB 于 H .AB =2,EF =1,则 AH = AB -EF 1 = . 2 2在 Rt △AFB 中,根据射影定理 AF 2=AH ·AB ,得 AF =1, AF 1 sin ∠ABF = = ,∴∠ABF =30°, AB 2∴直线 AB 与平面 CBF 所成角的大小为 30°.(3)解:过点 A 作 AM ⊥EF ,交 EF 的延长线于点 M ,连结 DM .根据(1)的证明,DA ⊥平面 ABEF ,则 DM ⊥EF ,∴∠DMA 为二面角 D -FE -B 的平面角,∠DMA =60°. 1 在 Rt △AFH 中,∵AH = ,AF =1, 2 ∴FH = .又∵四边形 AMFH 为矩形,∴MA =FH = . 3 ∵AD =MA ·tan ∠DMA = 2 · 3=3 2 .3因此,当AD 的长为时,二面角D-FE-B 的大小为60°.2。

必修2立体几何专题复习(经典)

必修2立体几何专题复习(经典)

1.△ABC 是边长为1的正三角形,那么△ABC 的斜二测平面直观图C B A '''∆的面积为 A .43 B .83 C .86 D .166 2.设正方体的表面积为242cm ,一个球内切于该正方体,那么这个球的体积是 A .π343cm B .π63cm C .π383cm D .π3323cm3.正方体ABCD- A 'B 'C 'D '中,面对角线B'C和A'B所成的角是 ( )A.450B.600C.900D.3004. 如右图,一个空间几何体正视图与左视图为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的表面积为 A.π B.π3 C.π2 D.3+π 5.一个底面直径..和高.都是4的圆柱的侧面积为 . 6.圆锥底面半径为1,其母线与底面所成的角为060,则它的侧面积为 7.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是8.将边长为a 的正方形ABCD 沿对角线AC 折起,折后连结BD ,构成三棱锥D-ABC,若棱BD 的长为22a .则此时三棱锥D-ABC 的体积是 A .122a 3 B .123a 3 C .246a 3D .61a 39.如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点,且AB AF 31=,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE .(1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积.10 如图,四棱锥ABCD P -的俯视图是菱形ABCD ,顶点P 的投影恰好为A .⑴求证:PC BD ⊥;⑵若a AC 2=,a BD 4=,四棱锥ABCD P -的体积32a V =,求PC 的长.俯视图左视图正视图PABCD图414BF BP =,C 11 如图4,PA 垂直于⊙O 所在平面ABC ,AB 为⊙O 的直径,PA =AB =2,是弧AB 的中点.(1)证明:BC ⊥平面PAC ; (2)证明:CF ⊥BP ;(3)求四棱锥C —AOFP 的体积.13正ABC ∆的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点。

(完整版)高中数学必修2立体几何测试题及答案

(完整版)高中数学必修2立体几何测试题及答案

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分)1,三个平面可将空间分成n 个部分,n 的取值为( )A ,4;B ,4,6;C ,4,6,7 ;D ,4,6,7,8。

2,两条不相交的空间直线a 、b ,必存在平面α,使得( )A ,a ⊂α、b ⊂α;B ,a ⊂α、b ∥α ;C ,a ⊥α、b ⊥α;D ,a ⊂α、b ⊥α。

3,若p 是两条异面直线a 、b 外的任意一点,则( )A ,过点p 有且只有一条直线与a 、b 都平行;B ,过点p 有且只有一条直线与a 、b 都垂直;C ,过点p 有且只有一条直线与a 、b 都相交;D ,过点p 有且只有一条直线与a 、b 都异面。

4,与空间不共面四点距离相等的平面有( )个A ,3 ;B ,5 ;C ,7;D ,4。

5,有空间四点共面但不共线,那么这四点中( )A ,必有三点共线;B ,至少有三点共线;C ,必有三点不共线;D ,不可能有三点共线。

6,过直线外两点,作与该直线平行的平面,这样的平面可有( )个A ,0;B ,1;C ,无数 ;D ,涵盖上三种情况。

7,用一个平面去截一个立方体得到的截面为n 边形,则( )A ,3≤n ≤6 ;B ,2≤n ≤5 ;C ,n=4;D ,上三种情况都不对。

8,a 、b 为异面直线,那么( )A ,必然存在唯一的一个平面同时平行于a 、b ;B ,过直线b 存在唯一的一个平面与a 平行;C ,必然存在唯一的一个平面同时垂直于a 、b ;D ,过直线b 存在唯一的一个平面与a 垂直。

9,a 、b 为异面直线,p 为空间不在a 、b 上的一点,下列命题正确的个数是( )①过点p 总可以作一条直线与a 、b 都垂直;②过点p 总可以作一条直线与a 、b 都相交;③过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。

必修二立体几何知识点+例题+练习+答案

必修二立体几何知识点+例题+练习+答案

学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除立体几何知识点一、空间几何体1.多面体:由若干个多边形围成的几何体,叫做多面体。

围成多面体的各个多边形叫做多面体的面 , 相邻两个面的公共边叫做多面体的棱 , 棱与棱的公共点叫做多面体的顶点 .2.棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都平行,由这些面所围成的多面体叫做棱柱。

两个互相平行的面叫做底面, 其余各面叫做侧面 .3.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

底面是正多边形,且各侧面是全等的等腰三角形的棱锥叫做正棱锥。

正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形;顶点在底面上的射影是底面正多边形的中心。

4.棱台:用一个平行于底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

由正棱锥截得的棱台叫做正棱台。

正棱台的性质:各侧棱相等,各侧面都是全等的等腰梯形;正棱台的两底面以及平行于底面的截面是相似的正多边形5.旋转体:由一个平面图形绕一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫做旋转体的轴,6.圆柱、圆锥、圆台:分别以矩形的一边、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。

圆柱、圆锥、圆台的性质:平行于底面的截面都是圆;过轴的截面 ( 轴截面 ) 分别是全等的矩形、等腰三角形、等腰梯形。

注:在处理圆锥、圆台的侧面展开图问题时,经常用到弧长公式 l R7.球: 以半圆的直径为旋转轴,旋转一周所成的曲面叫做球面 . 球面所围成的几何体叫做球体 ( 简称球 )8.简单空间图形的三视图:一个投影面水平放置,叫做水平投影面,投影到这个平面内的图形叫做俯视图。

一个投影面放置在正前方,这个投影面叫做直立投影面,投影到这个平面内的图形叫做主视图 ( 正视图 ) 。

和直立、水平两个投影面都垂直的投影面叫做侧立投影面,通常把这个平面放在直立投影面的右面,投影到这个平面内的图形叫做左视图( 侧视图) 。

最新高中数学必修二立体几何典型题专项训练(高考真题)

最新高中数学必修二立体几何典型题专项训练(高考真题)

高中数学必修二立体几何典型题专项训练(高考真题)
1、正方体ABCD-A
1B
1
C
1
D
1
的棱上到异面直线AB,CC
1
的距离相等的点的个数为
A.2 B.3 C.4 D.5
2、一个正三棱锥,底面边长为4,高为3.求它的斜高和侧棱长.
3、已知正三棱锥V-ABC,底面边长为8,侧棱长为26,计算它的高和斜高.
4、已知正四棱锥的底面边长是4cm,侧棱长是2cm,求它的高与斜高的长.
5、正三棱锥V-ABC的侧棱长为1,∠AVB=40°,E和F分别是棱VB和VC上的点,求三角形AEF的周长的最值。

正棱锥的概念:如果一个棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

重要结论:正棱锥的高、斜高、斜高在底面的射影、侧棱、底面的外接圆的半径R、底面的半边长可组成四个直角三角形
6、如图所示,圆锥的母线长是2,底面半径是0.5,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是______
7、已知正三棱锥P ABC,点P,A,B,C3PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________。

8、两平行平面截半径为5的球,若截面面积分别为9π和16π,则这两个平面间的距离是
9、在球内有相距9的两个平行截面,面积分别为49π和400π,求此球的半径
10、球O的半径为2,圆O
1是一小圆,O
1
O=,A,B是圆O
1
上两点,若A,B
两点间的球面距离为,则∠AO1B=()。

部编版高中数学必修二第八章立体几何初步知识总结例题

部编版高中数学必修二第八章立体几何初步知识总结例题

(名师选题)部编版高中数学必修二第八章立体几何初步知识总结例题单选题1、如图1,已知PABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△PAD沿AD折起,使平面PAD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面PAB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN答案:A分析:由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面PAD,得到△PAB为直角三角形,判定D正确;可证明平面PBC⊥平面PDC,若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC,矛盾,可判断A图1中AD⊥PC,则图2中PD⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴AB⊥平面PAD,则AB⊥PA,即△PAB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.由于BC⊥平面PDC,又BC⊂平面PBC∴平面PBC⊥平面PDC若平面PAB⊥平面PBC,则平面PAB与平面PDC的交线⊥平面PBC由于AB//平面PDC,则平面PAB与平面PDC的交线//AB显然AB不与平面PBC垂直,故A错误故选:A2、已知直线l⊥平面α,有以下几个判断:①若m⊥l,则m//α;②若m⊥α,则m//l;③若m//α,则m⊥l;④若m//l,则m⊥α;上述判断中正确的是()A.①②③B.②③④C.①③④D.①②④答案:B分析:根据线面的位置关系,线面垂直的性质定理,线面平行的性质定理及线面垂直的性质逐项分析即得. 对于①,当m⊂平面α也可以有m⊥l,但m不平行于平面α,故①错;对于②,根据线面垂直的性质定理可知②正确;对于③,根据线面平行的性质定理可得存在n⊂α且m∥n.而直线l⊥平面α,故可根据线面垂直的性质得出l⊥n,故l⊥m正确;对于④,根据直线l⊥平面α,可在平面α内找到两条相交直线p,n,且l⊥p,l⊥n,又m∥l,所以m⊥p,m⊥n,故根据线面垂直的判定定理可知,m⊥α正确.即②③④正确.故选:B.3、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.4、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( )A .1.0×109m 3B .1.2×109m 3C .1.4×109m 3D .1.6×109m 3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN =157.5−148.5=9(m),所以增加的水量即为棱台的体积V .棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2,∴V =13ℎ(S +S ′+√SS ′)=13×9×(140×106+180×106+√140×180×1012) =3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .5、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B 分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.6、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D7、如图,某圆锥的轴截面ABC 是等边三角形,点D 是线段AB 的中点,点E 在底面圆的圆周上,且BE ⌢的长度等于CE⌢的长度,则异面直线DE 与BC 所成角的余弦值是( )A .√24B .√64C .√104D .√144 答案:A分析:过点A 作AO ⊥BC 于点O ,过点A 作DG ⊥BC 于点G ,取AO 的中点F ,连接GE 、OE 、EF ,则有∠DEF (或其补角)就是异面直线DE 与BC 所成的角,设圆锥的底面半径为2,解三角形可求得答案.解:过点A 作AO ⊥BC 于点O ,过点A 作DG ⊥BC 于点G ,取AO 的中点F ,连接GE 、OE 、EF ,则DF //BC ,且DF =12BC ,所以∠DEF (或其补角)就是异面直线DE 与BC 所成的角,设圆锥的底面半径为2,则DF =1,OE =2,AO =2√3,所以DG =OF =√3,在Rt △GOE 中,GO =1,OE =2,所以GE =√GO 2+OE 2=√5,在Rt △GDE 中,GE =√5,DG =√3,所以DE =√GD 2+GE 2=2√2,在Rt △FOE 中,FO =√3,OE =2,FE =√FO 2+OE 2=√7,所以在△DFE 中,满足DF 2+FE 2=DE 2,所以∠DFE =90∘,所以cos∠DEF =DF DE =2√2=√24, 故选:A.8、已知一个圆锥的体积为3π,其侧面积是底面积的2倍,则其底面半径为( ) A .2√3B .3C .√3D .√33分析:根据圆锥的侧面展开图和圆锥体积公式以及侧面积公式,即可求出结果. 设底面半径为r,高为ℎ,母线为l,如图所示:则圆锥的体积V=13πr2ℎ=3π,所以r2ℎ=9,即ℎ=9r2,S 侧=12⋅2πrl=2πr2,则l=2r,又ℎ=√l2−r2=√3r,所以√3r3=9,故r=√3.故选:C.多选题9、如图所示,在棱长为2的正方体ABCD−A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,则下列结论正确的是()A.直线AM与BN是平行直线B.直线BN与MB1是异面直线C.直线MN与AC所成的角为60°D.平面BMN截正方体所得的截面面积为92解析:根据异面直线的定义直接判断AB 选项,根据MN//D 1C ,转化求异面直线所成的角,利用确定平面的依据,作出平面BMN 截正方体所得的截面,并求面积.A.直线AM 与BN 是异面直线,故A 不正确;B.直线BN 与MB 1是异面直线,故B 正确;C. 由条件可知MN//D 1C ,所以异面直线MN 与AC 所成的角为∠ACD 1,△ACD 1是等边三角形,所以∠ACD 1=60∘,故C 正确;D.如图,延长MN ,并分别与DD 1和DC 交于E,F ,连结EA,GB 交于点F ,连结A 1M,BN ,则四边形A 1BNM 即为平面BMN 截正方体所得的截面,由对称性可知,四边形A 1BNM 是等腰梯形,MN =√2,A 1B =2√2,A 1M =BN =√5,则梯形的高是ℎ=√(√5)2−(√22)2=3√22,所以梯形的面积S =12×(√2+2√2)×3√22=92,故D 正确.故选:BCD小提示:关键点点睛:本题考查以正方体为载体,判断异面直线,截面问题,本题关键选项是D,首先要作出平面BMN与正方体的截面,即关键作出平面EFG.10、如图所示,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,下列结论正确的是()A.OM∥PD B.OM∥平面PCDC.OM∥平面PDA D.OM∥平面PBA答案:ABC分析:通过直线与平面平行的判定定理,即可判断ABC正确;由线面的位置关系,即可得到直线在平面内,故D错误;解:对于A,由于O为BD的中点,M为PB的中点,则OM∥PD,故正确;对于B,由于OM∥PD,OM⊄平面PCD,PD⊂平面PCD,则OM∥平面PCD,故正确;对于C,由于OM∥PD,OM⊄平面PAD,PD⊂平面PAD,则OM∥平面PAD,故正确;对于D,由于M∈平面PAB,故错误.故选:ABC.小提示:本题考查线面平行的判定定理及应用,考查直线与平面的位置关系,考查空间想象能力.11、如图,在棱长均相等的正四棱锥P−ABCD中,M、N分别为侧棱PA、PB的中点,O是底面四边形ABCD对角线的交点,下列结论正确的有()A.PC//平面OMN B.平面PCD//平面OMNC.OM⊥PA D.PD⊥平面OMN答案:ABC分析:A选项,由中位线证明线线平行,推导出线面平行;B选项,在A选项的基础上证明面面平行;从而推导出D错误;由勾股定理的逆定理得到PA⊥PC,从而得到OM⊥PA.因为O为底面四边形ABCD对角线的交点,所以O为AC的中点,由M是PA的中点,可得PC∥MO,因为PC⊄在平面OMN,OM⊂平面OMN,所以PC//平面OMN,A正确;同理可推得PD//平面OMN,而PC∩PD=P,所以平面PCD//平面OMN,B正确;因为PD⊂平面PCD,故PD不可能垂直平面OMN,D错误;设该正四棱锥的棱长为a,则PA=PC=a,AC=√2a,所以PA⊥PC,因为PC∥MO,所以OM⊥PA,C正确.故选ABC .填空题12、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________. 答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π ∴ℎ=52 ∴l =√ℎ2+r 2=√(52)2+62=132∴S 侧=πrl =π×6×132=39π.所以答案是:39π.。

高中数学必修2立体几何的综合复习(详解)

高中数学必修2立体几何的综合复习(详解)

高中数学必修2立体几何的综合复习(详解)一、选择题1.(08四川)〔文〕假设三棱柱的一个侧面是边长为2的正方形,另外两个侧面差不多上有一个内角为︒60的菱形,那么该棱柱的体积等于 〔 〕 A.2 B.22 C.32 D.42 答案 B解析 记三棱柱为ABC-A1B1C1,且其中侧面ABB1A1是边长为2的正方形, 侧面ACC1A1、BCC1B1差不多上菱形,且∠C1CA=∠C1CB=︒60,如下图,那么由 可得△ABC 是边长为2的正三角形,作C1O ⊥平面ABC 于点O ,连结CO ,易知点O 在∠ACB 的平分线上,且cos ∠C1CA=cos ∠C1CO ·cos ∠ACO ,即cos ︒60=cos ∠C1CO ·cos30°,∴cos ∠C1CO=,33sin ∠C1CO=.36cos 112=∠-CO C 在Rt △C1CO 中, sin ∠C1CO=.362,3621111===O C O C C C O C 因此该棱柱的体积等于,223622432=⨯⨯选B.2. 〔08全国Ⅱ〕〔文〕正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,那么该棱锥的体积为 〔 〕A .3B .6C .9D .18 答案 B解析 记正四棱锥为P-ABCD ,设底面ABCD 的边长为a,作PO ⊥平面ABCD 于点O ,连结OA ,那么∠PAO 是侧棱PA 与底面ABCD 所成的角,∠PAO=︒60,在Rt △PAO 中,cos ∠PAO=cos3222==aPAOA ︒60,由此解得a=sin 32,6=PO ︒60=3,因此该棱锥的体积等于,63631312=⨯⨯=⋅PO a 应选B.3.〔08山东〕右图是一个几何体的三视图,依照图中数据,可得该几何体的表面积是 ( )A.9πB.10πC.11πD. 12π 答案 D解析 该几何体下面是一个底面半径为1,母线长为3的圆柱,上面是一个半径为1 的球,其表面积是π×1×3+2×π×12+4π×12=12.π4.〔08广东〕将正三棱柱截去三个角〔如图1所示〕,A 、B 、C 分不是GHI △三边的中点得到几何体如图,那么该几何体按图2所示方向的侧视图〔或称左视图〕为 〔 〕答案 A解析 依照几何体的形状,再结合侧〔左〕视图的特点,能够得到结果.5.〔08宁夏,海南〕〔理〕某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分不是长为a 和b 的线段,那么a+b 的最大值为〔 〕 A. 22B. 32C. 4D. 52答案 C 二、填空题 6.〔08江西〕〔理〕如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好通过正四棱锥的顶点P .假如将容器倒置,水面也恰好过点P(图2).有以下四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好 通过点PD .假设往容器内再注入a 升水,那么容器恰好能装满 其中真命题的代号是 .(写出所有真命题的代号) . 答案 BD解析 依题意,a 升水为容器容积的一半,故D 是真命题,A 是假命题;又容器里面相对四个侧面是对称的,而上下不对称,故B 是真命题,C 是假命题.7.〔08四川〕〔理〕正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为3,那么该正四棱柱的体积等于________________. 答案 2解析 设正四棱柱的底面边长为a,侧棱长为b ,依题意得,3362,6222==+a b a 由此解得a=1,b=2,因此该正四棱柱的体积等于a2b=2 .8.(08福建)假设三棱锥的三个侧面两两垂直,且侧棱长均为3,那么其外接球的表面积是 . 答案 9π解析 设三棱锥为S-ABC ,那么依题意,三棱锥S-ABC 的三条侧棱两两垂直,且SA=SB=SC=,3AB=BC=CA=.6设球的半径为R ,那么由题意可得2)1(-R +〔,)222R = ∴R=.23球的表面积为S=4.92ππ=R9.〔08宁夏、海南〕〔理〕一个六棱柱的底面是正六边形,其侧棱垂直于底面.该六棱柱的顶点都在同一个面上,且该六棱柱的体积为98,底面周长为3,那么那个球的体积为 _________.〔文〕一个六棱柱的底面是正六边形,其侧棱垂直于底面.该六棱柱的顶点都在同一个球面上,且该六棱 的高为,3底面周长为3,那么那个球的体积为_________.答案 〔理〕34π 〔文〕34π三、解答题 10.〔08山东〕〔文〕如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD , AB ∥DC,△PAD 是等边三角形,BD =2AD=8, AB=2DC=45. 〔1〕设M 是PC 上的一点,证明:平面MBD ⊥平面PAD; 〔2〕求四棱锥P-ABCD 的体积.〔1〕证明 在△ABD 中,由于AD=4,BD=8,AB=45, 因此AD2+BD2=AB2.故AD ⊥BD.又平面PAD ⊥平面ABCD ,平面 PAD 平面ABCD=AD,BD ⊂平面ABCD ,因此BD ⊥平面PAD, 又BD ⊂平面MBD ,故平面MBD ⊥平面PAD.〔2〕解 过P 作PO ⊥AD 交AD 于O , 由于平面PAD ⊥平面ABCD , 因此PO ⊥平面ABCD.因此PO 为四棱锥P-ABCD 的高, 又△PAD 是边长为4的等边三角形,因此342 3.PO =⨯=在底面四边形ABCD 中,AB ∥DC, AB=2DC,因此四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为85,45= 此即为梯形ABCD 的高,因此四边形ABCD的面积为25458524. S+=⨯=故1242316 3.3P ABCDV-=⨯⨯=11.〔08广东〕〔文〕如下图,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,,45,60︒=∠︒=∠BDCABD BADADP∽△△.〔1〕求线段PD的长;〔2〕假设11PC R=,求三棱锥P-ABC的体积.解〔1〕∵BD是圆的直径,∴∠BAD=90º,又△ADP∽△BAD,∴RRRBDBDBAADDPADDPBAAD321243430sin)60sin(,222=⨯⨯=︒︒==∴=.〔2〕在Rt△BCD中,CD=BDcos45º=2R.∵PD2+CD2=9R2+2R2=11R2=PC2,∴PD⊥CD,又∠PDA=∠DAB=90º,∴PD⊥底面ABCD.S△ABC=21AB×BC sin(60º+45º)=21R×2R⎪⎪⎭⎫⎝⎛⨯+⨯22212223=413+R2,那么三棱锥P-ABC的体积为32△41334133131RRRPDSVABCABCP+=⨯+⨯=⨯⨯=-12.(08宁夏、海南)〔文〕如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出〔单位:cm〕.〔1〕在正视图下面,按照画三视图的要求画出该多面体的俯视图;〔2〕按照给出的尺寸,求该多面体的体积;〔3〕在所给直观图中连结'BC,证明:'BC∥面EFG.图〔1〕〔1〕解 如图〔2〕解 所求多面体的体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭=3284〔cm3〕.〔3〕证明 如图〔2〕,在长方体ABCD A B C D ''''-中, 连结AD ',那么AD BC ''∥. 因为E G ,分不为AA ',A D ''的中点, 因此AD EG '∥,从而EG BC '∥.又BC '⊄平面EFG , 因此BC '∥面EFG .图〔2〕2004—2007年高考题 一、选择题1. 〔07陕西〕一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,那么该正三棱锥的体积是 〔 〕A.433 B.33 C.43 D.123答案C解析 设该正三棱锥的底面边长为a ,高为h ,那么a2=1+1-2cos120°=3,h=1,其底面面积为S=60sin 212a °=.433该正三棱锥的体积为V=,43143331=⨯⨯选C. ABC DE FGA 'B 'C 'D '464 2 224622俯视图正视图侧视图2. 〔07江西〕四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空、高度相等、杯口半径相等的圆口酒杯,如下图.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,那么它们的大小关系正确的选项是 〔 〕A.h2>h1>h4B.h1>h2>h3C.h3>h2>h4D.h2>h4>h1答案 A解析 结合所给的酒杯形状观看分析可知第二个酒杯中酒的体积与酒高之间的变化率最大,第四个酒杯中酒的体积与酒高之间变化率最小,由排除法可知选A.3.(07山东) 以下几何体各自的三视图中,有且仅有两个视图相同的是 〔 〕A.①②B.①③C.①④D.②④ 答案 D解析 在各自的三视图中①正方体的三个视图都相同;②圆锥的两个视图相同;③三棱台的三个视图都不同;④正四棱锥的两个视图相同,应选D.4.(07宁夏、海南) 某个几何体的三视图如下,依照图中标出的尺寸〔单位:cm),可得那个几何体的体积 是 〔 〕A.30004cm3B.30008cm3C.2 000 cm3D.4 000cm3答案 B解析 依题意,此几何体为如图的四棱锥P-ABCD, 且底面ABCD 是边长为20的正方形,侧面PCD 垂直底面ABCD ,△PCD 的高为20,故那个几何体的体积为,3000820202031=⨯⨯⨯选B. 5.(07宁夏、海南)〔理〕一个四棱锥和一个三棱锥恰好能够拼接成一个三棱柱,那个四棱锥的底面为正方形,且底面边长与各侧棱长相等,那个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分不为h1、h2、h3,那么h1∶h2∶h3等于 〔 〕 A.3∶1∶1 B.3∶2∶2C.3∶2∶2D.3∶2∶3答案 B解析 依题意,四棱锥为正四棱锥,三棱锥为正三棱锥,且棱长均相等,设为a,h2=h3,h=.36)33(,22)22(22222a a a h a a a =-==-故h1∶h2∶h3=3∶2∶2.6.〔06江苏〕两个相同的正四棱锥组成如图〔1〕所示的几何体,可放入棱长为1的正方体如图〔2〕内,使正四棱锥的底面ABCD 与正方体的某一个面平行,且各顶点均在正方体的面上,那么如此的几何体体积的可能值有〔 〕A.1个B.2个C.3个D.无穷多个 答案D解析 如下图,在正方体的俯视图中,可得正八面体中截面四边形〔正方形〕S ∈⎪⎭⎫⎢⎣⎡1,21, ABCD 内接于另一个正方形,此正方形ABCD 的面积的范畴为∴八面体的体积V=⎪⎭⎫⎢⎣⎡∈⨯31,61131S ,即其体积的可能值有无穷多个,故应选D. 7.〔06江西〕〔理〕如下图,在四面体ABCD 中,截面AEF 通过四面体的内切球〔与四个面都相切的球〕球心O ,且与BC 、DC 分不交于E 、F ,假如截面将四面体分为体积相等的两部分,设四棱锥A-BEFD 与三棱锥A-EFC 的表面积分不是S1,S2,那么必有 〔 〕A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定〔文〕假如四棱锥的四条侧棱都相等,就称它为〝等腰四棱锥〞,四条侧棱称为它的腰,以下4个命题中,假命题是 〔 〕 A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上 答案 〔理〕C (文)B解析 〔理〕由题意,设三棱锥的内切球的半径为r.∵VA ——EFC=VA ——BDFE ,∴31·S 四边形BDFE ··r+31S △ABD ·r+31·S △ADF ·r=31·S △EFC ·r+31·S △AEC ·r+31·S △ACF ·r ,∴S 四边形BDFE+S △ABE+S △ABD+S △ADF=S △EFC+S △AEC+S △ACF ,即有S1=S2,应选C. 〔文〕A.如图,∵SA=SB=SC=SD ,那么∠SAO=∠SBO=∠SCO=∠SDO ,即等腰四棱锥腰与 底面所成的角相等,正确;B.等腰四棱锥侧面与底面所成的二面角相等或互补不一定成立;C.如图,由SA=SB=SC=SD 得OA=OB=OC=OD ,即等腰四棱锥的底面四边形存在外接圆,正确;D.等腰四棱锥各顶点在同一个球上,正确,应选B.8.〔05全国Ⅲ〕设三棱柱ABC-A1B1C1的体积为V ,P 、Q 分不是侧棱AA1、CC1上的点,且PA=QC1,那么四棱锥B-APQC 的体积为 〔 〕A.V 61B.V41 C.V 31D.V21答案C解析 用〝极限思想〞,设P 与A ,Q 与C1重合,那么VB-APQC=VC 1-ABC=S 31△ABC ·h ,即VB-APQC=31111C B A ABC V =.31V9.〔04重庆〕〔文〕如图,棱长为5的正方体不管从哪一个面看,都有两个直通的边长为1的正方形孔,那么那个有孔正方体的表面积〔含孔内各面〕是 〔 〕A.258B.234C.222D.210 答案 C解析 6个直通的小孔有6个交汇处,那么全S =6×52-12×12+6×4×5-6×12×6=6×25-12+120-36=150-12+120-36=258-36=222,应选C. 二、填空题10.〔07全国Ⅰ〕〔理〕一个等腰直角三角形的三个顶点分不在正三棱柱的三条侧棱上.正三棱柱的底面边长为2,那么该三角形的斜边长为 . 答案 23解析 正三棱柱ABC-A1B1C1中,△ABC 为正三角形,边长为2,△DEF 为直角三角形,DF 为斜边.设DF长为x ,那么DE=EF=x 22,作DG ⊥BB1,HG ⊥CC1,EI ⊥CC1,EG=,42,42222222-=-=-=-xEIEFFIxDGDEFH=FI+HI=FI+EG=2,422-x在Rt△DHF中DF2=DH2+FH2,即x2=4+(2,)4222-x解得x=2.311.(07广东)〔理〕假如一个凸多面体是n棱锥,那么那个凸多面体的所有顶点所确定的直线共有条.这些直线中共有f(n)对异面直线,那么f(4)= ;f(n)= .〔答案用数字或n的解析式表示〕答案21C+n12 2)2)(1(--nnn解析n棱锥共有n+1个顶点,从这些点中任取两个都能够确定直线,因此共确定直线C 21+n条,这些直线分成两类,侧棱与底面内直线;明显所有的侧棱中,任意两条都不可能成为异面直线,因此底面内的所有直线中的任意两条也不可能成为异面直线;而任意一条侧棱,会与底面内的多少条直线构成异面直线呢?在底面的n个顶点中,除去侧棱用的那个,还有n-1个,那么由这n-1个点构成的直线与该侧棱差不多上异面直线;故共有f(n)=nC 21-n=2)2)(1(--nnn对异面直线,那么f〔4〕=12.12. (07全国Ⅱ)一个正四棱柱的各个顶点在一个直径为2 cm的球面上.假如正四棱柱的底面边长为1 cm,那么该棱柱的表面积为cm2.答案2+42解析设正四棱柱的高为h,那么12+12+h2=22,∴h=2〔cm〕.因此,表面积为2×1×1+4×1×2422+=(cm2).13.(06全国Ⅰ正四棱锥的体积为12,底面对角线的长为2,6那么侧面与底面所成的二面角等于. 答案3π解析如图,在正四棱锥S—ABCD中,底面对角线BD=2.6那么边长BC=2.3作SO⊥底面ABCD,作OE⊥CD,连结SE,那么∠SEO确实是侧面与底面所成二面角的平面角,又由V=,12)32(312=⋅⋅SO得SO=3.那么在Rt △SEO 中,tan ∠SEO=.3∴∠SEO=3π,即侧面与底面所成的二面角等于3π.14.(06湖南)〔文〕过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的 直线共有 条. 答案 6解析 ∵平面MNPQ ∥平面ABB1A1,∴平面MNPQ 内任一条直线平行于平面ABB1A1.共有C 24=6条.15.(06辽宁)〔文〕如下图,半径为2的半球内有一内接正六棱锥P-ABCDEF , 那么此正六棱锥的侧面积是 . 答案 67解析 考查锥体的面积公式,明显正六棱锥的高为球的半径2,正六棱锥的底面为底面圆的内接正六边形.正六边形中OA=2,AF=2,由于三角形PAO 为直角三角形,得PA=2.2从而得侧面等腰三角形的侧高为7,因此正六棱锥的侧面积为6×21×2×.767=16.(05全国Ⅱ)下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥; ②底面是等边三角形,侧面差不多上等腰三角形的三棱锥是正三棱锥; ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥;④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是 .〔写出所有真命题的编号〕 答案 ①④解析 关于①,设四面体为D-ABC ,过棱锥顶点D 作底面的垂线DE ,过E 分不作AB ,BC ,CA 边的垂线,其垂足依次为F 、G 、H ,连接DF ,DG ,DH ,那么∠DFE ,∠DGE ,∠DHE 分不为各侧面与底面所成的角,因此∠DFE=∠DGE=∠DHE ,因此有FE=EG=EH ,DF=DG=DH ,故E 为△ABC 的内心,又因△ABC 为等边三角形,因此F ,G ,H 为各边的中点,因此△AFD ≌△BFD ≌△BGD ≌△GCD ≌△AHD ,故DA=DB=DC ,故棱锥为正三棱锥,因此为真命题.关于②,侧面为等腰三角形,不一定确实是侧棱为两腰,因此为假命题.关于③,面积相等,不一定侧棱就相等,只要满足斜高相等即可.因此为假命题.关于④,由侧棱与底面所成的角相等,能够得出侧棱相等,又结合①知底面应为正三角形,因此为真命题,综上,①④为真命题.17.〔05上海〕有两个相同的直三棱柱,高为a 2,底面三角形的三边长分不为3a,4a,5a(a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,那么a 的取值范畴是 .答案 0<a<315解析 三棱柱共有3种情形,四棱柱共有4种情形,它们的面积为,三棱柱时:24a2+(8+10)×2 ①,24a2+(6+10) ×2 ②,12a2+(6+8+10)×2 ③.四棱柱时:24a2+(8+10)×2 ④,24a2+(6+10)×2 ⑤,24a2+(8+6)×2 ⑥,24a2+(8+6)×2 ⑦.只需:24a2+(8+6)×2<12a2+〔8+6+10〕×2,解得,-315<a <315,∵a >0,∴a ∈(0, 315).18.〔04广东〕由图1有面积关系:,PB PA PB PA S S PAB B PA ⋅'⋅'=∆''∆那么由图2有体积关系:=-'''-ABC P C B A P V V .图1 图2答案 PC PB PA PC PB PA ····''' 解析.···········sin ·21·31·sin ·21·312121PC PB PA PC PB PA PB PB PC PA PC PA h h PC PA PC PA h APC PC PA h APC PC PA V V ABCP C B A P '''='''=''=∠∠''=-'''-三、解答题19.〔07四川〕〔理〕如图,PCBM 是直角梯形,∠PCB=90°,PM ∥BC ,PM=1,BC=2,又AC=1, ∠ACB=120°,AB ⊥PC,直线AM 与直线PC 所成的角为60°. 〔1〕求证:平面PAC ⊥平面ABC ; 〔2〕求二面角M-AC-B 的大小; 〔3〕求三棱锥P-MAC 的体积.〔文〕如图,平面PCBM ⊥平面ABC ,∠PCB=90°,PM ∥BC ,直线AM 与直线PC 所成的角为60°,又AC=1,BC=2PM=2,∠ACB=90° 〔1〕求证:AC ⊥BM ;〔2〕求二面角M-AB-C 的大小;〔3〕求多面体PMABC 的体积. 方法一〔理〕〔1〕证明 ∵PC ⊥AB,PC ⊥BC,AB ∩BC=B, ∴PC ⊥平面ABC.∴平面PAC ⊥平面ABC.〔2〕解 取BC 的中点N ,那么CN=1.连结AN 、MN , ∵PMCN,∴MNPC ,从而MN ⊥平面ABC.作NH ⊥AC ,交AC 的延长线于H ,连结MH ,那么由三垂线定理知,AC ⊥MH , 从而∠MHN 为二面角M-AC-B 的平面角. ∵直线AM 与直线PC 所成的角为60°, ∴∠AMN=60°.在△ACN 中,由余弦定理得AN=.3120cos ·222=︒-+CN AC CN AC在Rt △AMN 中,MN=AN ·cot ∠AMN=333⨯=1.在Rt △CNH 中,NH=CN ·sin ∠NCH=1×23=23.在Rt △MNH 中,tan ∠MHN=.332231==NH MN 故二面角M-AC-B 的大小为arctan 332.〔3〕解 由〔2〕知,PCNM 为正方形,∴VP-MAC=VA-PCM=VA-MNC=VM-ACN=2131⨯AC ·CN ·sin120°·MN=123.方法二〔1〕同方法一.〔2〕解 在平面ABC 内,过C 作CD ⊥CB.建立空间直角坐标系C-xyz 〔如图〕,由题意有A(21,23-,0). 设P 〔0,0,z0〕(z0>0),那么M 〔0,1,z0〕,=−→−AM 〔-23,23,z0),−→−CP =(0,0,z0).由直线AM 与直线PC 所成的角为60°,得||·||·−→−−→−−→−−→−=CP AM CP AM cos60°,即z20=020·321z z +解得z0=1.∴),0,21,23(),1,1,0(-==−→−−→−CA CM 设平面MAC 的一个法向量为n=(x1,y1,z1),那么⎪⎩⎪⎨⎧=-=+.02123,01111y x z y 取x1=1,得n=(1,)3,3-. 平面ABC 的一个法向量取为m=〔0,0,1〕.设m 与n 所成的角为θ,那么cos θ=.72173||·||·-=-=n m n m 明显,二面角M-AC-B 的平面角为锐角,故二面角M-AC-B 的大小为arccos .721〔3〕解 取平面PCM 的法向量为n1=(1,0,0), 那么点A 到平面PCM 的距离为h=.23|||·|11=−→−n n CA ∵|,1||,1|==−→−−→−PM PC ∴VP-MAC=VA-PCM=.123231161·||·||2131=⨯⨯⨯=⨯−→−−→−h PM PC 〔文〕方法一 (1) 证明 ∵平面PMBC ⊥平面ABC ,AC ⊥BC ,AC ⊂平面ABC ,∴AC ⊥平面PMBC. 又∵BM ⊂平面PMBC ,∴AC ⊥BM.〔2〕解 取BC 的中点N ,那么CN=1.连结AN 、MN. ∵平面PCBM ⊥平面ABC , 平面PCBM ∩平面ABC=BC , PC ⊥BC.∴PC ⊥平面ABC.∵PM CN ,∴MN PC. ∴MN ⊥平面ABC.作NH ⊥AB 于H ,连结MH ,那么由三垂线定理知,AB ⊥MH ,从而∠MHN 为二面角M-AB-C 的平面角. ∵直线AM 与直线PC 所成的角为60°, ∴∠AMN=60°.在△ACN 中,由勾股定理得AN=2.在Rt △AMN 中,MN=AN ·cot ∠AMN=36332=⨯.在Rt △BNH 中,NH=BN ·sin ∠ABC=BN ·55551=⨯=ABAC . 在Rt △MNH 中,tan ∠MHN=.3305536==NH MN 故二面角M-AB-C 的大小为arctan .330(3)解 因多面体PMABC 确实是四棱锥A-BCPM.PC=MN=36,PM=1.VPMABC=VA-BCPM=2131⨯(PM+BC)·PC ·AC=61×(1+2)×36×1=66.方法二〔1〕同方法一.〔2〕解 如图,以C 为原点建立空间直角坐标系C-xyz .设P 〔0,0,z0〕(z0>0),有B 〔0,2,0〕,A(1,0,0),M(0,1,z0),−→−AM =(-1,1,z0),−→−CP =(0,0,z0).由直线AM 与直线PC 所成的角为60°,得cos ||·||·−→−−→−−→−−→−=CP AM CP AM 60°,即z20=22120+z ·z0,解得z0=36. ∴−→−AM =〔-1,1, 36〕,−→−AB =(-1,2,0),设平面MAB 的一个法向量为n=(x1,y1,z1).那么⎪⎩⎪⎨⎧=+-=++-,0203611111y x z y x 取z1=),6,2,4(,6=n 得取平面ABC 的一个法向量为m=〔0,0,1〕,那么cos 〈m,n 〉=1339641616||||=++⨯=⋅⋅n m n m . 故二面角M-AB-C 的大小为arccos 1339.〔3〕同方法一20.(07重庆) 右图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=1,BC=23,AA1=2.点D 在棱BB1上,BD=31BB1,B1E ⊥A1D ,垂足为E.求:〔1〕异面直线A1D 与B1C1的距离; 〔2〕四棱锥C-ABDE 的体积.解 方法一〔1〕由直三棱柱的定义知B1C1⊥B1D.又因为∠ABC=90°, 因此B1C1⊥A1B1,从而B1C1⊥平面A1B1D , 得B1C1⊥B1E,又B1E ⊥A1D,故B1E 是异面直线B1C1与A1D 的公垂线.由BD=31BB1知B1D=34,在Rt △A1B1D 中,A1D=21211D B B A +=2)34(1+=35, 又因S △D B A 11=21A1B1·B1D=21A1D ·B1E ,故B1E=54353411111=⨯=⋅D A D B B A .〔2〕由〔1〕知B1C1⊥平面A1B1D ,又BC ∥B1C1,故BC ⊥平面ABDE ,即BC 为四棱锥C-ABDE 的高.从而所求四棱锥的体积为V=VC-ABDE=31·S ·BC ,其中S 为四边形ABDE 的面积.如图,过E 作EF ⊥B1D ,垂足为F. 在Rt △B1ED 中,ED=2121E B D B -=,1516)54()34(22=-又因S △B 1ED=21B1E ·DE=21B1D ·EF , 故EF=251611=⋅D B DE E B .因△A1AE 的边A1A 上的高h=A1B1-EF=1-2516=259,故S △A 1AE=21A1A ·h==⨯⨯259221259. 又因为S △D B A 11=21A1B1·B1D=21×1×34=32,从而S=S 11A ABB 四边形 - S △A 1AE - S △A 1B 1D=2-,757332259=-因此V=31×S ·BC=31×7573×.1507323=方法二〔1〕如右图,以B 点为坐标原点O 建立空间直角坐标系O-xyz,那么A(0,1,0),A1(0,1,2),B(0,0,0),B1(0,0,2),C1()2,0,23,D 〔0,0,)32.因此−→−1AA =(0,0,2),−→−AB =(0,-1,0),−→−11C B =〔32,0,0),).34,1,0(1--=−→−D A设E〔0,y0,z0〕,那么−→−EB1=〔0,y0,z0-2〕,因此−→−EB1·−→−11CB=0,从而B1C1⊥B1E.,又由题设B1E⊥A1D,故B1E是异面直线B1C1与A1D的公垂线.下面求点E的坐标.因B1E⊥A1D,即−→−−→−DAEB11·=0,从而y0+.0)2(34=-z①又,1,0(1-=−→−yEAz0-2),且−→−EA1∥−→−DA1,得.34211-=-zy②联立①②解得y0=,2538,2516=z即E〔0,)2538,2516,).2512,2516,0(1-=−→−EB因此|,54)2512()2516(|221=-+=−→−EB(2)由BC⊥AB,BC⊥DB,故BC⊥平面ABDE,即BC为四棱锥C-ABDE的高.下面求四边形ABDE的面积.因为S四边形ABDE=S△ABE+S△BDE,,32||,1||==−→−−→−BDAB而S△ABE=⋅−→−||21ABz0=21×1×.25192538=S△BDE=,751625163221||21=⨯⨯=⋅−→−yBD故S四边形ABDE=757375162519=+.因此VC-ABDE=.1507323757331||·31=⨯⨯=⨯−→−BCSABDE21.〔07广东〕〔文〕某几何体的俯视图是如下图的矩形,正视图〔或称主视图〕是一个底边长为8、高为4的等腰三角形,侧视图〔或称左视图〕是一个底边长为6、高为4的等腰三角形.〔1〕求该几何体的体积V;〔2〕求该几何体的侧面积S.解由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分不为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6,高为h2的等腰三角形. 〔1〕几何体的体积为V=S·31矩形·h=31×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h1=.53422=+ 左、右侧面的底边上的高为:h2=.244422=+故几何体的侧面面积为:S=2×〔.22440246215821+=⨯⨯+⨯⨯)22.〔06上海〕〔理〕在四棱锥P-ABCD 中,底面是边长为2的菱形,∠DAB=60°,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°. 〔1〕求四棱锥P-ABCD 的体积;〔2〕假设E 是PB 的中点,求异面直线DE 与PA 所成角的大小〔结果用反三角函数值表示〕.〔文〕在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1. 〔1〕求异面直线B1C1与AC 所成角的大小;〔2〕假设直线A1C 与平面ABC 所成的角为45°,求三棱锥A1-ABC 的体积.解 〔理〕〔1〕由于底面为菱形,边长为2,且∠BAD=60°,从而得SABCD=2×21×2×2×sin60°=23.明显PO 为四棱锥P-ABCD 的高.又由于PO 垂直于底面ABCD ,得PB 与平面ABCD 所成的角是∠PBO.∵△ABD 为正三角形,∴在△PBO 中,BO=21BD=21AB=1,∠POB=90°,∠PBO=60°, ∴PO=BOtan60°=3.从而得VP-ABCD=31×SABCD ×PO=31×23×3=2.〔2〕令AB 的中点为F ,连结EF ,DF.由于E 为PB 的中点,因此EF21PA.因此,异面直线DE 与PA 所成的角等于直线EF 与DE 的夹角.在△POA 中,∠POA=90°,AO=23×2=3,PO=3,得PA=6,那么EF=.26由于△ABD 为正三角形,得DF=23×AD=.3由于△PBD 中,BD=PB ,∠PBD=60°,得△PBD 为正三角形,且由于E 为PB 的中点,得DE=23×BD=3.故在△DEF 中,EF=26,DE=,3DF=,3得cos ∠DEF=.423262)3()3()26(222=⨯⨯-+从而得∠DEF=arccos ,42因此异面直线DE 与PA 所成的角等于arccos .42〔文〕〔1〕∵BC ∥B1C1,∴∠ACB 为异面直线B1C1与AC 所成的角〔或它的补角〕.∵∠ABC=90°,AB=BC=1,∴∠ACB=45°, ∴异面直线B1C1与AC 所成的角为45°.〔2〕由于三棱柱ABC-A1B1C1为直三棱柱,那么可得直线A1C 在平面ABC 内的射影为AC ,从而直线A1C 与平面ABC 所成的角为∠A1CA.在△A1AC 中,∠A1AC=90°,∠ACA1=45°⇒A1A=AC=2AB=2.由于AA1垂直于平面ABC ,容易得到VA 1-ABC=S·31△ABC ·AA1=31×.6221212=⨯⨯23.〔06四川〕如下图,在长方体ABCD-A1B1C1D1中,E 、P 分不是BC 、A1D1的中点,M 、N 分不是AE 、CD1的中点,AD=AA1=a ,AB=2a. 〔1〕求证:MN ∥面ADD1A1; 〔2〕求二面角P —AE —D 的大小; 〔3〕〔只理科做〕求三棱锥P-DEN 的体积.方法一〔1〕证明 取CD 的中点K ,连结MK 、NK. ∵M 、N 、K 分不为AE 、CD1、CD 的中点, ∴MK ∥AD ,NK ∥DD1.∴MK ∥面ADD1A1,NK ∥面ADD1A1. ∴面MNK ∥面ADD1A1. ∴MN ∥面ADD1A1.〔2〕解 设F 为AD 的中点, ∵P 为A1D1的中点,∴PF ∥D1D. ∴PF ⊥面ABCD.作FH ⊥AE ,交AE 于H ,连结PH ,那么由三垂线定理得AE ⊥PH. 从而∠PHF 为二面角P —AE —D 的平面角.在Rt △AEF 中,AF=.1722172·2·.217,2,2a a aa AE EF AF FH a AE a EF a =====在Rt △PFH 中,tan ∠PHF=2171==FH DD FHPF ,故二面角P-AE-D 的大小是arctan .217 〔3〕〔只理科做〕S △NEP=21S P ECD 1矩形 =41BC ·CD1=41·a ·224a a +=45a2.作DQ ⊥CD1,交CD1于Q ,由A1D1⊥面CDD1C1,得A1D1⊥DQ , ∴DQ ⊥面BCD1A1.在Rt △CDD1中,DQ=,525·2·11a a a a CD DD CD ==∴VP-DEN=VD-NEP=31S △NEP ·DQ=.652453132a a a =⋅⋅ 方法二 以D 为原点,DA 、DC 、DD1所在的直线分不为x 轴、y 轴、z 轴,建立空间直角坐标系,那么A 〔a ,0,0〕,B 〔a ,2a ,0〕,C 〔0,2a ,0〕, A1〔a ,0,a 〕,D1〔0,0,a 〕.∵E 、P 、M 、N 分不是BC 、A1D1、AE 、CD1的中点,∴E(,2a 2a ,0),P(2a ,0,a),M(43a ,a ,0),N(0,a ,2a〕.〔1〕−→−MN =(-,43a 0,2a )取n=〔0,1,0〕,明显n ⊥面ADD1A1. ·−→−MN n=0∴−→−MN ⊥n,又MN ⊄面ADD1A1,∴MN ∥面ADD1A1.(2)过P 作PH ⊥AE ,交AE 于H ,取AD 的中点F ,那么F 〔).0,0,2a设H 〔x,y,0〕,那么),,,2(a y x a HP --=−→− ).0,,2(y x aHF --=−→−又),0,2,2(a a AE -=−→−由0=⋅−→−−→−AE HP ,及H 在直线AE 上,可得⎪⎩⎪⎨⎧=+=-+-.44,02242a y x ay x aa 解得x=.172,3433a y a = ∴).0,172,178(),,172,178(a a HF a a a HP --=--=−→−−→−∴.0=⋅−→−−→−AE HF 即.−→−−→−⊥AE HF ∴−→−HP 与−→−HF 所夹的角等于二面角P-AE-D 的大小.cos 〈−→−HP ,−→−HF 〉=.212||·||=⋅−→−−→−−→−−→−HF HP HFHP 故二面角P-AE-D 的大小等于arccos .21212〔3〕〔只理科做〕设n1=〔x1,y1,z1〕〕为平面DEN 的法向量,那么n1⊥,−→−DE n1⊥−→−DN ,又),0,2,2(a aDE =−→−−→−DN =〔0,a,),2a ).,0,2(a a DP =−→−∴⎪⎪⎩⎪⎪⎨⎧=+=+02,0221111z a ay ay x a即⎩⎨⎧-=-=.2,41111y z y x 可取n1=(4,-1,2). ∴P 点到平面DEN 的距离为d=.2144116|22|||||11aa a DP =+++=⋅−→−n n ∵cos 〈−→−−→−DN DE ,〉=,858||·||·=−→−−→−−→−−→−DN DE DNDE sin 〈−→−−→−DN DE ,〉=.8521∴S △DEN=·||·||21−→−−→−DN DE sin 〈−→−−→−DN DE ,〉=.8212a∴VP-DEN=S31△DEN ·d=.62148213132a a a =⨯⨯ 24.〔05北京春〕〔文〕如图,正三棱锥S-ABC 中,底面边长是3,棱锥的侧面积等于底面积的2倍,M 是BC 的中点,求〔1〕SM AM的值;〔2〕二面角S-BC-A 的大小; 〔3〕正三棱锥S-ABC 的体积.解 〔1〕∵SB=SC ,AB=AC ,M 为BC 的中点,∴SM ⊥BC ,AM ⊥BC.由棱锥的侧面积等于底面积的2倍,即,AM BC SM BC ⨯⨯=⨯⨯212213得.23=SM AM 〔2〕作正三棱锥的高SG ,那么G 为正三角形ABC 的中心,G 在AM 上,GM=.31AM∵SM ⊥BC ,AM ⊥BC ,∴∠SMA 是二面角S-BC-A 的平面角.在Rt △SGM 中,∵SM=,GM GM AM 233232=⨯=∴∠SMA=∠SMG=60°,即二面角S-BC-A 的大小为60°.〔3〕∵△ABC 的边长是3,∴AM=tan 23233GM SG GM ==,,60°=.233·23= ∴VS-ABC=31S △ABC ·SG=.83923·439·31=25.(04上海)如图,P-ABC 是底面边长为1的正三棱锥,D 、E 、F 分不为棱 PA 、PB 、PC 上的点,截面DEF ∥底面ABC ,且棱台DEF-ABC 与棱锥P-ABC 的棱长和相等.〔棱长和是指多面体中所有棱的长度之和〕 〔1〕证明:P-ABC 为正四面体;〔2〕假设PD=,21PA 求二面角D-BC-A 的大小;〔结果用反三角函数值表示〕〔3〕〔理〕设棱台DEF-ABC 的体积为V ,是否存在体积为V 且各棱长均相等的平行六面体,使得它与棱台DEF-ABC 有相同的棱长和?假设存在,请具体构造出如此的一个平行六面体,并给出证明;假设不存在,请讲明理由.〔文〕设棱台DEF-ABC 的体积为V ,是否存在体积为V 且各棱长均相等的直平行六面体,使得它与棱台DEF-ABC 有相同的棱长和?假设存在,请具体构造出如此的一个直平行六面体,并给出证明,假设不存在,请讲明理由.〔1〕证明 ∵棱台DEF-ABC 与棱锥P-ABC 的棱长和相等,∴DE+EF+FD=PD+PE+PF. 又∵截面DEF ∥底面ABC ,∴DE=EF=FD=PD=PE=PF ,∠DPE=∠EPF=∠FPD=60°, ∴P-ABC 是正四面体.〔2〕解 取BC 的中点M ,连结PM ,DM ,AM.∵BC ⊥PM ,BC ⊥AM ,∴BC ⊥平面PAM ,BC ⊥DM ,那么∠DMA 为二面角D-BC-A 的平面角,由〔1〕知,P-ABC 的各棱长均为1,∴PM=AM=,23由D 是PA 的中点,得sin ∠DMA=,33=AM AD ∴∠DMA=arcsin .33〔3〕〔理〕解 存在满足条件的平行六面体,且存在满足条件的直平行六面体.棱台DEF-ABC 的棱长和为定值6,体积为V ,设直平行六面体的棱长均为,21底面相邻两边夹角为α,那么该六面体棱长和为6,体积为.sin 81V =α∵正四面体P-ABC 的体积是,122∴0<V <,122∴0<8V <1.可知α=arcsin(8V),故构造棱长均为,21底面相邻两边夹角为arcsin(8V)的直平行六面体即满足要求.〔文〕存在满足条件的直平行六面体,解析同上.第二部分 三年联考题汇编 2018年各地模拟题将另行补加 2018年联考题 一、选择题1.〔山东省潍坊、菏泽、枣庄,2月〕三棱锥P-ABC 的四个顶点都在体积为3500π的球的表面上,底面ABC所在的小圆面积为16π,那么该三棱锥的高的最大值为 〔 〕 A.7 B.7.5 C.8 D.9 答案 C2.〔08石家庄第二次教学质检〕将正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,异面直线AD 与BC 所成的角为 〔 〕A.6πB.4πC.3πD.2π答案 C3. 〔广东佛山,5月〕一个实心铁质的几何体的正视图、侧视图和俯视图差不多上半径为3的圆,将6个如此的几何体熔成一个实心正方体,那么该正方体的表面积为 〔 〕A. 32216πB.3216πC.32210πD.3210π 答案 A二、填空题4.〔08唐山教学质检〕正六棱锥的底面边长为1,体积为,23那么其侧棱与底面所成的角等于 .答案 60°5. 〔08南昌调研测试〕正三棱锥的底面边长为2,侧面均为直角三角形,那么此三棱锥的体积为 .答案 326.〔08安徽〝江南十校〞素养测试〕在三棱锥P-ABC 中,给出以下四个命题: ①假如PA ⊥BC ,PB ⊥AC ,那么点P 在平面ABC 内的射影是△ABC 的垂心;②假如点P 到△ABC 的三边所在直线的距离都相等,那么点P 在平面ABC 内的射影是△ABC 的内心; ③假如棱PA 和BC 所成的角为60°,PA=BC=2,E 、F 分不是棱PB 、AC 的中点,那么EF=1; ④假如三棱锥P-ABC 的各条棱长均为1,那么该三棱锥在任意一个平面内的射影的面积都不大于.21其中正确命题的序号是 .答案 ①④7. (08东北三校第一次联考)正方体ABCD-A1B1C1D1的棱长为1,E 为A1B1的中点,那么以下五个命题:①点E 到平面ABC1D1的距离为;21②直线BC 与平面ABC1D1所成的角等于45°③空间四边形ABCD1在正方体六个面形成六个射影,其面积的最小值是;21④AE与DC1所成的角为arccos; 10 10 3⑤二面角A-BD1-C的大小为. 6 5π其中真命题是.〔写出所有真命题的序号〕答案②③④8.(08江西九所重点中学联考)正方体ABCD-A1B1C1D1的棱长为1,点P在线段A1B上,那么|AP|+|D1P| 的最小值为.答案22+三、解答题9.〔安徽合肥,5月〕如图,直四棱柱ABCD-A1B1C1D1中,侧棱AA1=2,底面ABCD是菱形,AB=2,∠ABC=60°P为侧棱BB1上的动点.求证:D1P⊥AC;当二面角D1-AC-P的大小为120°时,求BP的长;在〔2〕的条件下,求三棱锥P-ACD1的体积.方法一〔几何法〕〔1〕证明连结BD交AC于点O,那么AC⊥BD.∵D1D⊥底面ABCD,∴AC⊥D1D,∴AC⊥平面BB1D1D∵D1P⊂平面BB1D1D,∴D1P⊥AC.〔2〕解连结D1O、OP,∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,∴∠D1OP是二面角D1-AC-P的平面角,∴∠D1OP=120°,设BP=x〔0≤x≤2〕,∵AB=2,∠ABC=60°,那么BO=DO=.3∴PO=,32x+D1O=.734=+在Rt△D1B1P中,D1P=.)2(122x-+在△D1OP中,由余弦定理D1P2=D1O2+PO2-2D1O·PO·cos120°得12+〔2-x〕2=7+3+x2+2×7×,2132⨯+x即6-4x=).372x+(整理得3x2-16x+5=0,解得x=31或x=5(舍去).∴BP=. 3 1〔3〕解∵BP=,31∴PO=,372913=+∴S△1POD=sin·211ODPO120°=.63723737221=⨯⨯⨯∵AC⊥平面OPD1,∴VP-ACD1=VP-OCD1+VP-OAD1=VC-OPD1+VA-OPD1=S31△OPD1·AC=31×637×2=. 93 7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法90角1、定义:成︒2、直线和平面垂直,则该线与平面任一直线垂直3、在平面的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、在平面的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、定义:两面成直二面角,则两面垂直2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质901、二面角的平面角为︒2、 在一个平面垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的围 1、异面直线所成的角的取值围是:︒≤<︒900θ (]︒︒90,0 2、直线与平面所成的角的取值围是:︒≤≤︒900θ []︒︒90,0 3、斜线与平面所成的角的取值围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值围是:︒≤<︒1800θ (]︒︒180,0 十、三角形的心 1、 心:切圆的圆心,角平分线的交点 2、 外心:外接圆的圆心,垂直平分线的交点 3、 重心:中线的交点 4、 垂心:高的交点【例题分析】例2 在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD .【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA =∵E 是PD 的中点, ∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE , ∴AENM 是平行四边形, ∴MN ∥AE .又AE ⊂平面PAD ,MN ⊄平面PAD , ∴MN ∥平面PAD .方法二取CD 中点F ,连接MF ,NF .∵MF∥AD,NF∥PD,∴平面MNF∥平面PAD,∴MN∥平面PAD.【评述】关于直线和平面平行的问题,可归纳如下方法:(1)证明线线平行:a∥c,b∥c,a∥α,a⊂βα∥βa⊥α,b⊥αα∩β=b ∩α=a,∩β=b⇒a∥b⇒a∥b⇒a∥b⇒a∥b(2)a∩α=∅a∥bα∥βb⊂α,a⊄αa⊂β⇒a∥α⇒a∥α⇒a∥α(3)证明面面平行:α∩β=∅a∥β,b∥βa⊥α,a⊥βα∥,β∥a,b⊂α,a∩b=A⇒α∥β⇒α∥β⇒α∥β⇒α∥β例3在直三棱柱-111中,1=,⊥,求证:1⊥1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且AB⊥BC,∴BC⊥平面PAB,∴AP⊥BC.又AP⊥PB,∴AP⊥平面PBC,又AP⊂平面PAC,∴平面PAC⊥平面PBC.【评述】关于直线和平面垂直的问题,可归纳如下方法:(1)证明线线垂直:a⊥c,b∥c,a⊥αb⊂α⇒a⊥b⇒a⊥ba⊥m,a⊥n a∥b,b⊥αα∥β,a⊥βα⊥β,α∩β=l m,n⊂α,m∩n=A a⊂β,a⊥l ⇒a⊥α⇒a⊥α⇒a⊥α⇒a⊥α(1)证明面面垂直:a⊥β,a⊂α⇒α⊥β例5如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB =60°,E,F分别是AB1,BC的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明. 证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形, E 是AB 1的中点, ∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1, ∴直线EF ∥平面A 1ACC 1. (2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下: 连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形. ∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB . ∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB , ∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .例6 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1. 【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC , ∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1, ∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点, ∴DE ∥AB 1. 又DE ⊂平面BEC 1,AB 1⊄平面BEC 1, ∴AB 1∥平面BEC 1.例7 在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P -ABCD 的体积.【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD “不动”的直线BD 是否垂直平面PAD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2. 故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD . (Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD . 因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高,所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V9.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =. (1) 证明:DE //平面BCF ;图 5DGBFCAE图 4GEF ABCD(2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.形ABC 中,AD AE =9. 【答案】(1)在等边三角AD AEDB EC ∴=,在折叠后的三棱锥A BCF -中也成立,//DE BC ∴ ,DE ⊄Q 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BF CF ==.Q 在三棱锥A BCF -中,22BC =,222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥Q 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.1111113133232333F DEG E DFG V V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点.(1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积. 4. 如图,连接AC ,∵ABCD 为矩形且F 是BD 的中点, ∴AC 必经过F1分又E 是PC 的中点, 所以,EF ∥AP2分∵EF 在面PAD 外,PA 在面,∴EF ∥面PAD(2)∵面PAD ⊥面ABCD ,CD ⊥AD ,面PAD I 面ABCD=AD ,∴CD ⊥面PAD ,又AP ⊂面PAD ,∴AP ⊥CD又∵AP ⊥PD ,PD 和CD 是相交直线,AP ⊥面PCD 又AD ⊂面PAD ,所以,面PDC ⊥面PAD(3)取AD 中点为O ,连接PO ,因为面PAD ⊥面ABCD 及△PAD 为等腰直角三角形,所以PO ⊥面ABCD , 即PO 为四棱锥P —ABCD 的高∵AD=2,∴PO=1,所以四棱锥P —ABCD 的体积1233V PO AB AD =⋅⋅= 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ⋂=,∴BC ⊥面11ACC A , 又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥,又∵DC BC C ⋂=, ∴1DC ⊥面BDC , ∵1DC ⊂面1BDC ,∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1.B 1 CBADC 1A 1。

相关文档
最新文档