配电系统的接线方式
IT系统、TT系统、TN系统接地方式简述
IT系统、TT系统、TN系统接地方式简述一、定义根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)、第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)、第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
二、分别对IT系统、TT系统、TN系统进行全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
图1 IT系统接线图IT系统特点:IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
只有在供电距离不太长时才比较安全。
高压低压配电柜的接线方式与电缆敷设原则
高压低压配电柜的接线方式与电缆敷设原则在工业生产和城市建设中,配电系统起着至关重要的作用。
高压低压配电柜作为配电系统的核心组成部分,它的接线方式和电缆敷设原则对于配电系统的运行安全和效率有着重要影响。
本文将针对高压低压配电柜的接线方式与电缆敷设原则进行详细探讨。
一、高压低压配电柜的接线方式高压低压配电柜的接线方式根据不同的需求和要求,一般可以采用以下几种方式:1. 直接引入法:将高压进线和低压进线直接引入配电柜,并采用相应的断路器进行隔离。
2. 母线引入法:将高压进线和低压进线通过母线引入配电柜,采用母线槽和相应的隔离开关进行连接。
3. 电缆引入法:将高压进线和低压进线通过电缆引入配电柜,并采用电缆分支箱和相应的隔离开关进行连接。
以上三种接线方式各有优缺点,具体的采用方式需要根据实际情况和设计要求进行选择。
在进行接线时,还需要注意接线的可靠性和安全性,采取相应的保护措施,例如使用绝缘套管、绝缘胶带等。
二、电缆敷设原则电缆敷设原则是指在配电系统中,电缆的敷设方式和规范。
正确的电缆敷设原则可以保证电缆的安全运行和延长其使用寿命。
下面介绍几条常用的电缆敷设原则:1. 分层敷设原则:根据不同的电缆功率和安全要求,将高压电缆和低压电缆敷设在不同的层次,避免相互干扰。
2. 间距合理原则:电缆敷设时需要留足够的间距,以保证散热和绝缘效果。
3. 固定可靠原则:电缆敷设要固定可靠,避免外力引起电缆松动或破损。
4. 防护措施原则:对于易受损的电缆,例如高温、潮湿等环境下的电缆,需要采取相应的防护措施,例如使用防火套管、防水胶带等。
5. 路径规划原则:在进行电缆敷设时,需要合理规划电缆的路径,避免与其他设备、管道等发生冲突。
通过以上几个原则的合理应用,可以确保电缆的安全敷设和良好运行,提高配电系统的可靠性和效率。
总结:高压低压配电柜的接线方式和电缆敷设原则对于配电系统的正常运行和安全保障具有重要作用。
在实际的工程设计和施工中,我们应根据具体情况和要求选择合适的接线方式,并按照电缆敷设原则进行规划和操作。
电工接线方法
电工接线方法
电工接线有很多不同的方法,下面将介绍其中几种常见的方法。
1. 平行接线法:平行接线法是将不同电器的正极和负极分别连接在一起的一种方法。
通过将电器的正极与一个导线相连,再将另一个导线连接到电器的负极,可以实现电流的顺利流通。
2. 串联接线法:串联接线法是将多个电器按顺序连接起来的一种方法。
通过将一个电器的负极与下一个电器的正极相连,再将下一个电器的负极与下下一个电器的正极相连,以此类推,可以实现电流在这些电器之间的依次流动。
3. 并联接线法:并联接线法是将多个电器同时连接在一个电源上的一种方法。
通过将所有电器的正极连接在一起,再将所有电器的负极连接在一起,可以确保每个电器都能获得相同的电压,同时工作。
4. 三相接线法:三相接线法是在三相供电系统中常用的一种方法。
通过将三个电源连接到三个负载上,可以实现高效的功率传输。
在三相接线中,通常使用星型或三角形连接方式来连接电源和负载。
这些是电工常用的一些接线方法,不同的场景和需求会选择不同的接线方式。
在进行接线时,务必注意保证接线的牢固性,避免短路和漏电等安全问题的发生。
第三章 配电系统的接线方式
第三章配电系统的接线方式第一节放射式接线一、放射式接线1.定义:从电源点用专用开关及专用线路直接送到用户或设备的受电端,沿线没有其他负荷分支的接线称为放射式接线,也称专用线供电。
2.使用场合:用电设备容量大、负荷性质重要、潮湿及腐蚀性环境的场所供电。
3.分类:单电源单回路放射式、双回路放射式接线,二、单电源单回路放射式1.接线如图3-1所示,该接线的电源由总降压变电所的6~10kV母线上引出一回线路直接向负荷点或用电设备供电,沿线没有其他负荷,受电端之间无电的联系。
1-低压配电屏 2-主配电箱 3-分配电箱图3-1 单电源单回路放射式2.特点(1)当出线线路发生故障,线路之间互不影响,供电可靠性高;(2)线路简单易于操作维护,保护装置简单,易于实现自动化;(3)开关设备数量较多,线路有色金属消耗量大,初次投资较大;(4)当电源或母线出现故障或检修时,将导致所有出线停电;(5)当某条出线发生故障、变压器故障及开关设备停电检修时,该线路负荷停电。
3.适用范围此接线方式适用于可靠性要求不高的二级、三级负荷。
三、单电源双回路放射式1.接线如图3-2所示,同单电源单回路放射式接线相比,该接线采用了对一个负荷点或用电设备使用两条专用线路供电的方式,即线路备用方式。
图3-2 单电源双回路放射式2.特点(1)由于每个负荷点或用电设备采用两条线路供电,当一条线路故障或开关检修时,另一条备用线路可以投入运行;(2)由于采用备用方式,要求在选择这两条线路及其开关设备应相同,增大了投资量;(3)当电源或母线出现故障或检修时,仍会导致所有负荷停电;(4)同单电源单回路放射式相比提高了线路供电可靠性。
3.适用范围此接线方式适用于二级、三级负荷。
四、双电源双回路放射式(双电源双回路交叉放射式)1.接线两条放射式线路连接在不同电源的母线上,其实质是两个单电源单回路放射的交叉组合。
图3-3 双电源双回路的放射式2.特点(1)采用此接线最大的好处是每个负荷点或用电设备有两个独立的一次电源供电;(2)当正常电源故障时,经过手动或自动的电源切换装置,可以简单迅速地切换到备用电源上,保证不停电;(3)这种配电形式一次侧为双路电源,要求电源的两组开关设备应有可靠的联(互)锁装置,以免误操作;(4)当一线路故障时,全部负载应当由另一线路供电,所以要求每一线路应有足够的容量能够负担全部负载;(5)由于双电源、双线路和双开关设备,供电可靠性较高,但初次投资也较高,开关操作复杂,维护比较困难。
低压配电系统的接线方式及特点
低压配电系统的接线方式及特点(1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线.(2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系.以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统.配电系统设计的基本原则(1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级.(2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电.(3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电.(4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加.(5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电.(7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器.(8)单相用电设备的配置应力求三相平衡.(9)当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.(10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关.(11)在用电单位内部的邻近变电所之间宜设置低压联络线.(12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.。
低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)
低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注册安全工程师考点)根据现行的国家相关标准,低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
分别对IT系统、TT系统、TN系统进行全面剖析。
一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统接线图如图1所示。
图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V 负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
只有在供电距离不太长时才比较安全。
低压配电系统的配电方式
(2)、树干式
树干式由配电装置引出一条线路同时向若 干用电设备配电。 优点:有色金属耗量少、造价低。 缺点:干线故障时影响范围大,可靠性较 低。
一般用于用电设备的布置比较均匀、容量 不大、又无特殊要求的场合。
低压配电系统的树干式配电接线方式, 其特点与放射式配电方式相反,系统具 有一定的灵活性、耗用的有色金属材料 较少,但干线一旦发生故障将造成较大 范围的影响,因而其供电可靠性较差。 该接线方式一般适用于负荷容量较小, 分布均匀且供电可靠性无特殊要求的用 电设备。如用于一般照明的楼层分配电 箱等。
高层建筑物内的消防水泵、消防电 梯,应急照明等用电负荷多采用这 种方式供电,并要求常用电源和备 用电源在最末一级配电箱处实现自 动切换,即常用电源因故断开时, 则自动切换到备用电源上(若备用 电源为柴油发电机组,发电机组应 能在收到启动信号后15s内向负荷供 电),由备用电源向负荷供电,若 常用电源的故障排除后,该系统应 能自动恢复为由常用电源供电,这 种切换功能通常称为双电源的互投 自复功能。
(3)、混合式
混合式系统是放射式和树干式配电的结合 形式从低压电源引入的总配电装置 (第一级 配电点)开始,至末端照明支路配电盘为止, 配电级数一般不宜多于三级 , 每一级配电线 路的长度不宜大于30m。如从变电所的低压 配电装置算起,则配电级数一般不多于四级 , 总配电长度一般不宜超过200m,每路干线的 负荷计算电流一般不宜大于200A。
混合式配电方式兼顾了放射式和树干式 两种配电方式的特点是,将两者进行组 合的配电方式,如高层建筑中,当每层 照明负荷都较小时,可以从低压配电屏 放射式引出多条干线,将楼层照明配电 箱分组接入干线,局部为树干式。
低压配电系统的接线方式及特点
低压配电系统的接线方式及特点(1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线.(2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系.以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统.配电系统设计的基本原则(1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级.(2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电.(3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电.(4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加.(5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电.(7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器.(8)单相用电设备的配置应力求三相平衡.(9)当采用的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.(10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关.(11)在用电单位内部的邻近变电所之间宜设置低压联络线.(12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.。
低压配电系统的接线方式及特点
低压配电系统的接线方式及特点(1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线.(2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系.以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统.配电系统设计的基本原则(1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作便当安全,配电系统的层次合宜超过二级.(2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电.(3)当用电设备容量大,或负荷性质严重,或在有滋润、腐蚀性环境的车间、建筑内,宜采用放射式配电.(4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备合宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可合适增加.(5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或严重负荷,应从低压配电室以放射式配电.(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由例外的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电.(7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器.(8)单相用电设备的配置应力求三相平均.(9)当采用的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.(10)配电系统的设计应便于运行、维修,生产班组或工段比较不变时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关.(11)在用电单位内部的邻近变电所之间宜设置低压联络线.(12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.。
供电系统的主要接线方式
1、供电系统的主要接线方式,各中接线方式的优缺点是什么?①桥式接线:采用有两回电源线路受电和装设两台变压器的桥式主接线。
桥式接线分为:外桥、内桥和全桥三种。
外桥接线对变压器的切换方便,比内桥少两组隔离开关,继电保护简单,易于过渡到全桥或单母线分段的接线,且投资少,占地面积小。
缺点是倒换线路时操作不方便,变电所一侧无线路保护。
适用于进线短而倒闸次数少的变电所,或变压器采取经济运行需要经常切换的终端变电所,以及可能发展为有穿越负荷的变电所。
内桥接线一次侧可设线路保护,倒换线路操作方便,设备投资与占地面积均较全桥少。
缺点是操作变压器和扩建成全桥或单母线分段不如外侨方便。
适用于进线距离长,变压器切换少的终端变电所。
全桥接线适应性强,对线路、变压器的操作均方便,运行灵活,且易于扩展成单母线分段式的中间变电所。
缺点是设备多,投资大,变电所占地面积大。
②线路变压器组结线:其优点是简单,设备少,基建快,投资费用低,但供电设备可靠性差。
③单母线:进出线均有短路器以及与母线相连的母线隔离开关,与负电线路的线隔离开关。
一般分为单母线不分段和单母线分段两种典型结线。
a、单母线不分段:结果简单,造价低,运行不够灵活,供电可靠性差,适用于小容量用户。
b、单母线分段的可靠性和灵活性比单母线不分段有所提高。
隔断开关分段(QS分段)—适用由双回路供电,允许短时间停电的二级负荷。
短路器分段(QF分段)—适用一级负荷较多的情况,可切断负荷和故障电流,也可在继电保护下实现自动分合闸,在其中一条路线故障或需要检修时,可以将负荷转到另外一条线路,避免全部停电,但它使电源只能通过一回路供进线供电,供电功率降低,从而使更多的用户停电。
2、无限大容量供电系统和有限大容量供电系统答:所谓无限大容量供电系统是指电源内阻抗为零,在短路过程中电源端电压恒定不变,短路电流周期分量恒定不变的供电系统。
事实上,真正无限大容量供电系统是不存在的,通常将电源内阻抗小于短路回路总阻抗10%的电源看做无限大容量供电系统。
住宅配电箱接线步骤
住宅配电箱接线步骤
家庭安装配电箱的时候,一定要正确接线,才能够保证安全使用,应该如何正确接线?
一、家用配电箱怎么接线
1、家用配电箱接线的时候,首先需要将火线和零线区分开来,要找到漏电开关上面的不同标记。
因为零线用N字母来表示,火线对应的就是L字母。
区分好了之后,再将零线地线火线分组,按照不同的层次来布置。
线路布置的时候,要做到横平竖直。
2、空气开关的配线一般来说都是从左边来布置,配电箱通常是从右边来布置。
还要区分是什么用途的电线,如果是照明或者插座,可以选择1.5平方的电线。
如果是空调的回路,就要选择4平方的电线,而且不同相之间的零线是不能够共用的,在同一个接线端口,不能连接两个以上的电线。
二、家用配电箱怎么分配才合理
1、安装配电箱有两种方式,一种就是明装,可以直接装在墙上,再通过膨胀螺栓固定它的长度。
一般来说埋入要达到75毫米,还要保证有5毫米的一个余量。
总之,要保证安装非常牢固,同时四周不能够有空隙,面板要紧贴着墙面,与墙面接触的部分可以涂上防腐漆。
2、配电箱当中有交流、直流,以及不同的电压,应该有明确的标志,而且要区分开到底是用于哪个供电的。
比如有的是总开关,有的是日用的,或者厨房的、客厅的、卫生间的,电视的、照明的,或者插座的,这些上面都要做出不同的标记,才能够方便使用,后期维修也会更加便捷。
3、配置的时候还需要注意,不能将火线和零线搞混了,一旦接错了,就不会产生电源。
总结:以上介绍的就是家用配电箱应该如何正确接线,同时分配也非常重要,里面有很多的注意事项,要保证接线正确配置达标。
低压配电系统接线方式三篇
低压配电系统接线方式三篇接线方式一:明线敷设接线方式明线敷设接线方式是指电缆或电线直接暴露在室内或室外的敷设方式。
这种接线方式简单直接、运行可靠,适用于气候条件较好、环境相对干净、电气设备不易受到物理损失的场所。
例如,在一座办公楼的照明系统中,电源线从配电室沿着走廊顶部敷设到每个办公室的顶棚上,然后再从顶棚下垂直到每个照明灯具上。
这种方式简洁明了,易于维护和更换。
然而,明线敷设接线方式的缺点是电线易受到外界环境的影响,如阳光、雨水、灰尘等。
另外,明线接线方式有可能造成电线间的相互干扰和短路,增加了系统的故障风险。
接线方式二:开槽敷设接线方式开槽敷设接线方式是指在建筑物的墙壁、地面或顶棚上开槽,将电缆或电线放入槽中,并用覆盖材料盖住槽口,使其与建筑物表面齐平。
这种方式适用于需要保护电线、避免机械损坏或防止盗窃的场所。
例如,在一座工厂的生产车间中,为了保护电缆免受移动设备的碾压或机械碰撞,工程师会在地面上开槽敷设电缆,并且用混凝土或塑料材料覆盖槽口,确保电缆的安全运行。
开槽敷设接线方式的优点是电缆得到了良好的保护,不易受到外界环境和机械损伤。
另外,这种接线方式美观,不会影响建筑物的整体外观。
接线方式三:潜管敷设接线方式潜管敷设接线方式是指将电缆或电线埋入地下的管道系统中进行敷设。
这种接线方式适用于需要长距离输电,或者有地下设备需要供电的场所。
例如,在一座小区的供电系统中,电源线从变电站敷设到小区入口,然后沿着各个街道进行敷设,将电能输送到每个住户的电表箱。
这种方式既保证了供电的可靠性和安全性,又美观大方。
潜管敷设接线方式的优点是电缆在地下敷设,免受外界环境和机械损坏的影响,可靠性较高。
另外,潜管系统中的电缆易于维护和更换,减少了维护成本。
总结起来,低压配电系统接线方式的选择需要根据不同的场所和要求来确定。
明线敷设接线方式适用于简单、干净的环境;开槽敷设接线方式适用于需要保护电线安全的场所;潜管敷设接线方式适用于需要长距离输电的场所。
[全]低压配电系统常见三种接地形式--IT系统、TT系统、TN系统
低压配电系统常见三种接地形式--IT 系统、TT系统、TN系统一)用电安全技术简介低压配电系统是电力系统的末端,分布广泛,几乎遍及建筑的每一角落,平常使用最多的是380/220V的低压配电系统。
从安全用电等方面考虑,低压配电系统有三种接地形式,IT系统、TT系统、TN系统。
TN系统又分为TN—S系统、TN—C系统、TN—C—S系统三种形式。
1)IT系统IT系统就是电源中性点不接地、用电设备外壳直接接地的系统,如图1-8-1所示。
IT系统中,连接设备外壳可导电部分和接地体的导线,就是PE线。
图12)TT系统TT系统就是电源中性点直接接地、用电设备外壳也直接接地的系统,如图1-8-2所示。
通常将电源中性点的接地叫做工作接地,而设备外壳接地叫做保护接地。
TT系统中,这两个接地必须是相互独立的。
设备接地可以是每一设备都有各自独立的接地装置,也可以若干设备共用一个接地装置,图1-8-2中单相设备和单相插座就是共用接地装置的。
图23)TN 系统TN系统即电源中性点直接接地、设备外壳等可导电部分与电源中性点有直接电气连接的系统,它有三种形式,分述如下。
(1)TN—S系统TN—S系统如图1-8-3所示。
图中中性线N与TT系统相同,在电源中性点工作接地,而用电设备外壳等可导电部分通过专门设置的保护线PE连接到电源中性点上。
在这种系统中,中性线N和保护线PE是分开的。
TN—S系统的最大特征是N线与PE线在系统中性点分开后,不能再有任何电气连接。
TN—S系统是我国现在应用最为广泛的一种系统(又称三相五线制)。
新楼宇大多采用此系统。
图3(2)TN-C系统TN-C系统如图1-8-4所示,它将PE线和N线的功能综合起来,由一根称为保护中性线PEN,同时承担保护和中性线两者的功能。
在用电设备处,PEN线既连接到负荷中性点上,又连接到设备外壳等可导电部分。
此时注意火线(L)与零线(N)要接对,否则外壳要带电。
TN-C现在已很少采用,尤其是在民用配电中已基本上不允许采用TN—C系统。
供配电系统 第5章 供配电系统接线
负荷
电源
线路 负荷
负荷
树干式配电的网络接线图
电源
M
STS
STS
10kV
高压用电设备 车间变配电所 10/0.38kV
总降压变配电所
高压线路的单回路树干式接线
5.1.3 环形 环形配电是树干式配电的延伸,将树干式配电线路末端
接回到电源构成环形结构,就是环形配电。 环形配电有单电源单环形配电方式、双电源单环形配电
馈出线
双电源单母线接线
3、单母线分段接线
#1电源进线
#2电源进线
QS011 QF01
QS021 QF02
QS012
母线I段
母线II段
QS022
QS11 QF11
QS011 QS1 QS2
QF12
QF
QS21 QF21
QS22 QF22
(1)一用一备 (2)并列运行
母线I段馈出线
母线II段馈出线
单母线分段接线
高压用电设备 M
电源 STS
10kV
10/0.38kV STS
车间变配电所
总降压变配电所
高压线路的双回路放射式接线
5.1.2 树干式 树干式配电是指一回线路依次给多个负荷供电。分支
线与配电干线的连接方式有T接和Π两种,Π接将配电干线 断开,两端断头接到分支母线上,可靠性较高。
树干式配电所用线路和配电设备少,节省成本,但是 负荷之间相互影响,可靠性较差。
反映电气设备之间的连接关系,但是不能够反映配电装置 之间的位置关系,用于设计和分析系统。
装置式主接线图按照高低压成套配电装置分别绘制, 能够反映出装置之间的排列位置及连接关系,并且能反映 出装置内部的设备设置和连接关系,用于施工和安装系统。
简述高压配电线路的三种接线方式
简述高压配电线路的三种接线方式一、星形接线方式星形接线方式是高压配电线路中常见的一种接线方式。
它的特点是将多根导线的终端连接到一个公共的接地点上,形成一个类似于星形的图案。
在星形接线方式中,主要有三个部分:变压器、高压侧导线和低压侧导线。
变压器是星形接线方式中不可或缺的一部分。
它通过输入一定电压的电能,通过变压器的变压作用,将电能的电压升高或降低,然后输出到高压侧导线和低压侧导线上。
在星形接线方式中,变压器的中性点与接地点连接在一起,形成一个共同的接地点。
高压侧导线是星形接线方式中的一个重要组成部分。
它是将高压电能从变压器中输出到用户端的导线。
在星形接线方式中,高压侧导线的末端都连接到变压器的中性点上,这样可以保证保持电网的稳定性和安全性。
低压侧导线是星形接线方式中的另一个关键部分。
它是将低压电能从变压器中输出到用户端的导线。
在星形接线方式中,低压侧导线的末端也连接到变压器的中性点上,与高压侧导线形成一个共同的接地点。
星形接线方式的优点是系统的可靠性高,故障发生时易于检测和定位。
同时,由于星形接线方式中的变压器中性点与接地点连接在一起,可以减少电网中的电位差,提高了电网的安全性。
二、三角形接线方式三角形接线方式是高压配电线路中另一种常见的接线方式。
它的特点是将多根导线的终端通过连接器连接在一起,形成一个类似于三角形的图案。
在三角形接线方式中,主要有三个部分:变压器、高压侧导线和低压侧导线。
变压器是三角形接线方式中的重要组成部分。
它通过输入一定电压的电能,通过变压器的变压作用,将电能的电压升高或降低,然后输出到高压侧导线和低压侧导线上。
在三角形接线方式中,变压器的每一根导线都通过连接器与其他导线连接在一起,形成一个闭合的回路。
高压侧导线是三角形接线方式中的一个关键组成部分。
它是将高压电能从变压器中输出到用户端的导线。
在三角形接线方式中,高压侧导线的末端都通过连接器与其他导线连接在一起,形成一个闭合的回路。
低压配电系统的接线方式有三种,分别是放射式、树干式和混合式。
低压配电系统的接线⽅式有三种,分别是放射式、树⼲式和混合式。
低压配电系统的接线⽅式低压配电系统的接线⽅式有三种,分别是放射式、树⼲式和混合式。
①放射式配电线路特点:发⽣故障时互不影晌,供电可靠性⾼,但导线消耗量⼤,开关控制设备较多,投资⾼。
适⽤于对供电可靠性要求⾼的场合。
②树⼲式配电线路特点:开关设备少,导线的消耗⾥也较少;系统的灵活性好,但⼲线上发⽣故障时,影响范围⼤,供电可靠性较低;适⽤于供电容量⼩⽽负载分布较均匀的场合。
2.电线、电缆的选择和敷设1)导线和电缆线芯截⾯的选择应满⾜要求:①在额定电流下,导线和电缆的温升不应超过允许值;②在额定电流下,导线和电缆上的电压损失不应超过容许值;③导线的截⾯不应⼩于最⼩允许截⾯,对于电缆不必校验机械强度;④导线和电缆,还应满⾜⼯作电压的要求。
2)导线的敷设导线的敷设按敷设位置可分为:①明敷:导线直接或者在线管、线槽等保护体内.敷设于墙壁、顶棚的表⾯。
②暗敷:导线在线管、线槽等保护体内,敷设于墙壁、顶棚、地坪及楼板等内部。
3)电缆的敷设①埋地敷设:埋深不应⼩于0.7m,并应敷于冻⼟层之下,上下各铺100mm厚的软⼟或砂层,电缆在沟内应波状放置,预留1.5%的长度。
②电缆沟敷设:室外电缆沟的盖板宜⾼出地⾯100mm,以减少地⾯⽔流⼊沟内。
当有碍交通和排⽔时,采⽤有覆盖层的电缆沟,盖板顶低于地⾯300mm。
沟内应考虑分段排⽔,每50m设⼀集⽔井,沟底向集⽔井应有不⼩于0.5%的坡度。
③电缆穿管敷设:管内径不能⼩于电缆外径的1.5倍。
管的弯曲半径为管外径的10倍.且不应⼩于所穿电缆的最⼩弯曲半径。
电缆穿管时,若⽆弯头,长度不宜超过50m;有⼀个弯头时不宜超过20m;有两个弯头时,应设电缆井,电缆中间接线盒应放在电缆井内,接线盒周围应有⽕灾延燃设施。
*注:电缆在室内埋地、穿墙或穿楼板时,应穿管保护。
⽔平明敷时距地应不⼩于2.5m。
垂直明敷时,⾼度1.8m以下部分应有防⽌机械损伤的措施。
低压配电IT、TT、TN系统
IT、TT、TN系统低压配电接地系统分为IT系统、TT系统、TN系统三种形式,而这三种接地方式非常容易混淆。
今天就来说说这三种系统的原理、特点和适用范围,希望能对广大的电气人有所帮助。
一、定义根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)、第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)、第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
二、分别对IT系统、TT系统、TN系统进行全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
图1 IT系统接线图IT系统特点:IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。
电气主接线常见8种接线方式优缺点分析
电⽓主接线常见8种接线⽅式优缺点分析⼀、线路变压器组接线线路变压器组接线就是线路和变压器直接相连,是⼀种最简单的接线⽅式,线路变压器组接线的优点是断路器少,接线简单,造价省,对变电所的供电负荷影响较⼤,其较适合⽤于正常⼆运⼀备的城区中⼼变电所。
⼆、桥形接线桥形接线采⽤4个回路3台断路器和6个隔离开关,是接线中断路器数量较少,也是投资较省的⼀种接线⽅式,根据桥形断路器的位置⼜可分为内桥和外桥两种接线,由于变压器的可靠性远⼤于线路,因此中应⽤较多的为内桥接线,若为了在检修断路器时不影响和变压器的正常运⾏,有时在桥形外附设⼀组隔离开关,这就成了长期开环运⾏的四边形接线。
三、多⾓形接线多⾓形接线就是将断路器和隔离开关相互连接,且每⼀台断路器两侧都有隔离开关,由隔离开关之间送出回路,多⾓形接线所⽤设备少,投资省,运⾏的灵活性和可靠性较好,正常情况下为双重连接,任何⼀台断路器检修都不影响送电,由于没有母线,在连接的任⼀部分故障时,对电⽹的运⾏影响都较⼩,其最主要的缺点是回路数受到限制,因为当环形接线中有⼀台断路器检修时就要开环运⾏,此时当其它回路发⽣故障就要造成两个回路停电,扩⼤了故障停电范围,且开环运⾏的时间愈长,这⼀缺点就愈⼤,环中的断路器数量越多,开环检修的机会就越⼤,所⼀般只采四⾓(边)形接线和五⾓形接线,同时为了可靠性,线路和变压器采⽤对⾓连接原则,四边形的保护接线⽐较复杂,⼀、⼆次回路倒换操作较多。
四、单母线分段接线单母线分段接线就是将⼀段母线⽤断路器分为两段,它的优点是接线简单,投资省,操作⽅便;缺点是母线故障或检修时要造成部分回路停电。
五、双母线接线双母线接线就是将⼯作线、电源线和出线通过⼀台断路器和两组隔离开关连接到两组(⼀次/⼆次)母线上,且两组母线都是⼯作线,⽽每⼀回路都可通过母线联络断路器并列运⾏。
与单母线相⽐,它的优点是供电可靠性⼤,可以轮流检修母线⽽不使供电中断,当⼀组母线故障时,只要将故障母线上的回路倒换到另⼀组母线,就可迅速恢复供电,另外还具有调度、扩建、检修⽅便的优点;其缺点是每⼀回路都增加了⼀组隔离开关,使配电装置的构架及占地⾯积,投资费⽤都相应增加;同时由于配电装置的复杂,在改变运⾏⽅式倒闸操作时容易发⽣误操作,且不宜实现⾃动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的⼤型发电⼚和变电站是不允许的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学 土木工程学院
建筑电气配电系统的接线方式有三种:放射式、树干式和混合式, 如图 7.2.3-1所示。 1.放射式 放射式配电系统从低压母线到用电设备或二级配电箱的线缆是直通的, 供电可靠性高,配电设各集中,但系统灵活性较差,有色金属消耗量较多, 一般适用于容量大、负荷集中的场所或重要的系统
返回
图7.2.3-3 住宅楼低压配电系统图
返回
图7.2.3-4 高层建筑配电系统图
返回
图7.2.3-3和图7.2.3-4所示是一个典型配电系统的实例。
本节课结束
图7.2.3-1 配电系统的接线方式
返回
注: 图7.2.3-2 (a)是放射式和树干式(链式)相结合的混 合配电方式,从变配电所到一个供电分区采用放射 式,而在供电分区内各配电盘之间采用链型的干线 式配电; 图7.2.3-2 (b)与图7.2.3-2 (a)配电方式相同,只是多 了一套按树干式布置的备用电源; 图7.2.3-2 (c)是两级放射式配电; 图7.2.3-2 (d)是采用树干式布量,通用于接层数量 多、负荷大的大型建筑物。
2. 树干式
树干式配电系统是向用电区域引出几条干线,供电设备或二级配电箱
可以直接接在干线上,这种方式的系统灵活性好,但干线发生故障时影
响范围大, 一般通用于用电设备分布较均匀、容量不大、又无特殊要 求的场所。 3.混合式 是放射式和树干式相结合的最常用的配电方式 。 建筑电气的高压配电系统大多采用放射式接线方式,低压配电系统大 多采用放射式和树干式相结合的混合式接线方式,如图7.2.3-2所示。