人工智能-遗传算法(PPT 72张)
合集下载
遗传算法的实例ppt课件.ppt
上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法(GeneticAlgorithm)PPT课件
2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座
遗传算法简介课件
机器学习
遗传算法可用于机器学 习中的参数优化。通过 优化模型参数,可以提 高机器学习算法的性能
。
生产调度
在生产调度领域,遗传 算法可以用于解决作业 调度、资源分配等问题 。通过演化调度方案, 可以实现生产资源的高
效利用。
路径规划
遗传算法在路径规划中 也有应用,如机器人路 径规划、物流配送路径 规划等。通过编码路径 信息,并利用遗传操作 进行优化,可以找到最
优的路径方案。
遗传算法的调优策略
选择合适的编码方式
针对具体问题,选择合适的编码方式(如二进制 编码、实数编码等)能够更好地表示问题的解, 提高遗传算法的性能。
选择适当的遗传操作
选择、交叉和变异等遗传操作是影响遗传算法性 能的关键因素。根据问题特性,选择合适的遗传 操作能够提高算法的收敛速度和寻优能力。
设计适应度函数
适应度函数用于评估个体优劣,设计合适的适应 度函数能够引导算法朝着优化目标演化。
控制种群规模和演化代数
种群规模和演化代数是影响遗传算法搜索空间和 搜索效率的重要因素。根据问题规模和计算资源 ,合理设置种群规模和演化代数能够在有限时间 内获得较好的优化结果。
05
总结与展望
遗传算法总结
Байду номын сангаас
编码原理
将问题的解表示为一种编码方式,如二进 制编码、实数编码等。编码后的个体组成 种群。
变异操作
模拟基因突变过程,对个体编码进行随机 改变,增加种群多样性。
适应度函数
用于评估个体优劣的函数,根据问题需求 设计。适应度高的个体有更大概率被选中 进行后续操作。
交叉操作
模拟生物繁殖过程中的基因交叉,通过两 个个体的编码进行交叉操作,生成新的个 体。
遗传算法ppt
现代优化算法-遗传算法
于是,得到第二代种群 S 2 :
s1 11001 25 , s2 01100 12 , s3 11011 27 , s4 10000 16
第二代种群 S2 中各染色体的情况如表 10-1 所示。 表 10-1 第二代种群 S2 中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 s4=10000 适应度 625 144 729 256 选择概率 积累概率 估计的选中次数 0.36 0.08 0.41 0.15 0.36 0.44 0.85 1.00 1 0 2 1
0, 1 二进制串。串的长度取决于求解的精度,例如假设解空间为[-1,
因为 221<3106<222,所以编码所用的二进制串至少需要 22 位。
2],求解精度
为保留六位小数,由于解空间[-1, 2]的长度为 3,则必须将该区间分为 3106 等分。
现代优化算法-遗传算法
(1) 采用 5 位二进制数编码染色体,将种群规模设定为 4,取下列个体组成初始 种群 S1 : s1 13(01101), s2 24(11000), s3 8(01000), s4 19(10011) (2) 定义适应度函数为目标函数 f x x 2 (3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传操作,直到适应 度最高的个体,即 31(11111)出现为止。迭代的过程为: 首先计算种群 S1 中各个体 si 的适应度 f si 如下。
f ( s1 ) f (13) 132 169; f ( s2 ) f (24) 24 2 576; f ( s3 ) f (8) 82 64; f ( s4 ) f (19) 19 2 61
《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
人工智能第三章遗传算法、蚁群算法、粒子群算法PPT
染色休X也称为个体X。
对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越 接近于目标函数的最优点,其适应度越大;反之,其适应度越 小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成了问题的搜索空间。
根据不同的情况,这里的等位基因可以是一组整数,也可以是 某一范围内的实数值,或者是纯粹的一个记号。
最简单的等位基因是由0和l这两个整数组成的。相应的染色体 就可表示为一个二进制符号串。
14.10.2020
11
这种编码所形成的排列形式X是个体的基因型,与它对应的x值是 个体的表现型。
通常个体的表现型和其基因型是一一对应的,但有时也允许基因 型和表现型是多对一的关系。
14.10.2020
6
14.10.2020
可行解
X R
ห้องสมุดไป่ตู้
基本空间 U
可行解集合
7
对于上述最优化问题,目标函数和约束条件种类繁多,有的是线 性的,有的是非线性的;有的是连续的,有的是离散的;有的是 单峰值的,有的是多峰值的。
随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全 精确地求出其最优解既不可能,也不现实,因而求出其近似最 优解或满意解是人们的主要着眼点之—。
14.10.2020
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
对于每一个个体X,要按照一定的规则确定出其适应度;个体 的适应度与其对应的个体表现型X的目标函数值相关联,X越 接近于目标函数的最优点,其适应度越大;反之,其适应度越 小。
遗传算法中,决策变量X组成了问题的解空间。对问题最优解 的搜索是通过对染色体X的搜索过程来进行的,从而由所有的 染色体X就组成了问题的搜索空间。
根据不同的情况,这里的等位基因可以是一组整数,也可以是 某一范围内的实数值,或者是纯粹的一个记号。
最简单的等位基因是由0和l这两个整数组成的。相应的染色体 就可表示为一个二进制符号串。
14.10.2020
11
这种编码所形成的排列形式X是个体的基因型,与它对应的x值是 个体的表现型。
通常个体的表现型和其基因型是一一对应的,但有时也允许基因 型和表现型是多对一的关系。
14.10.2020
6
14.10.2020
可行解
X R
ห้องสมุดไป่ตู้
基本空间 U
可行解集合
7
对于上述最优化问题,目标函数和约束条件种类繁多,有的是线 性的,有的是非线性的;有的是连续的,有的是离散的;有的是 单峰值的,有的是多峰值的。
随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全 精确地求出其最优解既不可能,也不现实,因而求出其近似最 优解或满意解是人们的主要着眼点之—。
14.10.2020
8
求最优解或近似最优解的方法
(1)枚举法。
枚举出可行解集合内的所有可行解,以求出精确最优解。对于连 续函数,该方法要求先对其进行离散化处理,这样就有可能产生 离散误差而永远达不到最优解。另外,当枚举空间比较大时,该 方法的求解效率比较低,有时甚至在目前最先进的计算工具上都 无法求解。
《遗传算法》PPT课件
遗传算法
学习过程如下:
选择适应度最好的4个
11 01001101 -4 13 01001101 -4 14 00111001 -4 15 00101111 -5
11与13交叉
16 01001101 -4 17 01001101 -4
14与15交叉
18 00111011 -4 19 00101101 -5
遗传算法
遗传算法是一种通过模拟自然进化过程搜索最优解 的方法。 遗传算法是一类随机算法通过作用于染色体上的基 因,寻找好的染色体来求解问题。 遗传算法对求解问题的本身一无所知,它所需要的 仅是对算法所产生的每个染色体进行评价,并基于适 应值来选择染色体,使适应性好的染色体比适应性差 的染色体有更多的繁殖机会。 遗传算法通过有组织地而且是随机地信息交换来重 新结合那些适应性好的串,在每一个新的串的群体中 作为额外增添,偶尔也要在串结构中尝试用新的位和 段来代替原来的部分。
遗传算法
要做的第一件事是将染色体转换成二进制串, 00表示0 01表示1 10表示2 11表示3 交叉位置:6,即父代染色体被复制下来产生两个后代 然后两个后代交换他们的最后两位 变异:由随机选择一位、求反
遗传算法
例如,染色体0223的适应度为4。 若所有7个规则都满足(也就是当染色体是0133),则 适应度为7。 适应度值可以求负操作,以使任务成为最小化搜索。 因此,目标染色体具有-7的适应度。 要做的第一件事是将染色体转换成二进制串, 这可通过由00表示0,01表示1,10表示2,11表示3来完 成。现在每个基因由两位表示,目标染色体有00011111 表示。 为了简化例子,总是在位置6处应用单点交叉。 父染色体被复制下来产生两个后代,然后两个后代交换 他们的最后两位。 变异由随机选择一位且对他求反组成。
《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
第7章 遗传算法 2012AI课件 人工智能教学课件
累计: 100
14.30
累计: 14.30
14.30
单位:%
72.59 累计: 5.41 72.59
67.18
52.88
累计: 67.18
27.41 累计: 100
累计: 5.41 72.59
14.30 累计: 14.30
52.88 累计: 67.18
选择前的种群: S01=01101, S02=11001 S03=01000, S04=10010
选择操作(复制操作):根据适应度函数值所 度量的个体的优劣程度决定此个体在下一代是 被淘汰或是被遗。一般情况下,如果是求最大 值,适应度函数值大的个体具有较大的生存机 会。
交叉操作:选出两个个体作为父母个体,将两种 的部分码值进行交换。 例: 1 0 0 0 1 1 1 0
11011011
10001011 11011110
又称仿生学派 (Bionicsism)或生理 学派( Physiologism), 其原理为对人类大脑 信息处理以及对生物 进化过程的模拟,包 括模糊逻辑、神经网 络和进化计算等计算 智能算法
遗传算法
生物群体的生存过程普遍遵循达尔文的物竞天 择、适者生存的进化准则;生物通过个体间的 选择、交叉、变异来适应大自然环境 。
表1 初始(第0代)种群情况
编号
个体串(染 色体)
x
适应值
百分比 (%)
累计百分 比%
S01 01101 13 169
S02 11001 25 625
S03 01000
8
64
S04 10010 18 324
14.30 52.88 5.41 27.41
14.30 67.18 72.59 100
14.30
累计: 14.30
14.30
单位:%
72.59 累计: 5.41 72.59
67.18
52.88
累计: 67.18
27.41 累计: 100
累计: 5.41 72.59
14.30 累计: 14.30
52.88 累计: 67.18
选择前的种群: S01=01101, S02=11001 S03=01000, S04=10010
选择操作(复制操作):根据适应度函数值所 度量的个体的优劣程度决定此个体在下一代是 被淘汰或是被遗。一般情况下,如果是求最大 值,适应度函数值大的个体具有较大的生存机 会。
交叉操作:选出两个个体作为父母个体,将两种 的部分码值进行交换。 例: 1 0 0 0 1 1 1 0
11011011
10001011 11011110
又称仿生学派 (Bionicsism)或生理 学派( Physiologism), 其原理为对人类大脑 信息处理以及对生物 进化过程的模拟,包 括模糊逻辑、神经网 络和进化计算等计算 智能算法
遗传算法
生物群体的生存过程普遍遵循达尔文的物竞天 择、适者生存的进化准则;生物通过个体间的 选择、交叉、变异来适应大自然环境 。
表1 初始(第0代)种群情况
编号
个体串(染 色体)
x
适应值
百分比 (%)
累计百分 比%
S01 01101 13 169
S02 11001 25 625
S03 01000
8
64
S04 10010 18 324
14.30 52.88 5.41 27.41
14.30 67.18 72.59 100
人工智能入门课件第5章遗传算法
5.4.2 交叉操作(crossover)
交叉的具体步骤为:
1. 从交配池中随机取出要交配的一对个体;
2. 根据位串长度L,对要交配的一对个体,随 机选取[1,L-1]中一个或多个的整数k作为 交叉点;
3. 根据交叉概率pc(0<pc≤1)实施交叉操作,配 对个体在交叉点处,相互交换各自的部分内 容,从而形成新的一对个体。
N
pi 1
i 1
2.基于排名的选择
(1)线性排名选择
首先假设群体成员按适应值大小从好到坏依次排列
为x1,x2,…,xN,然后根据一个线性函数分配选 择概率pi。
设线性函数pi=(a-b·i/(N +1))/N,i=1,
2,…,N,其中a,b为常数。由于
N
pi
1
,易得,
b=2(a-1)。又要求对任意i=1,2,…i1,N,有pi>0,
5.2.3 实数编码
为了克服二进制编码的缺点,对于问题的变量 是实向量的情形,直接可以采用十进制进行编码, 这样可以直接在解的表现形式上进行遗传操作,从 而便于引入与问题领域相关的启发式信息以增加系 统的搜索能力
例3 作业调度问题(JSP)的种群个体编码常用 m×n的矩阵Y=[yij],i=1,2,…,m,j=1, 2,…,n(n为从加工开始的天数,m为工件的 优先顺序)。 yij表示工件i在第j日的加工时间。 下表是一个随机生成的个体所示。
一种方法是为参与交换的数增加一个映射如下:
将此映射应用于未交换的等位基因得到:
T~1 234 | 751| 68 T~2 136 | 275 | 84 则为合法的。
5.2.2 Gray编码
Gray编码即是将二进制码通过如下变换进行转
遗传算法详解ppt课件
A1=0110 | 1 A2=1100 | 0 交叉操作后产生了两个新的字符串为:
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法pptPPT课件
轮盘赌选择又称比例选择算子,它的基本思想是: 各个个体被选中的概率与其适应度函数值大小成 正比。
P(xi )
f (xi )
N
f (xj)
j 1
第18页/共66页
上述按概率选择的方法可用一种称为赌轮的原理来实现。 即做一个单位圆, 然后按各个染色体的选择概率将圆面划分 为相应的扇形区域(如图1所示)。这样, 每次选择时先转动轮 盘, 当轮盘静止时,上方的指针所正对着的扇区即为选中的扇 区,从而相应的染色体即为所选定的染色体。 例如, 假设种群 S中有4个染色体: s1,s2, s3, s4,其选择概率依次为: 0.11, 0.45, 0.29, 0.15, 则它们在轮盘上所占的份额如图1中的各扇形区域 所示。
i
qi P(xj ) j 1
第20页/共66页
一个染色体xi被选中的次数, 可以用下面的期望值 e(xi)来确定:
e(xi ) P(xi ) N
f (xi )
N
N
f (xj)
N
f (xi ) f (xj)/ N
f (xi ) f
j 1
j 1
其中f 为种群S中全体染色体的平均适应度值。
图1 赌轮选择示例
第19页/共66页
在算法中赌轮选择法可用下面的过程来模拟:
① 在[0, 1]区间内产生一个均匀分布的伪随机数r。 ② 若r≤q1,则染色体x1被选中。 ③ 若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。 其中的qi称为染色体xi(i=1, 2, …, n)的积累概率, 其计算公式 为:
步2 随机产生U中的N个染色体s1, s2, …, sN,组成初始 种群S={s1, s2, …, sN},置代数计数器t=1;
遗传算法课件PPT
例: 4 3 1 2 5 6 7 5 4 3 1 2 6 7
*
五.GA的各种变形(15)
切点
实数编码的合法性修复 交叉 单切点交叉
*
五.GA的各种变形(16)
双切点交叉(与单切点交叉类似) 该方法最大的问题:如何在实际优化中保持可行性。
切点
切点
*
五.GA的各种变形(17)
X
Y
*
五.GA的各种变形(7)
顺序交叉( OX )Order Crossover:可看做是带有不同修复程序的部分映射交叉的变形。
OX步骤:
选切点X,Y;
交换中间部分;
从切点Y后第一个基因起列出原顺序,去掉已有基因;
从切点Y后第一个位置起,按顺序填入。
*
五.GA的各种变形(8)
OX例题:
列出基因:6 7 2 1 3 4 5 7 6 4 3 1 2 5
*
五.GA的各种变形(26)
加入的意义(同线性标定中ξ 的意义)
加入使最坏个体仍有繁殖的可能, 随 的增大而减小
的取值:
, , , 调节 和 ,从而来调节
*
五.GA的各种变形(27)
引入 的目的: 调节选择压力,即好坏个体选择概率的 差,使广域搜索范围宽保持种群的多样性,而 局域搜索细保持收敛性。如下图表示: 开始:希望选择压力小 后来:希望选择压力大
*
五.GA的各种变形(33)
顺序选择:
01
步骤:
02
从好到坏排序所有个体
03
定义最好个体的选择概率为 ,则第 个个体的选择概率为:
04
*
由于
五.GA的各种变形(34)
有限时要归一化,则有下面的公式:
*
五.GA的各种变形(15)
切点
实数编码的合法性修复 交叉 单切点交叉
*
五.GA的各种变形(16)
双切点交叉(与单切点交叉类似) 该方法最大的问题:如何在实际优化中保持可行性。
切点
切点
*
五.GA的各种变形(17)
X
Y
*
五.GA的各种变形(7)
顺序交叉( OX )Order Crossover:可看做是带有不同修复程序的部分映射交叉的变形。
OX步骤:
选切点X,Y;
交换中间部分;
从切点Y后第一个基因起列出原顺序,去掉已有基因;
从切点Y后第一个位置起,按顺序填入。
*
五.GA的各种变形(8)
OX例题:
列出基因:6 7 2 1 3 4 5 7 6 4 3 1 2 5
*
五.GA的各种变形(26)
加入的意义(同线性标定中ξ 的意义)
加入使最坏个体仍有繁殖的可能, 随 的增大而减小
的取值:
, , , 调节 和 ,从而来调节
*
五.GA的各种变形(27)
引入 的目的: 调节选择压力,即好坏个体选择概率的 差,使广域搜索范围宽保持种群的多样性,而 局域搜索细保持收敛性。如下图表示: 开始:希望选择压力小 后来:希望选择压力大
*
五.GA的各种变形(33)
顺序选择:
01
步骤:
02
从好到坏排序所有个体
03
定义最好个体的选择概率为 ,则第 个个体的选择概率为:
04
*
由于
五.GA的各种变形(34)
有限时要归一化,则有下面的公式:
《遗传算法》PPT课件
2021/7/12
33
一、遗传算法入门
生物只有经过许多世代的不断演化(evolution),才能 更好地完成生存与繁衍的任务。 遗传算法也遵循同样的方式,需要随着时间的推移不 断成长、演化,最后才能收敛,得到针对某类特定问 题的一个或多个解。 因此,了解一些有关有生命的机体如何演化的知识, 对理解遗传算法的演化机制是是有帮助的。我们将扼 要阐述自然演化的机制(通常称为“湿”演化算法), 以及与之相关的术语。理解自然演化的基本机制。我 想,你也会和我一样,深深叹服自然母亲的令人着迷!
2021/7/12
23
智能交通
2021/7/12
24
图像识别系统
2021/7/12
25
云松
銮仙玉骨寒, 松虬雪友繁。 大千收眼底, 斯调不同凡。
2021/7/12
26
(无题)
白沙平舟夜涛声, 春日晓露路相逢。 朱楼寒雨离歌泪, 不堪肠断雨乘风。
2021/7/12
27
2021/7/12
28
2021/7/12
1.7.12 智能制造
1.7.13 智能CAI
1.7.14 智能人机接口
1.7.15 模式识别
1.7.16 数据挖掘与数据库中的知识发现
1.7.17 计算机辅助创新
1.7.18 计算机文艺创作
1.7.19 机器博弈
1.7.20 智能机器人
2021/7/12
18
1.8 人工智能的分支领域与研究方向
从模拟的层次和所用的方法来看,人工智能可分为符号智 能和计算智能两大主要分支领域。而这两大领域各自又有 一些子领域和研究方向。如符号智能中又有图搜索、自动 推理、不确定性推理、知识工程、符号学习等。计算智能 中又有神经计算、进化计算、免疫计算、蚁群计算、粒群 计算、自然计算等。另外,智能Agent也是人工智能的一 个新兴的重要领域。智能Agent或者说Agent智能则是以符
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法是一种模拟自然界生物遗传学和生物进化论的优化方法,由密歇根大学的J.Holland教授于1975年提出。它通过人工方式构造了一类并行随机搜索最优化方法,对生物进化过程进行数学仿真,是进化计算的重要形式。遗传算法直接对结构对象进行操作,不依赖于求导和函数连续性,具有隐含并行性和全局寻优能力。它采用概率化的寻优方法,自适应地调整搜索方向,广泛应用于组合优化、机器学习、信号处理等领域。遗传算法基于达尔Байду номын сангаас的自然选择学说,通过遗传、变异和适者生存的原理,将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串群体中。通过复制、交叉及变异操作对个体进行筛选,适应度高的个体被保留下来,组成新的群体,实现群体中个体适应度的不断提高,最终得到全局最优解。