人工智能实验。遗传算法的实现
人工智能中的遗传算法及应用
![人工智能中的遗传算法及应用](https://img.taocdn.com/s3/m/03d386182bf90242a8956bec0975f46526d3a742.png)
人工智能中的遗传算法及应用在人工智能领域中,遗传算法是一种常用的优化算法。
它将生物学遗传进化机制中的基本原理应用到计算机程序设计中,通过基因编码、选择、交叉、变异等操作,使得种群逐步向着最优解进化。
遗传算法的应用非常广泛,例如用来进行机器学习中的参数优化,解决复杂优化问题等。
一、遗传算法的基本原理遗传算法是通过对群体中的染色体进行进化迭代,来实现寻优的一种优化方法。
其基本思想与自然进化过程类似,对于每一个待求解问题,都将其转化为一个染色体,而问题的解就是这个染色体的编码。
在遗传算法中,编码一般采用二进制编码。
一个染色体就是一个由多个基因组成的序列,一个基因就是一个二进制位,它可以取0或1。
基因序列的长度就是染色体的长度。
在遗传算法中,每一个个体都具备一定的适应度,适应度是指一个个体的解决问题的能力。
适应度越高,就越有可能成为下一代的父代。
每一代都会进行选择、交叉、变异等操作,得到下一代个体。
具体来说,遗传算法主要由以下几个操作组成:1. 初始化操作:在遗传算法的开始阶段,需要随机生成一些初代个体。
这些个体就是染色体的初始值,之后的演化过程就是基于它们逐渐优化产生的。
2. 适应度评估:在每一代个体形成之后,都需要使用某种评估函数来度量每个个体的表现。
适应度高的个体会得到更高的生殖机会。
3. 选择操作:在每一代中,通过某种选择策略来选取一些个体去作为下一代生殖的种子。
选择策略通常有轮盘赌选择、锦标赛选择等。
4. 交叉操作:在一定概率下,将选中个体进行某种基因交换,使得下一代中的个体具备更广泛的基因信息。
5. 变异操作:在一定概率下,随机改变个体的某些基因,使得下一代具有一定新的基因信息。
通过这些操作,每一代个体都会经过一轮进化,逐渐接近最优解。
当达到某个停止条件时,算法终止,得到最终的结果。
二、遗传算法在人工智能中的应用遗传算法是一种高效的优化算法,对于一些复杂的优化问题,特别是连续优化问题,使用遗传算法往往比其他传统的优化方法更加有效。
人工智能导论实验(遗传算法)-参考模板
![人工智能导论实验(遗传算法)-参考模板](https://img.taocdn.com/s3/m/d0c0ada2846a561252d380eb6294dd88d1d23d63.png)
环境配置1.安装anaconda,并配置环境变量2.Win+R运行cmd打开命令行窗口,在命令行中创建并激活所需的Python环境,也可直接使用默认的base环境a)创建:conda create -n [新环境的名字] python=[Python版本号]比如:conda create -n myEnv python=3.7b)激活环境:conda activate [环境名]。
激活成功后命令行前面会有个括号显示当前使用的环境名:3.检查当前环境下是否已有需要用到的库,若没有,则需要安装a)查询命令:conda listb)安装新的库:conda install [库名]也可指定库的版本号:conda install [库名]=[版本号]4.执行指定的python文件:python [.py文件名]如果.py文件不在当前路径下,需要指定文件的完整路径完成下列实验1,2以及3、4、5任选其二。
实验1:产生式系统1.基本要求1.1掌握产生式系统的基本原理1.2运行产生式系统的示例代码1.3尝试向示例代码中添加新数据,并完成相应的推理2.实验报告2.1总结产生式系统的基本原理2.2产生式系统的源代码分析与实验记录2.3尝试向示例代码中添加新数据,并完成相应的推理3.作业无实验2:AStar求解八数码问题1.基本要求1.1掌握AStar算法的基本原理1.2编写并运行AStar算法求解八数码问题的示例代码。
给定矩阵初始状态,允许将0与相邻的4个数字之一交换,直到矩阵转变为目标状态。
输出每一步交换后的矩阵例12.实验报告2.1 总结AStar算法的基本原理2.2 如何描述八数码问题中两个状态间的距离?2.2 如何根据状态距离将八数码问题转换为AStar寻路问题?3.作业提交编写的AStar求解八数码问题代码实验3:AStar求解迷宫寻路问题1.基本要求1.1掌握AStar算法的基本原理1.2编写并运行AStar算法求解迷宫寻路问题的示例代码。
遗传算法的基本操作
![遗传算法的基本操作](https://img.taocdn.com/s3/m/18c85dd2951ea76e58fafab069dc5022aaea460d.png)
遗传算法的基本操作1 遗传算法遗传算法(Genetic Algorithm,简称 GA)是一种染色体基因行为模拟的进化计算算法,它是一种基于自然选择和遗传变异进化机制的计算智能方法,是从生物学进化规律探索求解各种复杂问题的一种工具。
遗传算法是一种元胞自动机入门级的人工智能技术,能够解决各种复杂的最优化问题。
2 遗传算法的基本操作遗传算法的基本操作主要包括以下几个步骤:1.初始化种群:分配种群中每个个体的基因型,对种群中每个染色体随机分布互不相同的基因,成功分配染色体。
2.测试种群:评估种群中各个个体的适应度。
3.挑选进化操作:根据适应度值大小,选择优秀个体留入下一代。
4.变异和交叉:执行变异操作和交叉操作,以旧的种群基因组为基础生成新的基因组,以挑选某几代作为新的种群。
5.使用适应度值:重新计算每个个体的适应度,建立新的种群,获取最优解。
3 遗传算法在工程中的应用遗传算法可以完成多种实现最优解的工程问题,如最易支付路径分析、公路交叉路口路径优化、货物运输路线最优解、拆线问题等等。
随着科学技术的进步,遗传算法也广泛应用于其他领域,如通信网络结构优化、模式识别、系统自控等,使利用遗传算法工程化运用更加广泛,受到计算机应用研究者的追捧。
4 遗传算法的优势遗传算法有着诸多优势:1. 遗传算法可以解决非线性多变量优化问题;2. 遗传算法没有预定义的搜索空间,能够自动根据变量的取值范围搜索最优解;3. 能够处理连续和离散的优化变量;4. 遗传算法可实现并行化搜索,可大大提高计算速率;5. 遗传算法可以从全局最优出发搜索;6. 遗传算法擅长解非凸优化问题,比如有多个局部最优;7. 遗传算法可以应用于大规模复杂的优化问题。
遗传算法的运行效率不高,一般在解决工程优化问题时,常会伴随其他技术或工具,比如模糊技术、神经网络等,共同完成相应的优化工作。
此外,为了确保在种群的进化过程中保持正确的进化方向,必须了解其精准的适应度函数,为此必须提供明确的评价函数,这是关键性任务。
GA算法实验
![GA算法实验](https://img.taocdn.com/s3/m/46a89b3c0912a216147929ca.png)
西安交通大学实验报告课程人工智能实验 GA算法姓名谭绪刚学号 01055053专业班级计算机12实验日期 2004年11月10日报告日期 2004年12月13日实验名称用遗传算法学习曲线6sin(5),[0,1]π∈的最大值x x一、实验原理遗传算法的基本原理◇遗传算法的基础理论遗传算法的基础理论是图式(模式)定理。
◆图式(Schema)概念一个基因串用符号集{0,1,*}表示,则称为一个图式;其中*可以是0或1。
其实,图式就是在某些确定位置上取相同字符的字符串集合。
例如:**000是一个图式,表示后三个位置都取0的字符串的集合,即{00000,01000,10000,11000};类似地,10*0*表示{10000,10001,10100,10101}。
可以直观地把图式看成一个相似性模板(similarity template),在对应的确定位置,0和0匹配,1和1匹配,*为通配符,可和0、1两者匹配。
图式表示的就是和它匹配的字符串。
这些字符串称为图式的实现(instance)或解(solution)。
◇图式的阶和长度在某个图式中,确定字符的个数称为图式的阶(order),其最左端确定字符到最右端确定字符间的距离称为图式的定义长度(defining length)。
例如,图式**000的阶是3,定义长度是5-3=2。
图式10*0*的阶的3,定义长度是4-1=3。
◆Holland图式定理简便起见,只就简单GA进行讨论。
引入下列符号H:某个图式;fi:第i个字符串(解、实现)的适应度;:第t代群体的平均适应度;:图式H在第t代群体的平均适应度;ni(H,t+1):由(第t代)图式H的某个解i在第t+1代生成的后代数的期望值;n(H,t):第t代属于图式H的解的个数;δ(H):H的定义长度;0(H):H的阶。
◇图式定理先考虑选择的效果。
在SGA,选择标准是采用按适应度大小比例的原则,因此,第i个体经选择算子的作用在下一代继续存在的个数的期望值为n(fi/∑f),注意到则(,1)(,)(,)/()+=n H t n H t f H t f t上式表明,选择算子的作用将使适应度高于(低于)平均水平的图式在代代相传时大(减小)其容量,从而提高群体的质素。
遗传算法实验指导书
![遗传算法实验指导书](https://img.taocdn.com/s3/m/541ef80b79563c1ec5da71a3.png)
实验二:遗传算法一、实验目的1.学会使用遗传算法matlab示例程序辅助学习2.理解遗传算法的原理及机制二、实验原理遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
三、实验条件1.Matlab 7.0以上版本遗传算法演示程序2.IE6.0,能通过INTERNET查阅相关资料四、实验内容1.启动GA示例程序1)启动Matlab 7.02)单击help菜单,在弹出的下拉菜单中选择“demos”3)在“demos”窗口左边的树形选择栏选择“toolbox”中“Genetic Algorithm and Direct Search Demos”分支,“demos”窗口右边即为遗传算法示例程序列表。
人工智能化遗传算法实验报告
![人工智能化遗传算法实验报告](https://img.taocdn.com/s3/m/62c1eb607cd184254a353541.png)
人工智能实验报告学号:姓名:实验名称:遗传算法实验日期:2016.1.5【实验名称】遗传算法【实验目的】掌握遗传算法的基本原理,熟悉遗传算法的运行机制,学会用遗传算法来求解问题。
【实验原理】遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
遗传算法是从代表问题可能潜在的解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成。
每个个体实际上是染色体带有特征的实体。
在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。
遗传算法程度流程图为:【实验内容】题目:已知f(x)=x*sin(x)+1,x∈[0,2π],求f(x)的最大值和最小值。
数据结构:struct poptype{double gene[length];//染色体double realnumber;//对应的实数xdouble fitness;//适应度double rfitness;//相对适应度double cfitness;//累计适应度};struct poptype population[popsize+1];//最后一位存放max/min struct poptype newpopulation[popsize+1];//染色体编码:[0,2]x π∈,变量长度为2 π,取小数点后6位,由于2262322*102;π<<因此,染色体由23位字节的二进制矢量表示,则X 与二进制串(<b 22 b 21…… b 0>)2之间的映射如下:()2222212010bb ......b 2'i i i b x =⎛⎫=∙= ⎪⎝⎭∑;232'21x x π=- 适应度函数:由于要求f(x)的最值,所以适应度函数即可为f(x)。
人工智能中的遗传算法
![人工智能中的遗传算法](https://img.taocdn.com/s3/m/df417d5bc381e53a580216fc700abb68a982ad06.png)
人工智能中的遗传算法遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法。
它适用于复杂问题的求解,并且在人工智能领域中得到了广泛的应用。
本文将介绍人工智能中遗传算法的原理、应用以及优势。
一、遗传算法原理遗传算法模拟了生物进化过程中的遗传与进化机制,通过对每个个体的基因组进行编码,然后通过选择、交叉和变异等操作,迭代地生成新一代的解,并逐步优化。
1.1 基因编码遗传算法中每个个体的解被编码为一个染色体,染色体由若干基因组成。
基因可以是二进制串、整数或浮点数等形式,根据问题的特点进行选择。
1.2 适应度评价适应度函数用于评价每个个体的优劣程度。
适应度值越高表示个体解越优秀。
在问题的求解过程中,根据适应度函数对个体进行评估和排序。
1.3 选择操作选择操作根据适应度函数对个体进行选择,使优秀的个体有更高的概率被选中。
常见的选择算法有轮盘赌和竞争选择等。
1.4 交叉操作交叉操作模拟了生物进化中的基因重组,通过交换父代个体的染色体片段产生新个体。
交叉操作可以增加种群的多样性,并且有助于在解空间中进行全局搜索。
1.5 变异操作变异操作是对个体染色体中的基因进行突变,引入一定的随机性。
变异操作可以避免种群陷入局部最优解,从而增加算法的全局搜索能力。
1.6 算法迭代遗传算法通过不断迭代地进行选择、交叉和变异操作,逐渐优化种群中的个体。
迭代次数和种群大小是影响算法性能的重要参数。
二、遗传算法的应用2.1 函数优化遗传算法可以用于求解复杂的函数优化问题,例如求解多峰函数的全局最优解。
通过适当选择适应度函数和调整参数,可以提高算法的收敛性和搜索能力。
2.2 组合优化遗传算法在组合优化问题中有广泛的应用。
例如在图的最短路径问题中,通过遗传算法可以求解出图中节点间的最短路径。
2.3 机器学习遗传算法可以用于机器学习领域中的特征选择和参数优化等问题。
通过遗传算法搜索最优的特征子集或参数组合,可以提高机器学习模型的性能和泛化能力。
C语言人工智能算法实现神经网络和遗传算法
![C语言人工智能算法实现神经网络和遗传算法](https://img.taocdn.com/s3/m/3d830077e55c3b3567ec102de2bd960591c6d97b.png)
C语言人工智能算法实现神经网络和遗传算法人工智能(Artificial Intelligence)是当今科技领域中备受关注的热门话题,而C语言作为一种广泛应用的编程语言,也可以用于实现人工智能算法。
本文将详细介绍如何用C语言来实现神经网络和遗传算法,以展示其在人工智能领域的应用。
1. 神经网络神经网络是一种模仿人脑的学习和决策过程的计算模型。
它由多个神经元组成的层级结构构成,每个神经元接收来自上一层神经元输出的信号,并根据一定的权重和激活函数来计算输出。
下图展示了一个简单的神经网络结构:[图1:神经网络结构图]为了实现一个神经网络,我们需要在C语言中定义神经网络的结构体,并实现前馈传播和反向传播算法。
首先,我们需要定义神经网络的层级结构,可以使用数组或链表来表达。
每个神经元需要存储权重、偏差和激活函数等信息。
我们可以使用结构体来表示神经元的属性,例如:```Ctypedef struct Neuron {double* weights; // 权重数组double bias; // 偏差double output; // 输出} Neuron;```然后,定义神经网络的结构体:```Ctypedef struct NeuralNetwork {int numLayers; // 层数int* layerSizes; // 每层神经元数量的数组Neuron** layers; // 神经元层级的数组} NeuralNetwork;```接下来,我们需要实现神经网络的前馈传播算法。
前馈传播算法用于将输入数据从输入层传递到输出层,并计算网络的输出。
算法的伪代码如下所示:```Cfor each layer in network {for each neuron in layer {calculate neuron's weighted sum of inputs;apply activation function to obtain neuron's output;}}```最后,需要实现神经网络的反向传播算法,用于根据期望输出来调整网络的权重和偏差。
人工智能中的遗传算法及其应用
![人工智能中的遗传算法及其应用](https://img.taocdn.com/s3/m/72bac695b04e852458fb770bf78a6529647d35fb.png)
人工智能中的遗传算法及其应用随着时代的不断进步和科技的迅猛发展,人工智能已经成为了当今社会中最热门的技术领域之一。
在各种人工智能应用中,遗传算法也被广泛运用,成为了一种非常重要的人工智能算法。
一、遗传算法简介遗传算法在20世纪60年代被首次提出,是计算机科学领域中的一种计算优化算法。
它是一种通过模拟自然进化过程的人工智能算法,其思想是模拟遗传和进化过程,并通过选择、交叉和变异等操作,不断地试错和进化,最终找到最优解。
遗传算法的过程大致包括以下几个步骤:1.初始化:随机生成一定规模的个体群体,这些个体的每个基因(或决策变量)都通过一定的方式表示。
2.适应度函数:给每个个体计算适应度值,作为其被选择的概率。
3.选择:根据适应度值对每个个体进行选择,从而得到下一代的群体。
4.交叉:在新的个体群体中,对两个个体进行交叉,生成新的个体。
5.变异:以一定的概率对新的个体进行基因的突变。
6.终止条件:当满足终止条件时,选择最终的最优解。
二、遗传算法的应用领域1.机器学习机器学习是人工智能领域中的一个重要分支,它通过让机器学习数据并自我调整,来实现智能化。
遗传算法可以用于机器学习的许多方面。
例如,某些机器学习算法需要一个能够优化参数的函数,使用遗传算法可以帮助机器学习算法通过优化参数,得到更好的结果。
2.优化问题优化问题是一类重要的计算问题,遗传算法可以通过不断地尝试,寻找最优解并优化问题。
例如,优化目标函数、机器学习参数优化等问题都可以通过遗传算法来解决。
3.智能控制遗传算法也可以应用于智能控制领域中。
在控制系统中,要不断地进行决策,使用遗传算法优化控制方案,可以实现更加高效的决策和控制。
三、遗传算法的优点与缺点1.优点:(1)全局寻优能力强。
(2)基于种群的方法和概率搜索策略,可以避免陷入局部最小值的问题。
(3)可以应用于各种不同的问题领域,例如问题优化,机器学习,智能控制领域等。
(4)算法简单易实现。
2.缺点:(1)需要大量的计算资源。
遗传算法的原理与实现
![遗传算法的原理与实现](https://img.taocdn.com/s3/m/2f0e6c64302b3169a45177232f60ddccdb38e645.png)
遗传算法的原理与实现遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法。
它基于通过模拟遗传过程实现问题求解的思想,广泛应用于优化问题、机器学习、人工智能等领域。
本文将介绍遗传算法的基本原理与实现方法。
一、原理介绍1.1 遗传算法的基本概念遗传算法是由美国计算机科学家John Holland于1975年提出的,主要基于生物进化理论,以自然选择、遗传遗传和变异为基础。
它通过模拟自然界的进化过程,在解决复杂问题时搜索全局最优解或近似最优解。
1.2 基因编码遗传算法中的基本单位是染色体,染色体由一串基因组成。
基因编码是将待解决问题的参数转化为染色体上的一串二进制码或实数值,以便进行遗传操作。
1.3 适应度函数适应度函数(Fitness function)用于评价染色体的优劣程度。
它根据问题的性质设计,能够将每个染色体映射为一个实数值,表示其在解空间中的优化程度。
1.4 选择操作选择操作是基于适应度函数,按照染色体适应度高低进行选择,优秀的染色体被选中,普通的染色体可能也有一定概率被选中,而较差的染色体会被淘汰。
选择操作中常用的方法有轮盘赌选择和锦标赛选择。
1.5 交叉操作交叉操作是模拟自然界的杂交过程,用于生成新的个体。
在交叉操作中,从两个父代染色体中随机选择一点(交叉点),将两条染色体按照交叉点分隔,交叉生成两个新的个体。
1.6 变异操作变异操作是引入新的个体差异的过程。
在变异操作中,随机地选择染色体上的一个基因位,进行基因值的突变。
变异操作的目的是增加解的多样性,防止陷入局部最优解。
二、实现方法2.1 初始化种群遗传算法首先需要初始化一个种群,种群中的每个个体即为一个染色体,染色体通过基因编码来表示问题的解空间。
通常使用随机生成的初始解来初始化种群。
2.2 评估适应度对种群中的每个个体,使用适应度函数来评估其优劣程度。
适应度越高,个体在选择中的概率越大。
通过评估适应度,可以进一步确定种群中的优秀个体。
人工智能遗传算法及python代码实现
![人工智能遗传算法及python代码实现](https://img.taocdn.com/s3/m/aa1de9e9d05abe23482fb4daa58da0116c171f9f.png)
人工智能遗传算法及python代码实现人工智能遗传算法是一种基于生物遗传进化理论的启发式算法,常用于求解复杂的优化问题。
它的基本思想是通过自然选择和基因交叉等机制,在种群中不断进化出适应性更强的个体,最终找到问题的最优解。
遗传算法通常由以下几个步骤组成:1. 初始化种群:从问题空间中随机生成一组解作为初始种群。
2. 评价适应度:利用一个适应度函数来评价每个解的适应性,通常是优化问题的目标函数,如最小化代价、最大化收益等。
3. 选择操作:从种群中选择一些具有较高适应度的个体用于产生新的种群。
选择操作通常采用轮盘赌选择方法或精英选择方法。
4. 交叉操作:将两个个体的染色体进行交叉、重组,生成新的子代个体。
5. 变异操作:对新产生的子代个体随机变异一些基因,以增加种群的多样性。
6. 生成新种群:用选择、交叉和变异操作产生新的种群,并进行适应度评价。
7. 终止条件:如果达到终止条件,算法停止,否则返回步骤3。
遗传算法的优点是可以适应各种优化问题,并且求解精度较高。
但由于其需要进行大量的随机操作,因此效率相对较低,也较容易陷入局部最优解。
在实际应用中,遗传算法常与其他算法结合使用,以求得更好的结果。
以下是使用Python实现基本遗传算法的示例代码:import randomimport math# 定义适应度函数,用于评价每个个体的适应程度def fitness_func(x):return math.cos(20 * x) + math.sin(3 * x)# 执行遗传算法def genetic_algorithm(pop_size, chrom_len, pcross, pmutate, generations):# 初始化种群population = [[random.randint(0, 1) for j in range(chrom_len)] for i in range(pop_size)]# 迭代指定代数for gen in range(generations):# 评价种群中每个个体的适应度fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]# 选择操作:轮盘赌选择roulette_wheel = []for i in range(pop_size):fitness = fits[i]roulette_wheel += [i] * int(fitness * 100)parents = []for i in range(pop_size):selected = random.choice(roulette_wheel)parents.append(population[selected])# 交叉操作:单点交叉for i in range(0, pop_size, 2):if random.uniform(0, 1) < pcross:pivot = random.randint(1, chrom_len - 1)parents[i][pivot:], parents[i+1][pivot:] = parents[i+1][pivot:], parents[i][pivot:]# 变异操作:随机翻转一个基因for i in range(pop_size):for j in range(chrom_len):if random.uniform(0, 1) < pmutate:parents[i][j] = 1 - parents[i][j]# 生成新种群population = parents# 返回种群中适应度最高的个体的解fits = [fitness_func(sum(population[i]) / (chrom_len * 1.0)) for i in range(pop_size)]best = fits.index(max(fits))return sum(population[best]) / (chrom_len * 1.0)# 测试遗传算法print("Result: ", genetic_algorithm(pop_size=100, chrom_len=10, pcross=0.9, pmutate=0.1, generations=100))上述代码实现了遗传算法,以优化余弦函数和正弦函数的和在某个区间内的最大值。
智能计算实验报告总结(3篇)
![智能计算实验报告总结(3篇)](https://img.taocdn.com/s3/m/c91bbe03dcccda38376baf1ffc4ffe473368fdcd.png)
第1篇一、实验背景随着计算机科学、人工智能、大数据等领域的快速发展,智能计算技术逐渐成为当前研究的热点。
为了更好地掌握智能计算的基本原理和应用,我们进行了为期两周的智能计算实验。
本次实验旨在让学生通过实践操作,加深对智能计算理论知识的理解,提高解决实际问题的能力。
二、实验内容1. 实验环境本次实验所使用的软件平台为Python,主要利用NumPy、Pandas、Scikit-learn等库进行智能计算实验。
硬件环境为个人计算机,操作系统为Windows或Linux。
2. 实验步骤(1)数据预处理数据预处理是智能计算实验的第一步,主要包括数据清洗、数据集成、数据转换等。
通过NumPy和Pandas库对实验数据进行预处理,为后续的智能计算模型提供高质量的数据。
(2)特征工程特征工程是智能计算实验的关键环节,通过对原始数据进行降维、特征选择等操作,提高模型的预测性能。
本实验采用特征选择方法,利用Scikit-learn库实现。
(3)模型选择与训练根据实验需求,选择合适的智能计算模型进行训练。
本次实验主要涉及以下模型:1)线性回归模型:通过线性回归模型对实验数据进行预测,分析模型的拟合效果。
2)支持向量机(SVM)模型:利用SVM模型对实验数据进行分类,分析模型的分类性能。
3)决策树模型:采用决策树模型对实验数据进行预测,分析模型的预测性能。
4)神经网络模型:使用神经网络模型对实验数据进行分类,分析模型的分类性能。
(4)模型评估与优化对训练好的模型进行评估,根据评估结果对模型进行优化。
主要采用以下方法:1)交叉验证:利用交叉验证方法评估模型的泛化能力。
2)参数调整:通过调整模型参数,提高模型的预测性能。
3)特征选择:根据模型评估结果,重新进行特征选择,进一步提高模型的性能。
三、实验结果与分析1. 数据预处理经过数据清洗、数据集成、数据转换等操作,实验数据的质量得到了显著提高。
预处理后的数据满足后续智能计算模型的需求。
python实现遗传算法求函数最大值(人工智能作业)
![python实现遗传算法求函数最大值(人工智能作业)](https://img.taocdn.com/s3/m/f695b4720a1c59eef8c75fbfc77da26925c5969b.png)
python实现遗传算法求函数最⼤值(⼈⼯智能作业)题⽬:⽤遗传算法求函数f(a,b)=2a x sin(8PI x b) + b x cos(13PI x a)最⼤值,a:[-3,7],b:[-4:10]实现步骤:初始化种群计算种群中每个个体的适应值淘汰部分个体(这⾥是求最⼤值,f值存在正值,所以淘汰所有负值)轮盘算法对种群进⾏选择进⾏交配、变异,交叉点、变异点随机分析:为了⽅便,先将⾃变量范围调整为[0,10]、[0,14]有两个变量,种群中每个个体⽤⼀个列表表⽰,两个列表项,每项是⼀个⼆进制字符串(分别由a、b转化⽽来)种群之间交配时需要确定交叉点,先将个体染⾊体中的两个⼆进制字符串拼接,再确定⼀个随机数作为交叉点为了程序的数据每⼀步都⽐较清晰正确,我在select、crossover、mutation之后分别都进⾏了⼀次适应值的重新计算具体代码:import mathimport randomdef sum(list):total = 0.0for line in list:total += linereturn totaldef rand(a, b):number = random.uniform(a,b)return math.floor(number*100)/100PI = math.pidef fitness(x1,x2):return 2*(x1-3)*math.sin(8*PI*x2)+(x2-4)*math.cos(13*PI*x1)def todecimal(str):parta = str[0:4]partb = str[4:]numerical = int(parta,2)partb = partb[::-1]for i in range(len(partb)):numerical += int(partb[i])*math.pow(0.5,(i+1))return numericaldef tobinarystring(numerical):numa = math.floor(numerical)numb = numerical - numabina = bin(numa)bina = bina[2:]result = "0"*(4-len(bina))result += binafor i in range(7):numb *= 2result += str(math.floor(numb))numb = numb - math.floor(numb)return resultclass Population:def __init__(self):self.pop_size = 500 # 设定种群个体数为500self.population = [[]] # 种群个体的⼆进制字符串集合,每个个体的字符串由⼀个列表组成[x1,x2]self.individual_fitness = [] # 种群个体的适应度集合self.chrom_length = 22 # ⼀个染⾊体22位self.results = [[]] # 记录每⼀代最优个体,是⼀个三元组(value,x1_str,x2_str)self.pc = 0.6 # 交配概率self.pm = 0.01 # 变异概率self.distribution = [] # ⽤于种群选择时的轮盘def initial(self):for i in range(self.pop_size):x1 = rand(0,10)x2 = rand(0,14)x1_str = tobinarystring(x1)x2_str = tobinarystring(x2)self.population.append([x1_str,x2_str]) # 添加⼀个个体fitness_value = fitness(x1,x2)self.individual_fitness.append(fitness_value) # 记录该个体的适应度self.population = self.population[1:]self.results = self.results[1:]def eliminate(self):for i in range(self.pop_size):if self.individual_fitness[i]<0:self.individual_fitness[i] = 0.0def getbest(self):"取得当前种群中的⼀个最有个体加⼊results集合"index = self.individual_fitness.index(max(self.individual_fitness))x1_str = self.population[index][0]x2_str = self.population[index][1]value = self.individual_fitness[index]self.results.append((value,x1_str,x2_str,))def select(self):"轮盘算法,⽤随机数做个体选择,选择之后会更新individual_fitness对应的数值""第⼀步先要初始化轮盘""选出新种群之后更新individual_fitness"total = sum(self.individual_fitness)begin = 0for i in range(self.pop_size):temp = self.individual_fitness[i]/total+beginself.distribution.append(temp)begin = tempnew_population = []new_individual_fitness = []for i in range(self.pop_size):num = random.random() # ⽣成⼀个0~1之间的浮点数j = 0for j in range(self.pop_size):if self.distribution[j]<num:continueelse:breakindex = j if j!=0 else (self.pop_size-1)new_population.append(self.population[index])new_individual_fitness.append(self.individual_fitness[index])self.population = new_populationself.individual_fitness = new_individual_fitnessdef crossover(self):"选择好新种群之后要进⾏交配""注意这只是⼀次种群交配,种群每⼀次交配过程,会让每两个相邻的染⾊体进⾏信息交配"for i in range(self.pop_size-1):if random.random()<self.pc:cross_position = random.randint(1,self.chrom_length-1)i_x1x2_str = self.population[i][0]+self.population[i][1] # 拼接起第i个染⾊体的两个⼆进制字符串i1_x1x2_str = self.population[i+1][0]+self.population[i+1][1] # 拼接起第i+1个染⾊体的两个⼆进制字符串 str1_part1 = i_x1x2_str[:cross_position]str1_part2 = i_x1x2_str[cross_position:]str2_part1 = i1_x1x2_str[:cross_position]str2_part2 = i1_x1x2_str[cross_position:]str1 = str1_part1+str2_part2str2 = str2_part1+str1_part2self.population[i] = [str1[:11],str1[11:]]self.population[i+1] = [str2[:11],str2[11:]]"然后更新individual_fitness"for i in range(self.pop_size):x1_str = self.population[i][0]x2_str = self.population[i][1]x1 = todecimal(x1_str)x2 = todecimal(x2_str)self.individual_fitness[i] = fitness(x1,x2)def mutation(self):"个体基因变异"for i in range(self.pop_size):if random.random()<self.pm:x1x2_str = self.population[i][0]+self.population[i][1]pos = random.randint(0,self.chrom_length-1)bit = "1" if x1x2_str[pos]=="0" else "0"x1x2_str = x1x2_str[:pos]+bit+x1x2_str[pos+1:]self.population[i][0] = x1x2_str[:11]self.population[i][1] = x1x2_str[11:]"然后更新individual_fitness"for i in range(self.pop_size):x1_str = self.population[i][0]x2_str = self.population[i][1]x1 = todecimal(x1_str)x2 = todecimal(x2_str)self.individual_fitness[i] = fitness(x1, x2)def solving(self,times):"进⾏times次数的整个种群交配变异""先获得初代的最优个体"self.getbest()for i in range(times):"每⼀代的染⾊体个体和适应值,需要先淘汰,然后选择,再交配、变异,最后获取最优个体。
遗传算法的并行实现
![遗传算法的并行实现](https://img.taocdn.com/s3/m/6f6399fbad51f01dc281f12d.png)
遗传算法的并行实现章衡 2007310437一、 问题描述遗传算法是通过模拟自然界生物进化过程来求解优化问题的一类自组织、自适应的人工智能技术。
它主要基于达尔文的自然进化论和孟德尔的遗传变异理论。
多数遗传算法的应用是处理一个由许多个体组成的群体,其中每个个体表示问题的一个潜在解。
对个体存在一个评估函数来评判其对环境的适应度。
为反映适者生存的思想,算法中设计一个选择机制,使得:适应度好的个体有更多的机会生存。
在种群的进化过程中,主要存在两种类型的遗传算子:杂交和变异。
这些算子作用于个体对应的染色体,产生新的染色体,从而构成下一代种群中的个体。
该过程不断进行,直到找到满足精度要求的解,或者达到设定的进化代数。
显然,这样的思想适合于现实世界中的一大类问题,因而具有广泛的应用价值。
遗传算法的每一次进化过程中的,各个体之间的操作大多可以并列进行,因此,一个非常自然的想法就是将遗传算法并行化,以提高计算速度。
本报告中试图得到一个并行遗传算法的框架,并考察并行化之后的一些特性。
为简单起见(本来应该考虑更复杂的问题,如TSP 。
因时间有些紧张,请老师原谅),考虑的具有问题是:对给定的正整数n 、n 元函数f ,以及定义域D ,求函数f 在D 内的最大值。
二、 串行遗传算法 1. 染色体与适应度函数对函数优化问题,一个潜在的解就是定义域D 中的一个点011(,,...,)n x x x -,因此,我们只需用一个长度为n 的实数数组来表示一个个体的染色体。
由于问题中要求求函数f 的最大值,我们可以以个体所代表点011(,,...,)n x x x -在f 函数下的值来判断该个体的好坏。
因此,我们直接用函数f 作为个体的适应度函数。
2. 选择机制选择是遗传算法中最主要的机制,也是影响遗传算法性能最主要的因素。
若选择过程中适应度好的个体生存的概率过大,会造成几个较好的可行解迅速占据种群,从而收敛于局部最优解;反之,若适应度对生存概率的影响过小,则会使算法呈现出纯粹的随机徘徊行为,算法无法收敛。
基于遗传算法求解TSP问题实验报告
![基于遗传算法求解TSP问题实验报告](https://img.taocdn.com/s3/m/6f5c0deef705cc175527099b.png)
基于遗传算法求解TSP问题班级,学号,姓名摘要:巡回旅行商问题(TSP)是一个组合优化方面的问题,从理论上讲,使用穷举法不但可以求解TSP问题,而且还可以得到最优解。
但是,利用穷举法所耗费的时间巨大的,当问题的规模很大时,穷举法的执行效率较低,不能满足及时的需要。
遗传算法是计算机科学人工智能领域中用于解决最优化的一种搜索启发式算法,是进化算法的一种。
该算法通过模拟生物学交叉、变异等方式,是当前向最优解的方向进化,因此使用于TSP问题的求解。
关键词:人工智能;TSP问题;遗传算法本组成员:林志青,韩会雯,赵昊罡本人分工:掌握遗传算法的基本原理,编写遗传算法中部分匹配交叉、循环交叉和循序交叉的具体实现过程。
1 引言旅行商问题,即TSP问题,是一个最优解的求解问题。
假设有n个城市,并且每个城市之间的距离已知,则如何只走一遍并获得最短路径为该问题的具体解释。
对于TSP问题的解决,有穷举法、分支限界法等求解方式,该文章主要介绍遗传算法求解过程。
遗传算法简称GA,在本质上是一种求解问题的高效并行全局搜索方法。
遗传算法从任意一个初始化的群体出发,通过随机选择、交叉和变异等遗传操作,使群体一代一代的进化到搜索空间中越来越好的区域,直至抵达最优解。
在遗传算法中,交叉操作为主要操作之一,包括部分匹配交叉、循环交叉和顺序交叉等。
2 算法原理与系统设计执行遗传算法,根据需要设定相应的交叉因子、变异因子和迭代次数,并选择相应的交叉算法,当程序图形显示并运算时会得到当前的最优解,判断是否获得最终的最优解,若已得到所需结果,则停止运行,否则继续执行。
具体流程图如下所示:部分匹配交叉(PMX):先随机生成两个交叉点,定义这两点间的区域为匹配区域,并交换两个父代的匹配区域。
如下图所示:父代A:872 | 130 | 9546父代B:983 | 567 | 1420交换后变为:temp A: 872 | 567 | 9546temp B: 983 | 130 | 1420对于 temp A、tempB中匹配区域以外出现的数码重复,要依据匹配区域内的位置逐一进行替换。
人工智能算法实训课程学习总结遗传算法在优化问题中的应用实践
![人工智能算法实训课程学习总结遗传算法在优化问题中的应用实践](https://img.taocdn.com/s3/m/65b6f790b8f3f90f76c66137ee06eff9aef849aa.png)
人工智能算法实训课程学习总结遗传算法在优化问题中的应用实践人工智能算法实训课程学习总结:在人工智能领域中,算法是至关重要的工具,能够帮助解决各种复杂的问题。
而在人工智能算法实训课程中,我学习到了很多不同类型的算法,并深入了解了其中一种算法——遗传算法在优化问题中的应用实践。
本文将对我在学习过程中的体验和理解进行总结。
首先,遗传算法是一种模拟自然界中生物进化过程的优化算法。
它通过在候选解之间模拟遗传操作,不断地进化和改进当前最优解,以寻找问题的最佳解决方案。
遗传算法的应用非常广泛,包括旅行商问题、背包问题、机器学习中的参数优化等。
在实训课程中,我们学习了遗传算法的基本原理和操作过程。
首先,我们需要定义适应度函数,来度量每个候选解的优劣程度。
适应度函数通常根据问题的特点而定,可以是最大化或最小化的函数。
接下来,在遗传算法的运行过程中,我们应用了一些基本的遗传操作,如选择、交叉和变异。
选择操作通过选取适应度较高的个体作为父代,保留优秀的基因,以提高下一代的品质。
而交叉和变异则是模拟基因的组合与变异过程,使得种群能够具备更好的探索和搜索能力。
除了基本的遗传操作,我们还学习了进化策略、多目标优化等高级的遗传算法变体。
进化策略是一种通过调整参数来实现更精确的优化结果的方法。
而多目标优化则是在解决多个目标的情况下,如何通过适应度函数和遗传操作来找到一组最优解。
在实践环节中,我们运用遗传算法解决了多个优化问题。
其中一个例子是旅行商问题,即在给定一系列城市之间的距离,如何找到一条最短路径,使得旅行商能够经过每个城市一次并最终回到起点。
通过定义适应度函数以及选择、交叉、变异等遗传操作,我们成功地找到了不同规模下的最优解。
另一个例子是背包问题,即在给定一些物品的重量和价值,如何在背包容量有限的情况下,选择物品放入背包,使得背包中的物品总价值最大。
我们将每个物品看作一个基因,通过遗传操作逐步优化选择的物品组合,从而找到最佳解决方案。
遗传算法与人工智能
![遗传算法与人工智能](https://img.taocdn.com/s3/m/e5eaf6582379168884868762caaedd3383c4b524.png)
遗传算法与人工智能遗传算法(Genetic Algorithm,GA)作为一种优化算法,近年来在人工智能领域得到了广泛应用。
它模拟进化理论中的基本原理,通过模拟自然进化中的选择、交叉和变异等操作,以求解复杂的优化问题。
本文将介绍遗传算法的基本原理、应用领域以及与人工智能的关系。
一、遗传算法的基本原理及流程遗传算法的基本原理源于达尔文的自然选择理论。
它将问题的解表示为个体,通过不断迭代进化的过程,逐渐找到最优解。
遗传算法的基本流程主要包括以下几个步骤:1. 初始化种群:根据问题的特点,生成初始的解集合,形成初始种群。
2. 评估适应度:对每个个体进行适应度评估,即根据问题的目标函数计算每个个体的适应度值。
3. 选择操作:根据适应度值,按照一定的概率选择适应度较高的个体,并将其复制到下一代。
4. 交叉操作:从当前代中选择两个个体,并通过基因交叉操作生成新的个体。
5. 变异操作:对新生成的个体进行基因突变操作,引入新的基因。
6. 重复步骤3至步骤5,直到满足终止条件(例如达到最大迭代次数)。
7. 输出最优解:返回最优解或近似最优解。
二、遗传算法在人工智能中的应用领域1. 优化问题:遗传算法在诸如函数优化、路径规划、调度等问题中有着广泛的应用。
通过不断迭代,找到最优的解决方案,提高了问题的效率和质量。
2. 特征选择:在机器学习任务中,提取特征是一个重要的步骤。
遗传算法可以用于选择最佳的特征子集,减少特征维度,提高模型训练的效果和速度。
3. 神经网络优化:神经网络是人工智能的重要组成部分。
通过遗传算法对神经网络的权重和结构进行优化,可以提升网络的性能和泛化能力。
4. 参数调优:在许多机器学习算法中,需要手动调整参数的取值,以达到最佳的性能。
遗传算法可以通过迭代搜索,自动找到最佳参数组合。
三、遗传算法与人工智能的关系遗传算法作为一种启发式算法,能够在问题空间中搜索到全局或局部的最优解。
在人工智能领域,遗传算法通过模拟进化的方式,以一种自适应的方式逐步优化解决方案。
遗传算法在人工智能中的应用
![遗传算法在人工智能中的应用](https://img.taocdn.com/s3/m/78a8150bc950ad02de80d4d8d15abe23482f031b.png)
遗传算法在人工智能中的应用遗传算法是一种基础的人工智能算法,它主要用于优化问题的求解。
该算法通过不断的演化、变异和选择来找到最优解。
由于遗传算法的可靠性和高效性,它已经被广泛应用于许多领域,如机器学习、图像识别、金融预测等。
本文将探讨遗传算法在人工智能中的应用,并介绍其原理和实现方法。
一、遗传算法的原理遗传算法的原理是受生物遗传学启发而来的。
它通过模拟自然选择和遗传操作的过程,来不断迭代优化问题的解。
遗传算法基于个体之间的相似性来决定哪些个体更适合生存和繁殖。
具体过程如下:1. 初始化种群:随机生成一组个体,每个个体都是问题的一个解;2. 确定适应度函数:适应度函数用于衡量每个个体的优劣程度,越优越得高分;3. 选择:根据适应度函数的值,选择一些优秀的个体进入下一代;4. 交叉:选出若干个父代个体进行相互交叉操作,生成若干个子代个体;5. 变异:对生成的子代进行变异操作,以增加搜索空间;6. 生成新种群:将变异后得到的个体和原种群中没有被选中的个体组合形成新一代种群,然后回到第二步。
遗传算法的本质就是借助随机化的思想来进行搜索。
该算法可以有效的帮助我们找到问题的最优解。
二、遗传算法的应用场景1. 控制问题:如控制信号的设计和控制系统的优化。
2. 预测问题:如股市预测、生产预测和气象预测等。
3. 基因工程:如代谢工程、基因调制和优化等。
4. 机器学习:通过遗传算法搜索最优的特征集合,以提高机器学习算法的性能。
遗传算法还可以用于图像识别、语音识别、自然语言处理和模式识别等问题的求解。
尤其在深度学习领域,遗传算法可以帮助我们搜索最优的神经网络结构和算法参数。
三、遗传算法的实现方法遗传算法的实现方法可以分为以下几步:1. 问题建模:将问题抽象成数学模型。
2. 初始化种群:生成一组随机的初始解集合。
3. 确定适应度函数:根据问题的特点和求解目标,设计合适的适应度函数。
4. 选择操作:根据适应度函数的值,选择一些优秀的个体进入下一代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mutationRate=Float.parseFloat(JOptionPane.showInputDialog("请输入突变率0-0.2)"));
lefttb=(float)(Math.floor(geneY[sjintdata]/0.01));
middtb=(float)(Math.floor(10*Math.random()));
righttb=(float)((geneY[sjintdata]%0.01)%0.1);
geneY[sjintdata]=(float)(lefttb*0.01+middtb*0.1+righttb);
Thread threadc=new Thread(threada);
threadc.start();
}
static class gbck extends WindowAdapter
right1=geneX[sjintdata1]%10;
left2=(float)(Math.floor(geneX[sjintdata2]/10));
right2=geneX[sjintdata2]%10;
geneX[sjintdata1]=left1*10+right2;
geneX[sjintdata2]=left2*10+right1;
【实验环境】
Windows 7
Jdk 1.7
myeclise
【实验过程与结果】(附主要源码及运行结果截图)
1、源代码:
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import ng.Math.*;
lefttb=(float)(Math.floor(geneX[sjintdata]/0.01));
middtb=(float)(Math.floor(10*Math.random()));
righttb=(float)((geneX[sjintdata]%0.01)%0.1);
geneX[sjintdata]=(float)(lefttb*0.01+middtb*0.1+righttb);
//种群初始化
geneX=new float [geneNumber];
geneY=new float [geneNumber];
fit=new float [geneNumber];
fitness=new float [geneNumber];
cumulativeProbability=new float [geneNumber+1];
if(k>generation-2)
{
System.exit(0);
}
Thread.sleep((int)(1000));
}
catch(InterruptedException e)
{
System.out.println(e.toString());
}
repaint();
}
public static void ycsf()
private static int sjintdata;
private static int sjintdata1;
private static int sjintdata2;
private static float left1;
private static float right1;
private static float left2;
private static int geneNumber;
private static int generation;
private static float crossoverRate;
private static float mutationRate;
private static float sjdata;
for(int j=0;j<geneNumber;j++)
{
if ((sjdata<cumulativeProbability[j+1])&&(sjdata>cumulativeProbability[j]))
{
geneX[i]=geneXX[j];
geneY[i]=geneYY[j];
}
}
}
//基因的交叉
ycsf();
gapid threada=new gapid();
threada.setTitle("用遗传算法优化PID参数");
threada.setSize(800,600);
threada.addWindowListener(new gbck());
threada.setVisible(true);
left1=(float)(Math.floor(geneY[sjintdata1]/10));
right1=geneY[sjintdata1]%10;
left2=(float)(Math.floor(geneY[sjintdata2]/10));
right2=geneY[sjintdata2]%10;
private static float h;
private static int k=0;
public void run()
{
repaint();
}
public void paint(Graphics g)
{
g.setColor(new Color(0,0,0));
for(int i=0;i<geneNumber;i++)
private static float right2;
private static float lefttb;
private static float middtb;
private static float righttb;
private static float min=10000;
private static float s;
人工智能
实 验 报 告
实验名称__遗传算法的设计与实现_
学 院数计学院
班 级计科21202
学 号**********
姓 名许 小 刚
学 号
1261081068
姓名
许小刚
实验日期
2015 5 13
实验名称
遗传算法的设计与实现
【实验目的】
通过人工智能课程的学习,熟悉遗传算法的简单应用
【实验内容】
用遗传算法求解f (x) = x2的最大值,x∈[0,31],x取整数。
for(int i=0;i<geneNumber;i++)
{
geneX[i]=(float)(1000*Math.random());
geneY[i]=(float)(600*Math.random());
}
cumulativeProbability[0]=0;
//基因开始演化直到满足所需精度为止。
{
for(int i=0;i<geneNumber;i++)
{
//计算每个基因的适应度。
s = (float)(-0.5+Math.sin(Math.sqrt(Math.pow(geneX[i],2)+Math.pow(geneY[i],2))));
h = (float)(Math.pow((1+0.001*(Math.pow(geneX[i],2)+Math.pow(geneY[i],2))),2));
可以看出该函数比较简单,只要是为了体现遗传算法的思想,在问题选择上,选了一个比较容易实现的,把主要精力放在遗传算法的实现,以及核心思想体会上。
【实验原理】遗传算法:遗传算法是借鉴生物界自然选择和群体进化机制形成的一种全局寻优算法。与传统的优化算法相比,遗传算法具有如下优点:不是从单个点,而是从多个点构成的群体开始搜索;在搜索最优解过程中,只需要由目标函数值转换得来的适应值信息,而不需要导数等其它辅助信息;搜索过程不易陷入局部最优点。目前,该算法已渗透到许多领域,并成为解决各领域复杂问题的有力工具。在遗传算法中,将问题空间中的决策变量通过一定编码方法表示成遗传空间的一个个体,它是一个基因型串结构数据;同时,将目标函数值转换成适应值,它用来评价个体的优劣,并作为遗传操作的依据。遗传操作包括三个算子:选择、交叉和变异。选择用来实施适者生存的原则,即把当前群体中的个体按与适应值成比例的概率复制到新的群体中,构成交配池(当前代与下一代之间的中间群体)。选择算子的作用效果是提高了群体的平均适应值。由于选择算子没有产生新个体,所以群体中最好个体的适应值不会因选择操作而有所改进。交叉算子可以产生新的个体,它首先使从交配池中的个体随机配对,然后将两两配对的个体按某种方式相互交换部分基因。变异是对个体的某一个或某一些基因值按某一较小概率进行改变。从产生新个体的能力方面来说,交叉算子是产生新个体的主要方法,它决定了遗传算法的全局搜索能力;而变异算子只是产生新个体的辅助方法,但也必不可少,因为它决定了遗传算法的局部搜索能力。交叉和变异相配合,共同完成对搜索空间的全局和局部搜索
fit[i]= (float)(Math.abs(-0.5+(s / h)));
sump=sump+fit[i];
if(min>fit[i])