曲线积分与曲面积分(解题方法归纳)
谈曲线积分与曲面积分的运算
![谈曲线积分与曲面积分的运算](https://img.taocdn.com/s3/m/49ff9c2258eef8c75fbfc77da26925c52cc5918a.png)
谈曲线积分与曲面积分的运算在数学分析中,我们学过曲线和曲面积分的计算.但是这种计算要把方程化为参数方程后再计算.有时这种方法较困难,且不易计算.下面笔者根据自己多年的经验,提出了一些关于曲线与曲面积分的运算方法,希望能够起到抛砖引玉的效果。
一、曲面积分的运算(一)利用轮换对称性简化第二类曲面积分运算第二类曲面积分也有类似于重积分的轮换对称性。
这里的轮换是指:1.被积表达式满足轮换对称性,即将补积表达式中的所有字母按轮换次序x→y→z→x代换后,积分不变;2.积分曲面及其指定侧也具有轮换对称性,这是指在各坐标面上的投影区域相同,且配给的符号也相同。
若满足上述轮换对称性,则上述轮换对称性通俗的说就是被积表达式的变量互换位置,被积式不变;且区域边界方程中的变量互换位置,区域也不变,从而互换后积分值当然也不变。
例1:计算其中Σ是平面x=0,y=0,x+y+z=1所围的空间区域的整个边界面的外侧。
解:因变量按次序x→y→z→x轮换时被积表达式不变,且积分曲面在各坐标面上的投影区域相同,配给的符号也相同,故积分曲面及其指定侧亦具有轮换对称性,所以积分具有轮换对称性。
因Σ2,Σ3垂直于面xoy,故又因在Σ1上有z=0,于是从此例观察,先用轮换对称性简化积分后,再采用其它方法来计算此类积分,可使计算量大大降低。
可见,用轮换对称性来计算某些满足该条件的第二类曲面积分,是一种切实可行的计算方法。
(二)高斯公式法定理(高斯公式):设空间区域V由分片光滑的双侧封闭曲线S围成,若函数P(x,y,z),Q(x,y,z),R(x,y,z)在V上连续,且有一阶连续偏导数,则:(1)其中S取外侧。
(1)式成为高斯公式。
高斯公式也可以表示成:(2)其中(cosα,cosβ,cosγ)是S外法线的单位向量。
应用高斯公式时,应注意条件:①S必须是封闭曲面,若所讨论的曲面不是封闭曲面,应当适当补上某块曲面,使它成为封闭曲面;②P、Q、R 在V上连续且偏导数也连续,若它们及其偏导数在某点不连续,应当利用“挖去奇点”的技巧,在余下的区域内应用高斯公式。
曲线积分与曲面积分常见题型攻略
![曲线积分与曲面积分常见题型攻略](https://img.taocdn.com/s3/m/200c2f3800f69e3143323968011ca300a6c3f604.png)
曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。
(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。
②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。
(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。
例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。
曲线、曲面积分方法小结
![曲线、曲面积分方法小结](https://img.taocdn.com/s3/m/ea7c4c2c6bd97f192279e9a9.png)
求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。
例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。
本题以下采用多种方法进行计算。
解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx xx x dy --=⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[dx xx x x dx xx x x xx x ⎰⎰--+----=20220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。
解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--10212dy yy ⎰-=10221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。
曲线积分与曲面积分复习
![曲线积分与曲面积分复习](https://img.taocdn.com/s3/m/14af5f46be1e650e52ea99b6.png)
第8章 曲线积分与曲面积分8.1 向量值函数在有向曲线上的积分 第二型曲线积分概念与形式恒力沿直线方向做功 →→→→⋅=⋅=l F l F w θcos ||||变力沿曲线运动⇒取微元 Qdy Pdx ds F dw +=⋅=→||,则⎰++=LQdy Pdx W 。
平面曲线⎰++LQdy Pdx ,空间曲线⎰+++LRdz Qdy Pdx ,性质⎰⎰-+=LL一、计算方法1.设参数,化定积分⎰Ldx y x P ),(+dy y x Q ),(=dt t y t y t x Q t x t y t x P t t })()](),([)()](),([{1⎰'+'2.平面闭曲线上积分-用格林公式⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q ,其中L 是D 的取正向的边界曲线,D 为单连通区域,P ,Q 与L D ⋃上有连续一阶偏导数。
3.对于积分与路径无关的可自选路径 4.积分与路径无关),(),,(y x Q y x P 及偏导数于L D ⋃上连续。
下列四个命题等价 (1)⎰+CQdy Pdx =0,对D 内任意闭曲线C .(2)⎰+LQdy Pdx 积分与路径无关(3)存在),(y x u 使du =dy y x Q dx y x P ),(),(+BA LLu du Qdy Pdx |==+⇒⎰⎰(4)x Qy P∂∂=∂∂ 在D 内恒成立.常以(4)为条件,(2)作为结论,自选路径积分 二、例题1.基础题目,设参数,化定积分(1) 计算⎰-=Lydx xdyI ,:L 如图ABCDEA 解 (1)设参数法⎰∑⎰==Li L i51于1L 上 设t x cos =,t y sin =⎰⎰-=+=-02222)sin (cos 1ππdt t t ydx xdy L于2L 上 设t x cos =,t y sin 2=⎰⎰=⋅+⋅=-2)sin sin 2cos 2(cos 2ππdt t t t t ydx xdy L于3L 上 以x 为参数,xdxdy 2-=⎰⎰-=---=-22238)]2()2([3dx x x x ydx xdy L于4L 上 以y 诶参数 2-=x ,0=dx ⎰⎰-=-=-1224dy ydx xdy L 于5L 上 1-=y ,以x 为参数(0=dy ) ⎰⎰-=--=-022)1(5dx ydx xdy L综上231423+=-⎰πLydx xdy解(2)(用格林公式))(224321S S S S dxdyydx xdy DL+++==-⎰⎰⎰231423222232212141412+=⎪⎭⎫ ⎝⎛+⋅⋅+⋅⋅+=πππ(2) 计算 ⎰++=Cdz x dy z dx y I 222。
曲线、曲面积分方法小结
![曲线、曲面积分方法小结](https://img.taocdn.com/s3/m/e33b3497482fb4daa48d4b10.png)
求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。
例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。
本题以下采用多种方法进行计算。
解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx xx x dy --=⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[ dx xx x x dx xx x x x x x ⎰⎰--+----=20220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。
解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--10212dy yy ⎰-=10221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。
曲线曲面积分计算方法总结
![曲线曲面积分计算方法总结](https://img.taocdn.com/s3/m/63fb30b2f605cc1755270722192e453610665b26.png)
曲线曲面积分计算方法总结一、曲线积分1.1 曲线积分的定义曲线积分是将一条曲线上某种量的变化情况用积分来描述的数学工具。
设有一条曲线C,由参数方程r(t)=⟨x(t),y(t),z(t)⟩给出,其中a≤t≤b。
如果函数f(x,y,z)在C上有定义,那么函数f沿着曲线C的积分定义为:∫Cf(x,y,z)ds=∫bf(x(t),y(t),z(t))‖r’(t)‖dt其中r’(t)=⟨x’(t),y’(t),z’(t)⟩是r(t)的导数,‖r’(t)‖=√(x’(t)2+y’(t)2+z’(t)2)是r(t)的长度元素。
1.2 计算曲线积分的方法计算曲线积分有两种常用的方法:参数法和向量场法。
(1)参数法参数法是曲线积分的一种常用计算方法。
设有参数方程r(t)=⟨x(t),y(t),z(t)⟩,a≤t≤b,函数f(x,y,z)在C上有定义,则曲线积分可以表示为:∫Cf(x,y,z)ds=∫bf(x(t),y(t),z(t))√(x’(t)2+y’(t)2+z’(t)2)dt这里f(x(t),y(t),z(t))是要积分的函数在参数方程r(t)上的对应点处的值。
通过对参数t进行积分,就可以求得曲线积分的值。
(2)向量场法向量场法是另一种计算曲线积分的方法。
如果函数f(x,y,z)可以表示为一个向量场F(x,y,z)=⟨P(x,y,z),Q(x,y,z),R(x,y,z)⟩的散度或旋度,即f(x,y,z)=∇·F或f(x,y,z)=∇×F。
那么曲线积分可以表示为:∫Cf(x,y,z)ds=∫b⟨P(x(t),y(t),z(t)),Q(x(t),y(t),z(t)),R(x(t),y(t),z(t))⟩·⟨x’(t),y’(t),z’(t)⟩dt通过向量场的散度或旋度来计算曲线积分,可以简化计算的过程。
1.3 曲线积分的应用曲线积分在物理、工程等领域有着广泛的应用。
在物理学中,曲线积分可以用于描述沿着曲线的力的做功和曲线上的速度;在工程中,曲线积分可以用于计算沿着曲线的电场强度、磁场强度等物理量。
高数:曲线积分与曲面积分总结
![高数:曲线积分与曲面积分总结](https://img.taocdn.com/s3/m/65352f324b35eefdc8d333fe.png)
对坐标的曲线积分
L
f ( x , y )ds lim f ( i , i )si
0 i 1
n
L P ( x, y )dx Q( x, y )dy
n 0 i 1
lim [ P ( i , i )xi Q( i , i )yi ]
L Pdx Qdy L ( P cos Q cos )ds
Q P ( )dxdy Pdx Qdy (沿L的正向) L x y D 格林公式
3.三重积分与曲面积分的联系
P Q R ( )dv Pdydz Qdzdx Rdxdy x y z 高斯公式
4.曲面积分与曲线积分的联系
( 1 ) 对D内任意一条闭路径L, Pdx Qdy 0; ( 2)
Pdx Qdy 在D内与积分路径无关;
L
L
( 3 ) 存在二阶连续可导函数 u( x, y )使得 du Pdx Qdy, ( x, y ) D;
Q P (4) , ( x , y ) D. x y
y
x
投影法
(1)把曲面Σ向xoy面投影,得区域D xy
( 2)把曲面Σ的方程z f ( x , y )代入被积函数 .
n { z x , z y ,1},
R( x , y, z )dxdy R( x , y, z ) cos dS
cos
1
2 1 z2 z x y
L f ( x, y )ds
2 2
计
LPdx Qdy
[ P[ x ( t ), y( t )] x t Q[ x ( t ), y ( t )] y t dt f [ x( t ), y( t )] x y dt t t 算 二代一定 (与方向有关) ( ) 三个代换
曲线积分与曲面积分总结笔记
![曲线积分与曲面积分总结笔记](https://img.taocdn.com/s3/m/aef60ec0bb0d4a7302768e9951e79b8968026801.png)
曲线积分与曲面积分总结笔记曲线积分和曲面积分是微积分中重要的概念,它们在物理学、工程学和数学中都有广泛的应用。
下面对曲线积分和曲面积分进行总结和拓展。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
根据曲线的参数方程给出曲线积分的计算公式。
曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分:对标量函数进行积分,求曲线上的标量场沿曲线的积分值。
它主要应用于测量曲线长度、质量等问题。
2. 第二类曲线积分:对矢量函数进行积分,求曲线上的矢量场沿曲线的积分值。
它主要应用于计算曲线上的力的做功、电流的环路积分等问题。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
曲面积分也有两类:第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分:对标量函数进行积分,求曲面上的标量场通过曲面的积分值。
它主要应用于计算场的通量、质量通量等问题。
2. 第二类曲面积分:对矢量函数进行积分,求曲面上的矢量场通过曲面的积分值。
它主要应用于计算磁通量、电通量等问题。
曲线积分和曲面积分的计算方法有很多,常用的方法包括参数化、格林公式、斯托克斯定理和高斯定理等。
对于一些简单的曲线和曲面,也可以通过直接计算来求解。
此外,曲线积分和曲面积分还与梯度、散度和旋度等概念密切相关。
这些概念可以帮助我们理解和计算曲线和曲面上的积分值。
总之,曲线积分和曲面积分是微积分中的重要概念,它们在物理学和工程学中有广泛应用。
通过对曲线和曲面上的函数进行积分,我们可以得到一些重要的物理量和场量。
掌握曲线积分和曲面积分的计算方法和应用可以帮助我们解决实际问题。
曲线积分与曲面积分
![曲线积分与曲面积分](https://img.taocdn.com/s3/m/32531f20793e0912a21614791711cc7931b778ef.png)
曲线积分与曲面积分曲线积分和曲面积分是微积分中两个重要的概念。
曲线积分是对曲线上的函数进行积分运算,而曲面积分是对曲面上的函数进行积分运算。
本文将详细介绍曲线积分和曲面积分的概念、计算方法以及应用。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
通常将曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分第一类曲线积分用于计算曲线上的标量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数f(x,y,z)在C上可微分,则第一类曲线积分的计算公式为:∫_[C]f(x,y,z)ds=∫_a^bf(x(t),y(t),z(t))∥r'(t)∥dt其中,ds表示曲线上的微元弧长,∥r'(t)∥表示曲线C的切向量的长度。
2. 第二类曲线积分第二类曲线积分用于计算曲线上的矢量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数F(x,y,z)在C上连续,则第二类曲线积分的计算公式为:∫_[C]F(x,y,z)·dr=∫_a^bF(x(t),y(t),z(t))·r'(t)dt其中,·表示矢量的点乘运算,dr表示曲线上的微元矢量。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
同样,曲面积分也分为第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分第一类曲面积分用于计算曲面上的标量场函数。
对于参数化曲面S:r(u,v)=(x(u,v), y(u,v), z(u,v)),其中(u,v)属于区域D,函数f(x,y,z)在S上可微分,则第一类曲面积分的计算公式为:∬_[S]f(x,y,z)dS=∬_Df(x(u,v),y(u,v),z(u,v))∥r_u×r_v∥dudv其中,dS表示曲面上的微元面积,r_u和r_v表示曲面S的参数方程关于u和v的偏导数,r_u×r_v表示两个偏导数的叉乘,∥r_u×r_v∥表示其长度。
计算曲面积分和曲线积分的方法
![计算曲面积分和曲线积分的方法](https://img.taocdn.com/s3/m/457d3a660622192e453610661ed9ad51f01d54fa.png)
计算曲面积分和曲线积分的方法在数学中,曲面积分和曲线积分是非常重要的概念,用于解决各种数学问题,尤其在物理、工程和计算机等领域中应用广泛。
本文将详细介绍计算曲面积分和曲线积分的方法。
一、曲线积分曲线积分是一种在曲线上进行的积分运算,用于求解曲线上的某些特征,如长度、质心等。
曲线积分的计算可以通过使用参数方程、曲线的长度元、向量空间的知识等方式来完成。
1. 参数方程法使用参数方程法计算曲线积分可以将曲线上的所有点表示为参数的函数,从而利用变量替换、积分公式等进行运算。
例如,给定一条曲线L,其参数方程为r(t)=(x(t),y(t),z(t)),要计算该曲线上的某个函数f(x,y,z)的积分,可以使用以下公式:∫f(x,y,z)·|r'(t)|dt其中,|r'(t)|为曲线的长度元。
2. 曲线的长度元曲线的长度元是曲线长度的微小变化,用于计算曲线长度。
曲线的长度元表示为:ds=√(dx²+dy²+dz²)可以使用下面的公式计算曲线长度:L=∫ds=∫√(dx²+dy²+dz²)3. 向量空间法向量空间法是使用向量和矩阵等数学工具计算曲线积分的一种方法。
该方法可以将曲线上的点表示为一个向量,并利用曲线计算该向量的长度、方向等特征。
例如,给定一条曲线L,其参数方程为r(t)=(x(t),y(t),z(t)),要计算该曲线上的某个函数f(x,y,z)的积分,可以使用以下公式:∫f(x,y,z)·(r'(t)/|r'(t)|)dt其中,r'(t)/|r'(t)|为曲线的单位切向量。
二、曲面积分曲面积分是一种在曲面上进行的积分运算,用于求解曲面上的某些特征,如面积、质心等。
曲面积分的计算可以通过使用参数方程、曲面元、向量场的知识等方式来完成。
1. 参数方程法使用参数方程法计算曲面积分可以将曲面上的所有点表示为参数的函数,从而利用变量替换、积分公式等进行运算。
高数:曲线积分与曲面积分总结
![高数:曲线积分与曲面积分总结](https://img.taocdn.com/s3/m/3c9a6ed533d4b14e8524681f.png)
则有
Pdx Q dy
L
( x
D
)d x d y
其中 L 是 D 的取正向的边界 曲线,公式称为格林公式.
格林
积分与路径无关:
定理2 设D是平面单连通区域, ( x , y ), Q( x , y )及其 P 一阶偏导数在 内连续,则下述四个命 D 题等价:
(2)若投影域面积是零,则积分值是零。
注:“一投,二代,三定号”
z
2
O
n
y
1
x
若 是母线平行于 z 轴的柱面 , 则 Pdxdy 0 .
例如积分 I 1 : x
2 2
( x y 1 ) dxdy ,
y
2
1 , ( 0 z 1 );
: x y 1 , ( x 0 , y 0 , 0 z 1 ).
3 .如果 由 y y ( z , x ) 给出 , 则有
D yz
把曲面Σ向yoz面投影,得区域D yz
把曲面Σ向xoz面投影,得区域Dxz
Q( x , y , z )dzdx Q[ x , y( z , x ), z ]dzdx
Dzx
注意:(1)对坐标的曲面积分,必须注意曲面所取的侧.
f [ x , y , z ( x , y )] 1 z x z y dxdy
2 2
R ( x , y , z ) dxdy
D xy
R [ x , y , z ( x , y )] dxdy
D xy
算 一投,二代,三换(与侧无关)一投,二代,三定号 (与侧有关)
高等数学曲线积分和曲面积分总结
![高等数学曲线积分和曲面积分总结](https://img.taocdn.com/s3/m/e6957276842458fb770bf78a6529647d2728342b.png)
高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分是微积分领域中的重要概念,它们在实际应用中具有广泛的应用,例如在物理、工程、计算机科学等领域中都有重要的应用。
本文将对高等数学曲线积分和曲面积分的概念、计算方法和应用进行总结。
一、曲线积分的概念
曲线积分是指对一维曲线上的点的函数值求导的积分,也称为路径积分。
曲线积分的基本思想是通过对曲线上的点进行积分,得到曲线的面积或体积。
曲线积分的计算公式为:
∫Cf(x,y)dS = ∫∫∫Cf(x^TC(y), y^TC(z))dxdydz
其中,C是曲线,f(x,y)是曲线上的点值函数,T是曲线上的任意一点,S是曲线上的面积,z是曲线上的任意一点。
二、曲面积分的概念
曲面积分是指对三维曲面上的点的函数值求导的积分,也称为向量场积分。
曲面积分的基本思想是通过对曲面上的点进行积分,得到曲面的面积或体积。
曲面积分的计算公式为:
∫∫∫Sf(x,y,z)dsdV = ∫∫∫Sf(x^TS(y^TS(z)))dsdV
其中,S是曲面,f(x,y,z)是曲面上的点值函数,T是曲面上的任意一点,V是曲面上的任意体积,s是曲面上的任意法向量,dV是曲面上的任意体积法向量。
拓展:曲线积分和曲面积分在物理学中的应用
曲线积分和曲面积分在物理学中具有广泛的应用。
例如,在量子力学中,曲线积分被用来计算波函数的面积,而曲面积分被用来计算量子场论的场速可变的相对性原理。
在相对论中,曲线积分被用来计算相对论效应的积分,而曲面积分被用
来计算四维空间中的弯曲曲面。
如何解决数学中的曲线与曲面积分问题
![如何解决数学中的曲线与曲面积分问题](https://img.taocdn.com/s3/m/b137db2eb94ae45c3b3567ec102de2bd9605de30.png)
如何解决数学中的曲线与曲面积分问题曲线与曲面积分是数学中的重要概念,广泛应用于物理学、工程学等领域。
本文将探讨如何解决数学中的曲线与曲面积分问题,为读者提供理解和应用这一概念的方法和技巧。
在数学中,曲线积分是用来计算沿给定曲线上的函数值的总和。
曲面积分则是用于计算曲面上的函数值的总和。
曲线积分和曲面积分的计算方法和技巧各有不同,我们将分别对这两种积分进行详细讨论。
一、曲线积分曲线积分的计算可以分为第一类曲线积分和第二类曲线积分两种情况。
首先我们来看第一类曲线积分,也称为标量场的曲线积分。
1. 标量场的曲线积分对于标量场的曲线积分,我们需要计算曲线上每一点的函数值与曲线元素的乘积然后累加得到总和。
具体计算公式如下:∮ f(x, y, z)·ds其中,f(x, y, z)代表函数值,ds代表曲线元素。
解决标量场的曲线积分问题的关键是确定曲线的参数方程,并计算曲线元素ds。
在实际应用中,常常根据具体问题确定曲线的类型和方程,然后代入计算即可。
2. 矢量场的曲线积分第二类曲线积分是用于计算矢量场沿曲线方向的积分,也称为矢量场的线积分。
计算方法如下:∮ F(x, y, z)·dr其中,F(x, y, z)为矢量场,dr为曲线元素。
矢量场的曲线积分需要注意方向性,因为曲线的方向不同,结果可能会有所不同。
在具体计算时,需要确定曲线的方向,并将计算结果与方向对应。
二、曲面积分曲面积分的计算同样可分为第一类曲面积分和第二类曲面积分两种情况。
我们先来看第一类曲面积分,即标量场的曲面积分。
1. 标量场的曲面积分标量场的曲面积分用于计算曲面上每一点的函数值与曲面元素的乘积的总和。
计算公式如下:∬ f(x, y, z)·dS其中,f(x, y, z)为函数值,dS为曲面元素。
解决标量场的曲面积分问题的关键是确定曲面的参数方程,并计算曲面元素dS。
根据具体问题的要求,选择合适的坐标系并进行计算。
曲线积分与曲面积分解题技巧
![曲线积分与曲面积分解题技巧](https://img.taocdn.com/s3/m/258fe7d94793daef5ef7ba0d4a7302768e996f1e.png)
曲线积分与曲面积分的解题技巧1.对弧长的曲线积分的解题技巧一般采用直接计算法,即写出曲线的参数方程,借助弧微分计算公式,直接代入被积被积表达式转换为定积分的方法计算,注意定积分下限小于上限。
也可以考虑借助于其实际意义,借助元素法转换为其他类型的积分来完成计算。
2.对坐标的曲线积分的解题技巧(1) 直接计算方法,参数方程表达式直接代入,转换为定积分计算的方法。
注意定积分下限为起点对应的参数,上限为终点对应的参数。
(2) 两类曲线积分之间的关系。
注意方向余弦构成的切向量的方向应与曲线方向一直。
(3) 格林公式,当积分曲线为空间曲线时,则使用格林公式。
(注意三个条件:封闭性,方向性与偏导的连续性)(4) 积分与路径无关(格林公式)。
3.对面积的曲面积分的解题技巧一般采用直接计算法,要求积分曲面为简单类型,不为简单类型的积分曲面借助于积分对积分区域的可加性,将其分割为简单类型,借助面积微元的积分变量微元的描述形式转换为二重积分计算。
也可以考虑借助于其实际意义,借助元素法转换为其他类型的积分来完成计算。
对面积的曲面积分只需要考虑曲面为一种简单类型。
4.对坐标的曲面积分的解题技巧(1) 直接计算方法,将对不同坐标的曲面积分分开单独计算,考虑曲面为单独的三种不同简单类型,采取直接代入函数表达式转换为二重积分的方法计算,唯一要注意的是,法向量与相应坐标轴的方向关系决定直接将曲面积分转换为二重积分的正负。
(2) 两类曲面积分之间的关系。
注意方向余弦构成的法向量的方向应与曲面的法向量方向一直。
(3) 利用两类曲面积分之间的关系,将三个对坐标的曲面积分转换为一种类型的对坐标的曲面积分,这样就只要考虑曲面为一种类型的简单类型即可。
(4) 高斯公式,当积分曲线为空间曲线时,则使用格林公式。
(注意三个条件:封闭性,方向性与偏导的连续性)。
高数:曲线积分与曲面积分总结
![高数:曲线积分与曲面积分总结](https://img.taocdn.com/s3/m/65352f324b35eefdc8d333fe.png)
与路径无关的四个等价命题
条 件
在单连通开区域D 上 P ( x , y ), Q( x , y ) 具有 连续的一阶偏导数,则以下四个命题成立.
等 (1) 在D内L Pdx Qdy与路径无关
价 命 ( 3) 在D内存在U ( x , y )使du Pdx Qdy
P Q 题 (4) 在D内, y x
三重积分
当 R3 上区域时,
f ( M )d
f ( x , y, z )dV
曲线积分 当 R3 上空间曲线时,
f ( M )d
f ( x , y , z )ds .
曲面积分 当 R3 上曲面时,
f ( M )d
f ( x , y, z )dS .
Rdz
R Q P R Q P ( )dydz ( )dzdx ( )dxdy y z z x x y
斯托克斯
2.二型曲线积分计算
把曲面Σ向yoz , xoz , xoy面投影,得区域 D yz , Dzx , D xy . 进行三个代换, 化为三个坐标面上的二 重积分.
y
x
投影法
(1)把曲面Σ向xoy面投影,得区域D xy
( 2)把曲面Σ的方程z f ( x , y )代入被积函数 .
n { z x , z y ,1},
R( x , y, z )dxdy R( x , y, z ) cos dS
cos
1
2 1 z2 z x y
P[ x ( y , z ), y , z ]dydz Q[ x , y( z , x ), z ]dzdx R[ x , y , z ( x , y )]dxdy
曲线与曲面积分计算曲线积分与曲面积分的基本技巧
![曲线与曲面积分计算曲线积分与曲面积分的基本技巧](https://img.taocdn.com/s3/m/4193b02959fafab069dc5022aaea998fcc224085.png)
曲线与曲面积分计算曲线积分与曲面积分的基本技巧曲线与曲面积分:计算曲线积分与曲面积分的基本技巧曲线积分和曲面积分是微积分中重要的概念,应用广泛。
在本文中,我们将探讨曲线积分和曲面积分的基本技巧和计算方法。
在开始之前,我们先对曲线积分和曲面积分进行简要介绍。
1. 曲线积分曲线积分是对曲线上的某个向量场的积分,其计算方法有两种:第一类曲线积分和第二类曲线积分。
第一类曲线积分是对标量函数的积分,而第二类曲线积分是对向量函数的积分。
1.1 第一类曲线积分第一类曲线积分也称为沿曲线的线积分,其计算公式为:∫f(x, y, z) • dr = ∫f(x(t), y(t), z(t)) • r'(t) dt,其中f(x, y, z)为曲线上的函数,r(t)为曲线上的向量函数,r'(t)为r(t)的导数。
1.2 第二类曲线积分第二类曲线积分也称为曲线上的向量场的线积分,其计算公式为:∫F • dr = ∫F(x(t), y(t), z(t)) • r'(t) dt,其中F为曲线上的向量函数,r(t)为曲线上的向量函数,r'(t)为r(t)的导数。
2. 曲面积分曲面积分是对曲面上的某个标量函数或向量函数的积分,其计算方法也有两种:第一类曲面积分和第二类曲面积分。
第一类曲面积分是对标量函数的积分,而第二类曲面积分是对向量函数的积分。
2.1 第一类曲面积分第一类曲面积分也称为曲面上的标量场的曲面积分,其计算公式为:∬f(x, y, z) dS,其中f(x, y, z)为曲面上的函数,dS为曲面元素面积。
2.2 第二类曲面积分第二类曲面积分也称为曲面上的向量场的曲面积分,其计算公式为:∬F • dS = ∬F(x, y, z) • n dS,其中F为曲面上的向量函数,dS为曲面元素面积,n为曲面上某一点的法向量。
3. 计算曲线积分的基本技巧在计算曲线积分时,我们需要掌握以下基本技巧:3.1 参数化对于曲线上的向量函数,我们需要找到一个参数来表示该曲线,通常使用参数t来表示曲线上的点。
求曲线、曲面积分的方法与技巧概要
![求曲线、曲面积分的方法与技巧概要](https://img.taocdn.com/s3/m/064ce7aad0d233d4b14e69ff.png)
求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。
例一.计算曲线积分其中是圆上从原点到的一段弧。
本题以下采用多种方法进行计算。
解1:的方程为由由分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。
解2:在弧上取点,的方程为由由的方程为由由分析:解2是选用参变量为利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。
不同的是以为参数时,路径不能用一个方程表示,因此原曲线积分需分成两部分进行计算,在每一部分的计算中都需选用在该部分中参数的起始值作为定积分的下限。
解3:的参数方程为由由解4:的极坐标方程为因此参数方程为由由分析:解3和解4仍然是通过采用变量参数化直接计算的。
可见一条曲线的参数方程不是唯一的,采用不同的参数,转化所得的定积分是不同的,但都需用对应曲线起点的参数的起始值作为定积分的下限。
解5:添加辅助线段,利用格林公式求解。
因于是而故得分析:在利用格林公式将所求曲线积分转化为二重积分计算时,当所求曲线积分的路径非封闭曲线时,需添加辅助曲线,采用“补路封闭法”进行计算再减去补路上的积分,但必须在补路后的封闭曲线所围的区域内有一阶连续偏导数。
是的正向边界曲线。
解5中添加了辅助线段使曲线为正向封闭曲线。
解6:由于于是此积分与路径无关,故分析:由于在闭区域上应具有一阶连续偏导数,且在内因此所求积分只与积分路径的起点和终点有关,因此可改变在上的积分为在上积分,注意点对应的起点。
一般选用与坐标轴平行的折线段作为新的积分路径,可使原积分得到简化。
曲线积分与曲面积分的计算方法
![曲线积分与曲面积分的计算方法](https://img.taocdn.com/s3/m/f043ac8cdb38376baf1ffc4ffe4733687e21fc35.png)
曲线积分与曲面积分的计算方法计算曲线积分与曲面积分是数学中重要的内容,本文将介绍曲线积分和曲面积分的定义和计算方法。
一、曲线积分的定义和计算方法曲线积分是在三维空间中曲线上的函数进行积分运算的一种方法。
曲线积分的计算可以分为两种情况:第一种情况是曲线的方程已知,我们可以通过参数化曲线来计算积分;第二种情况是曲线的方程未知,我们可以通过对弧长进行积分来计算。
1. 参数化曲线的曲线积分计算对于参数化曲线C: r(t) = (x(t), y(t), z(t)),函数f(x, y, z)的曲线积分可以表示为:∮C f(x, y, z) ds = ∫f(x(t), y(t), z(t))||r'(t)|| dt其中,ds表示曲线C上的弧长元素,r'(t)表示曲线C的切向量,||r'(t)||表示切向量的模长。
通过将参数t从t0到t1进行积分,即可计算出曲线积分的结果。
2. 弧长的曲线积分计算如果曲线的方程未知,但是我们可以计算出曲线上任意两点之间的弧长,则可以通过对弧长进行积分来计算曲线积分。
∮C f(x, y, z) ds = ∫f(x, y, z) dl其中,dl表示曲线C上的弧长元素,通过将参数l从l0到l1进行积分,即可得到曲线积分的结果。
二、曲面积分的定义和计算方法曲面积分是在三维空间中曲面上的函数进行积分运算的一种方法。
曲面积分的计算可以分为两种情况:第一种情况是曲面的方程已知,我们可以通过参数化曲面来计算积分;第二种情况是曲面的方程未知,我们可以通过将曲面分成小面元然后进行求和来进行计算。
1. 参数化曲面的曲面积分计算对于参数化曲面S: r(u, v) = (x(u, v), y(u, v), z(u, v)),函数f(x, y, z)的曲面积分可以表示为:∬S f(x, y, z) dS = ∫∫f(x(u, v), y(u, v), z(u, v))||r_u × r_v|| du dv其中,dS表示曲面S上的面积元素,r_u和r_v分别表示参数u和v 方向上的切向量,r_u × r_v表示切向量的叉乘,||r_u × r_v||表示叉乘的模长。
曲线积分与曲面积分(解题方法归纳)
![曲线积分与曲面积分(解题方法归纳)](https://img.taocdn.com/s3/m/21f672db9b89680203d825ae.png)
R[ x, y, z( x, y)] dxdy (上“ +”下“ -”)
D xy
其中 Dxy 为 在 xOy 面上的投影区域 .
若有向曲面 : x x( y, z) ,则
P(x, y, z) dydz
P[ x( y, z), y, z]dydz (前“ +”后“ -”)
D yz
其中 Dyz 为 在 yOz 面上的投影区域 .
1. 计算曲线积分或曲面积分的步骤:
4 / 13
(1)计算曲线积分的步骤: 1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分) ; 2)对弧长的曲线积分,一般将其化为定积分直接计算;
对坐标的曲线积分: ① 判断积分是否与路径无关, 若积分与路径无关, 重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件, 若满足条件, 利用 格林公式计算(添加的辅助线要减掉) ; ③ 将其化为定积分直接计算 . ④ 对空间曲线上的曲线积分, 判断是否满足斯托克斯公式的条件, 若满足 条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算 . (2)计算曲面积分的步骤: 1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分) ; 2)对面积的曲面积分,一般将其化为二重积分直接计算;
0 2a2 dS 2a2 4 a2 8 a4
『方法技巧』 积分曲面 是关于 x a 0 对称的,被积函数 x a 是 x a 的 奇函数,因此 ( x a)dS 0
例 4 计算曲线积分
xy2dy x2 ydx ,其中 L 为圆周 x2 y 2 a2 (a 0) 的逆
L
x2 y2
6 / 13
时针方向 .
dx
dy
解
曲线积分与曲面积分总结文字
![曲线积分与曲面积分总结文字](https://img.taocdn.com/s3/m/6f127a3991c69ec3d5bbfd0a79563c1ec5dad7bd.png)
曲线积分与曲面积分总结文字曲线积分和曲面积分是微积分中的两个重要概念,它们在物理、工程、数学等领域中都有广泛的应用。
本文将对曲线积分和曲面积分进行总结和介绍。
一、曲线积分曲线积分是对曲线上的函数进行积分的一种方法。
曲线积分可以用来计算曲线上的弧长、质量、电荷等物理量。
曲线积分的计算方法有两种:第一种是参数化曲线积分,第二种是非参数化曲线积分。
1. 参数化曲线积分参数化曲线积分是将曲线表示为参数方程的形式,然后对参数方程中的函数进行积分。
例如,对于曲线C:y=x^2,0≤x≤1,可以将其表示为参数方程C:r(t)=(t,t^2),0≤t≤1。
然后对函数f(x,y)在曲线C上进行积分,可以表示为:∫Cf(x,y)ds=∫1 0f(r(t))|r'(t)|dt其中,|r'(t)|表示曲线C在t时刻的切线长度,也就是曲线的弧长。
参数化曲线积分的计算方法比较简单,但是需要先将曲线表示为参数方程的形式。
2. 非参数化曲线积分非参数化曲线积分是将曲线表示为一般的方程形式,然后对方程中的函数进行积分。
例如,对于曲线C:y=x^2,0≤x≤1,可以将其表示为一般的方程形式C:y=f(x),0≤x≤1。
然后对函数f(x,y)在曲线C上进行积分,可以表示为:∫Cf(x,y)ds=∫1 0f(x,f(x))√(1+(dy/dx)²)dx其中,√(1+(dy/dx)²)表示曲线C在x时刻的切线长度,也就是曲线的弧长。
非参数化曲线积分的计算方法比较复杂,但是可以将曲线表示为一般的方程形式,更加灵活。
二、曲面积分曲面积分是对曲面上的函数进行积分的一种方法。
曲面积分可以用来计算曲面上的面积、质量、电荷等物理量。
曲面积分的计算方法有两种:第一种是参数化曲面积分,第二种是非参数化曲面积分。
1. 参数化曲面积分参数化曲面积分是将曲面表示为参数方程的形式,然后对参数方程中的函数进行积分。
例如,对于曲面S:z=x^2+y^2,0≤x≤1,0≤y≤1,可以将其表示为参数方程S:r(u,v)=(u,v,u^2+v^2),0≤u≤1,0≤v≤1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分.(2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则1(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)L L Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则1(,)2(,)LL f y f x y ds f x y ds f y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=⎰⎰LLf x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则[(,)(),()()βααβ=<⎰⎰Lf x y ds f x t y t若曲线弧:()()θαθβ=≤≤L r r (极坐标),则[(,)()cos ,()sin βαθθθθθ=⎰⎰Lf x y ds f r r若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则[(,,)(),(),()()βααβΓ=<⎰⎰f x y z ds f x t y t z t(5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则[(,,),,(,)xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则[(,,)(,),,yzD f x y z dS f x y z y z ∑=⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则[(,,),(,),zxD f x y z dS f x y x z z ∑=⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域. (8)d d +⎰LP x Q y 与路径无关d d 0⇔+=⎰cP x Q y (c 为D 内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Qy x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰L D Q P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdy dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或 (cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式dydz dzdx dxdyPdx Qdy Rdz x y z P Q RΓ∑∂∂∂++=∂∂∂⎰⎰⎰其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1. 计算曲线积分或曲面积分的步骤: (1)计算曲线积分的步骤:1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dyI x y x x x x由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x 对x 、y 均为偶函数,因此220,011==++⎰⎰L L dxdyx x故 20+==++⎰Ldx dyI x y x『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用.事实上,本题还可应用格林公式计算.例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS 故 2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS b y dS c z dS n dS22222()∑∑=+++⎰⎰⎰⎰a b c x dS n dS22222222()43π∑++=+++⎰⎰a b c xy z dS R n22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些.若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰x y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰x y z dS axdS a x a dS a dS222402248ππ∑=+==⎰⎰a dS a a a『方法技巧』 积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰x a dS例4 计算曲线积分2222+⎰Lx y L 为圆周222(0)+=>x y a a 的逆时针方向.解法1 直接计算. 将积分曲线L 表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ=--+⎰⎰La d x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d ad324332013118(sin sin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰ad a a解法2 利用格林公式2222222211()=-=++⎰⎰⎰⎰LLDxy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故222232200112πθρρρπ==+⎰⎰⎰a Ld d a a x y『方法技巧』 本题解法1用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰n n n n n n d n n n n n 为奇数为偶数解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰L x y dx x y dyx y ,其中L 为沿cos π=y x 由点(,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难.由于 2222,+-+==++x y x yP Q x y x y ,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=xy 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:cos 5:(:)44sin θππθθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得 222()()1()()2π'+--=+--+⎰⎰LL x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』 本题的关键是选取积分弧段'L,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑1=的法向量与各坐标轴正向夹锐角的侧面.解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy 面的区域{}(,)1=≤xy D x y ,故233(1∑∑∑++==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy dxdy21(12203(13(1==⎰⎰⎰⎰xyD dxdy dxdy 1401(12=⎰dx411(1)30--=⎰t t dt 『方法技巧』 由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy 1222()()()∑+∑=-+-+-⎰⎰x ydydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故 222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰h h h h d d h『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求.本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号.例8 计算曲线积分()()()-+-+-⎰Lz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰Ldydz dzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量. (2) 曲线或曲面的质心(形心). (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论: (1)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体 (,,)ρ=⎰LM x y z ds曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰L L LLx x y ds y x y ds x y x y dsx y ds空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y LLI y x y ds I x x y ds空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y LLI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds曲面形物体的转动惯量:2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰z I x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,)(,)=+⎰ABW P x y dx Q x y dy空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz(2) 矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度div A ∂∂∂=++∂∂∂P Q R x y z矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k x y z PQR∂∂∂=∂∂∂ 1. 曲线积分或曲面积分应用题的计算步骤: (1)根据所求物理量,代入相应的公式中; (2)计算曲线积分或曲面积分.例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功.(其中=r k解 积分曲线L 如图所示. 场力所做的功为(,)(,)=+⎰ABW P x y dx Q x y dy 22=-⎰AB y xk dx dy r rij k令22,==-y x P Q r r ,则22224()(0)∂-∂==+≠∂∂P k x y Qx y y r x即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y x W k dx dy k k r r 『方法技巧』 本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如AO OB ,但不可以选取此路径,因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线(12)0⎧⎪=≤≤⎨=⎪⎩y z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy2sin ∑=+⎰⎰xz dydz xdxdy1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y zx y x y z dzdxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分.。