ansys关于一个beam的弹簧阻尼单元的谐响应分析命令流
Ansys 动力学 谐响应分析
M3-5
谐响应分析
第二节:术语和概念
包含的主题: • 运动方程 • 谐波载荷的本性 • 复位移 • 求解方法
M3-6
谐响应分析-术语和概念
运动方程
• 通用运动方程:
C u K u F M u
[F]矩阵和 {u}矩阵是简谐的,频率为 w:
•
F Fmaxe e u umaxei eiw t
观看结果 - POST1
观看整个结构的结果 • 进入POST1,且列出结果综述表,确定临界频率的载荷步和子步序号;
典型命令: /POST1 SET,LIST
M3-33
谐响应分析-步骤
观看结果 - POST1(接上页)
• 使用 HRCPLX 命令读入在期望频率和相角 时的结果: – HRCPLX, LOADSTEP, SUBSTEP, PHASE, ... – 例如: HRCPLX,2,4,85.7 绘制变形图,应力等值线图和其它期望的结 果。 典型命令:
M3-36
M3-24
谐响应分析-步骤
施加谐波载荷并求解(接上页)
阶梯载荷对线性变化载荷: • 采用若干子步,可以逐渐地施加载荷(线性变化载荷),或者在第 一个子步立刻施加载荷(阶梯载荷); • 谐波载荷通常是阶梯加载,因为载荷值代表的是最大振幅。
M3-25
谐响应分析-步骤
施加谐波载荷并求解(接上页)
• • 在施加谐波载荷后,下一步就是开始求解 通常采用一个载荷步,但是可以采用若干子 步,且每个子步具有不同的频率范围
HRCPLX,…
PLDISP,2 PLNSOL,… FINISH
•
M3-34
谐响应分析步骤
建立模型 选择分析类型和选项 施加谐波载荷和求解 观看结果
谐响应中阻尼的设置及其工程应用
【拉布索思】谐响应中阻尼的设置及其工程应用讨论背景这里主要讨论的是ANSYS(Workbench)中模态叠加法(包括瞬态中用模态叠加)的阻尼比(包括α、β阻尼)设置问题,不考虑材料的阻尼比。
各阻尼比的解释这里会把阻尼都写成阻尼比的形式,因为阻尼比最直观,也可以在实验中得到。
那么,总阻尼比为:其中,是常值阻尼比,是作用于所有阶的模态,而且值是恒定的,在Constant Damping Ratio 设置;是第i阶模态的阻尼比,用来设定某些阶的阻尼比,要通过命令MDAMP设置(命令解释请看help,命令使用实例请看下面例子);,这是β阻尼相应的阻尼比,也是作用于所有阶的模态,但值随频率增大而线性增大。
HELP中说,在很多实际结构问题中,α会被忽略,所以上式中就没有α只有β,我是这么猜的,因为通常实际问题的频率都在几十到几千赫兹不等,那么就比较小,可以忽略。
反正,在Workbench界面中是没有α的设置项的,默认α=0,要设的话就要加命令,这里也不讨论α了。
那么β值就决定了这个阻尼比,而因为β值是恒定的,所以这个阻尼比会随频率增大而线性增大,就能起到抑制高频的作用。
AWB中有两种输入β阻尼的方法,一是直接输入β值(Direct Input),二是输入某个频率下的阻尼比(Dampingvs Frequency),系统就会根据来计算出β值,界面中的Beta Damping Measure就是。
通过两种输入方法设置了β值后,系统就会自动求出各阶的β阻尼比,个人喜欢用第二种方法,因为设置阻尼比更直观,结合使用另外两个阻尼比时会更方便;注意,三个阻尼比的效果是叠加的。
为什么要设置阻尼?首先,加阻尼对共振频率的影响很小,比如是固有频率乘以,所以阻尼对共振频率的影响可以忽略。
那我认为,阻尼的主要作用是压低共振处的幅值,使频响曲线变得更平缓。
而实际结构中一定有阻尼,所以分析中适当设置一定的阻尼会比较接近实际。
如果阻尼都取为0(默认值)的话,频呼曲线的峰值会相当大,理论上是无穷大的。
谐响应分析理论求解与ANSYS求解
虽然在ANSYS中进行谐响应分析是一个很简单的过程,只需要几行代码就可以实现。
很多朋友根据书上或者网上已有的分析代码稍作修改就可以进行分析了。
但是其中很多概念是否理解了呢,得到的结果有什么实际意义呢。
下面通过介绍一个单自由度的弹簧振子的谐响应分析理论求解,然后在ANSYS中求解。
通过两种结果的对比,以解释一些概念。
这个例子是Help手册中的VM86,很多振动学的教材中都会有这样的例子。
1.问题描述如上图是一个典型的单自由度弹簧振子系统。
假设此系统承受谐激励载荷。
其中为激励载荷的幅值,为载荷的周期。
2.理论基础此系统的动力方程为:(1)这个方程的求解方法很多,下面介绍一种最常用的求解方式:方程两边同除以,得到(2)如果令,则上式可以写成:(3)这个方程的解分为两部分,一部分为齐次方程的解,就是阻尼系统的自由振动响应,自由振动响应随时间衰减,最后消失,所以自由振动响应也叫瞬态响应。
另一部分是特解,也就是强迫振动响应。
不会随时间衰减,所以称为稳态响应。
由于系统是线性系统,瞬态响应和稳态响应可分别求解,然后合成为系统的总响应。
下面介绍如何求解系统的稳态响应,即方程(3)的特解。
由于激振力为简谐力,可以证明系统的稳态响应也是简谐的,并且与激振力有同样的频率。
设系统的稳态响应有如下形式:(4)其中,和分别是系统响应的幅值和相位。
将式(4)代入方程式(3),可得(5)利用三角函数关系故有,(6)求解上式可得到(7)这样就得到了系统稳态响应的幅值和相位角对于方程(3)的齐次方程的解,也就是瞬态解这里只是给出求解结果,以后有机会再写详细的求解过程。
有阻尼系统的自由振动方程为:(8)工程中阻尼一般比较小,此方程的解可以表示为:于是振动微分方程的(1)的解为:画出此响应曲线如下图:从图中可以看到,正如前面所说的,由于阻尼的存在,瞬态响应部分随时间的增加很快就消失了。
所以通常进行谐强迫振动分析时,我们只需关注系统的稳态解,也就是求解幅值和相位角。
ANSYS谐响应分析命令流全文
可编辑修改精选全文完整版/FILNAME, Beam,1 !定义工作文件名。
/TITLE, Beam Analysis !定义工作标题。
/PREP7!定义单元。
ET,1,BEAM188!定义材料属性。
MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,EX,1,,2.1e5MPDATA,PRXY,1,,0.3MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7.9e-6! 定义杆件截面■200。
SECTYPE, 1, BEAM, RECT, , 0SECOFFSET, CENTSECDATA,10,10,0,0,0,0,0,0,0,0!建立几何模型。
K,1, ,, ,K,2,350,, ,!生成立柱。
LSTR, 1, 2!以上完成几何模型。
!以下进行网格划分。
FLST,5,1,4,ORDE,1FITEM,5,1CM,_Y,LINELSEL, , , ,P51XCM,_Y1,LINECMSEL,,_YLESIZE,_Y1, , ,50, , , , ,1 !定义单元大小。
!分配、划分平板结构。
LMESH, 1!分析类型施加载荷并求解。
ANTYPE,2 !定义分析类型及求解设置。
MSAVE,0 !模态提取方法。
MODOPT,LANB,40EQSLV,SPARMXPAND,40, , ,0 !模态扩展设置。
LUMPM,0PSTRES,0MODOPT,LANB,40,0,0, ,OFF!施加约束。
FLST,2,2,3,ORDE,2FITEM,2,1FITEM,2,-2/GODK,P51X, , , ,0,ALL, , , , , ,!求解。
FINISH/SOL/STA TUS,SOLUSOLVE!以下进入谐响应分析模式。
*AFUN,DEG !指定角度单位为度。
FLST,2,1,1,ORDE,1FITEM,2,81/GOFINISH/SOL !重新进入ANSYS求解器。
ANSYSWorkbench正弦响应分析之详细版
ANSYSWorkbench正弦响应分析之详细版这是 ANSYS 工程实战第 42 篇文章问题描述:正弦分析选用的项目模块为谐响应分析(Harmonic Response),这里对谐响应分析的关键知识点和正弦分析具体分析步骤和方法进行了详细介绍。
1. 谐响应分析理论介绍1.1 谐响应分析的定义谐响应分析是用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
1.2 谐响应分析的目的谐响应分析的目的是计算出结构在几种频率下的响应并得到一些响应值对频率的曲线(如位移对频率曲线),从这些曲线上可以找到“峰值”响应,并进一步考察频率对应的应力。
1.3 谐响应分析的输入条件谐响应分析的输入条件:相同频率的多种载荷。
1.4 谐响应分析的运算求解方法谐响应分析的运算求解方法包括完全法(Full)和模态叠加法(Mode Superposition)。
完全法是一种最简单的方法,不需要先进行模态分析,但求解更耗时,对于复杂结构,8核并行运算,一般计算时间在3h以上。
模态叠加法是 Workbench 谐响应计算的默认求解方法,从模态分析中叠加模态振型。
采用模态叠加法进行谐响应分析时,首先需要自动进行一次模态分析,虽然首先进行的是模态分析,但谐响应部分的求解仍然比完全法快的多。
一般对于复杂结构,8核并行运算,谐响应部分的计算时间小于0.5h。
2. 用完全法进行正弦分析的分析步骤及设置2.1 插入响应模块完全法进行正弦分析时直接将 Analysis Systems 下的 Harmonic Response 谐响应模块拉到项目管理区中或者直接引用项目管理区中模态分析的模型(Model),如图 1 所示。
图 1 插入响应模块2.2 三维模型导入及处理在 Inventor 软件中对行波管进行建模,经过模型干涉检查合格后,将建立好的模型生成stp 格式,导入到有限元软件ANSYS Workbench 中,行波管模型如图 2 所示,包括底板、包装件、电子枪、收集极和高频等组件。
ansys谐响应分析1
ansys谐响应分析1 002.谐响应分析的求解方法。
full(完全法)reduced(缩减法)modesuperpos'n(模态叠加法)full(完全法)允许定义各种类型的荷载;预应力选项不可用;reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等)modesuperpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应。
可以包含预应力,可以考虑振型阻尼,不能施加非零位移谐响应分析的基本步骤:完全法分析过程有3个主要步骤:建模,加载求解,结果后处理1.建立模型同样非线性行为将被忽略2.加载求解*指定分析类型为:harmonic*指定分析选项:包括solutionmethod和dofprintoutformat(解的输出形式)及uselumpedmassapprox?(质量矩阵形成方式)*在模型上加载:谐响应分析所加的载荷随时间按正弦规律变化。
指定一个完整的简谐荷载需要输入3条信息。
幅值(amplitude)、相位角(phaseangle)、强制频率范围(forcingfrequencyrange)注意:谐响应分析不能同时计算多个频率的荷载作用,但可以分别计算,后叠加。
*谐响应分析荷载步选项普通选项:numberofsubstebs(谐响应节数目),选择加载方式steppedorramped动力学选项:频率范围frequencerange,阻尼(damping)输出控制选项:*开始求解3.观察结果缩减法谐响应分析步骤1.建模2.加载并得减缩解3.观察节缩解结果4.扩展解5.观察扩展的解结果与full法不同的是,要定义主自由度。
模态叠加法谐响应分析步骤1.建模2.获取模态分析解3.获取模态叠加法谐响应分析解4.扩展模态叠加解5.观察结果有预应力作用结构的谐响应实例有预应力的谐响应分析只能用缩减法和模态叠加法进行。
若进行有预应力的缩减法谐应分析,首先要进行静力学分析结算结构的预应力,在进行谐响应分析.若进行模态叠加法谐响应应分析中包括预应力效果,应当先进行有预应力模态分析,在进行一般的模态叠加法谐响应分析。
Ansys-谐响应分析
Training Manual
ANSYS Workbench - DesignModeler
f max f min DW 2 n
• DS将从 WDW.开始,求解n个频率
In the example above, with a frequency range of 0 – 10,000 Hz at 10 intervals, this means that Design Simulation will solve for 10 excitation frequencies of 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10000 Hz.
谐响应分析基础
• 例如,考虑如右图所示的两力共同作 用在同一结构上的工况
– 两力都有受到同一频率W激励。但 是.,”Force 2”滞后于“Force 1”45度 的相位差,“Force 2”的相位角y度。 – 以上的叙述可通过复数标记的方法表 示。因此,可写成:
ansys谐响应分析演示文稿
谐响应分析
…定义和目的
谐响应分析用于设计:
• 旋转设备(如压缩机、发动机、泵、涡轮机械等)的支座、固定装置和 部件
• 受涡流(流体的漩涡运动)影响的结构,例如涡轮叶片、飞机机翼、桥 和塔等
谐响应分析
…定义和目的
• 谐响应分析只能计算结构的稳态响应,不考虑发生在激励开始时的瞬态振动。
• 谐响应分析是一种线性分析,任何非线性环节即使定义也会被忽略。
• 输入:
– 已知大小和频率的谐载荷(力、压力和强迫位移) – 同一频率的多种载荷,力和位移可以是同相或不同相的。表面载荷和体载荷的相位角度
可以指定为零。
• 输出:
ansys谐响应分析演示文稿
ansys谐响应分析
谐响应分析
A、谐响应分析的定义和目的 B、关于谐响应分析的基本术语和概念 C、谐响应分析在ANSYS中的应用 D、谐响应分析的实例练习
谐响应分析
定义和目的
什么是谐响应分析?
• 确定一个线性结构在持续的周期性(随时间成正弦或余弦变化)荷载作用下的持 续的周期性响应(稳态响应)。
虚部
谐响应分析-术语和概念
谐载荷
• 随时间成正弦或余弦变化的载荷
• 同时作用的谐载荷必须是相同频率
的载荷 实部
• 相位角ψ允许不同相位的多个载荷 同时作用,ψ缺省值为零
• 施加的全部载荷都假设是简谐的, 包括温度和重力。
谐响应分析-术语和概念
频率
频率
•频率反映载荷随时间变化的快慢 •谐响应分析输出的是响应量随频率的变化关系图 •在谐分析中,所有节点振动的频率都相同,但振动的相位可能不同 •在谐分析中,必须指定频率范围及其分割数(nsubst)。 •Ansys谐分析中的自动频率分割法能自动大致估计并选择共振频率,有效避 免无关频率分析过细,重要频带(共振频率附近的频率)分析较少的现象。
ANSYS中谐响应分析
Availability
x x x
… 材料属性
• 在谐分析中,要求输入杨氏弹性模量,泊松比和 密度
– 其它所有材料的属性可以指定,但它们不会参与谐 分析 – 后面将说明,阻尼不是作为材料的属性输入,而是 作为全局属性被输入
ANSYS License DesignSpace Entra DesignSpace Professional Structural Mechanical/Multiphysics
ANSYS WORKBENCH 11.0 培训教程(DS)
第十章
谐响应分析
本章内容
• 本章中,DS的谐响应分析将会涉及到以下内容:
– 假定用户已经了解了第四章的线性静态结构分析和 第五章的模态分析所涉及的内容.
• 在本章中,将会涵盖如下内容:
– – – – 建立谐响应分析 谐响应求解方法 阻尼 查看结果
Type of Load Acceleration Load Standard Earth Gravity Load Pressure Load Force Load Bearing Load Moment Load Given Displacement Support Phase Input No No Yes Yes No No Yes Solution Method Full or Mode Superposition Full or Mode Superposition Full or Mode Superposition Full or Mode Superposition Full or Mode Superposition Full or Mode Superposition Full Only
谐响应分析基础
ansys谐响应分析
ANSYS谐响应分析谐响应分析是用于确定线性结构在受正弦载荷作用时的稳态响应,目的是计算出结构在几种频率下的响应,并得到响应随频率变化的曲线。
其输入为已知大小和频率的谐波载荷(力、压力和强迫位移);同一频率的多种载荷,可以是相同或不相同的。
其输出为每一个自由度上的谐位移,通常和施加的载荷不同;或其它多种导出量,例如应力和应变等。
谐响应分析能预测结构的持续动力特性,从而验证设计能否成功地克服共振、疲劳,以及其他受迫振动引起的不良影响。
同时,通过谐响应分析可以用来探测共振响应;可以确定一个给定的结构能否能经受住不同频率的各种正弦载荷(例如:以不同速度运行的发动机)。
谐响应分析有三种求解方法:完整法、缩减法及模态叠加法。
三种方法都有其相应的适用条件。
这里主要介绍模态叠加法。
模态叠加法是通过对模态分析得到的振型乘上因子并求和计算出结构的响应,是所有求解方法中最快的。
使用何种模态提取方法主要取决于模型大小和具体的应用场合。
模态叠加法可以使解按结构的固有频率聚集,可产生更平滑且更精确的响应曲线图,同时可以包含预应力效果。
(对于机械结构来看,预应力含义为预先使其产生应力,其好处是可以提高构造本身刚性,减少振动和弹性变形,改善受拉模块的弹性强度,提高结构的抗性。
)有预应力的谐响应分析可用缩减法和模态叠加法进行。
对于有预应力的谐响应分析,为了在模态叠加法谐响应分析中包含预应力效果,必须首先进行有预应力的模态分析。
在完成了有预应力模态分析后,就可以像一般的模态叠加法那样进行分析了。
而对于对于有预应力的模态分析,由于结构预应力会改变结构的刚性,因此预应力结构模态分析是结构设计中必须考虑的因素。
预应力模态分析步奏与常规模态分析大致相同,其差别在于:(1)先对造成预应力的外力进行静力分析;(2)在静力分析和模态求解中打开PSTRES,on命令,表示考虑了预应力效应。
模态叠加法进行谐响应分析的步骤如下:一、建模1)只能用线性的单元和材料,忽略各种非线性的性质。
Ansys中谐响应分析理论概述
* 谐响应分析的概述* 1谐响应分析的概念谐响应分析(Harmonic Response Analysis)用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下得响应值(通常是位移)对频率的曲线,从这些曲线上可以找到“峰值”响应,并进一步考虑频率对应的应力。
从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。
谐响应分析技术只计算结构的稳态受迫振动。
发生在激励开始时的瞬态振动不在谐响应分析中考虑。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触单元,即使定义了也被忽略,但在分析中可以包含非对称系统矩阵。
谐响应分析同样也可分析有预应力的结构。
* 2谐响应分析的理论基础谐响应分析的基本运动方程为:(4-1)通用运动方程为:(4-2)简谐运动的分析方程为:(4-3)(4-4)其中:—激振力矩阵—刚度矩阵—质量矩阵—位移矩阵—载荷幅值—实部载荷—虚部载荷—载荷函数的相位角—位移幅值这里假设刚度矩阵、质量矩阵是定值,要求材料是线弹性的、使用最小位移理论(不包括非线性)、阻尼为、激振力(简谐载荷)为。
谐响应分析的输入条件包括:(1)已知幅值和频率的简谐载荷(力、压力和强迫位移)(2)简谐载荷可以是具有多种频率的多种载荷,力和位移可以相同或者不相同,但是压力分布载荷只能指定零相位角。
谐响应分析的输出结果分析包括:(1)每个自由度的谐响应位移,通常情况下谐响应位移和施加的载荷是不相同的。
(2)应力和应变等其它导出值。
* 3谐响应分析的求解基本方法(1)完整法(full)—为缺省方法,是最容易的方法;—使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。
—允许定义各种类型的荷载;预应力选项不可用;(2)缩减法(reduced)—使用缩减矩阵,比完整法更快;—需要选择主自由度,据主自由度得到近似的 [M]矩阵和[C]矩阵。
Ansys中谐响应分析理论概述
* 谐响应分析的概述* 1谐响应分析的概念谐响应分析(Harmonic Response Analysis)用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下得响应值(通常是位移)对频率的曲线,从这些曲线上可以找到“峰值”响应,并进一步考虑频率对应的应力。
从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。
谐响应分析技术只计算结构的稳态受迫振动。
发生在激励开始时的瞬态振动不在谐响应分析中考虑。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触单元,即使定义了也被忽略,但在分析中可以包含非对称系统矩阵。
谐响应分析同样也可分析有预应力的结构。
* 2谐响应分析的理论基础谐响应分析的基本运动方程为:(4-1)通用运动方程为:(4-2)简谐运动的分析方程为:(4-3)(4-4)其中:—激振力矩阵—刚度矩阵—质量矩阵—位移矩阵—载荷幅值—实部载荷—虚部载荷—载荷函数的相位角—位移幅值这里假设刚度矩阵、质量矩阵是定值,要求材料是线弹性的、使用最小位移理论(不包括非线性)、阻尼为、激振力(简谐载荷)为。
谐响应分析的输入条件包括:(1)已知幅值和频率的简谐载荷(力、压力和强迫位移)(2)简谐载荷可以是具有多种频率的多种载荷,力和位移可以相同或者不相同,但是压力分布载荷只能指定零相位角。
谐响应分析的输出结果分析包括:(1)每个自由度的谐响应位移,通常情况下谐响应位移和施加的载荷是不相同的。
(2)应力和应变等其它导出值。
* 3谐响应分析的求解基本方法(1)完整法(full)—为缺省方法,是最容易的方法;—使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。
—允许定义各种类型的荷载;预应力选项不可用;(2)缩减法(reduced)—使用缩减矩阵,比完整法更快;—需要选择主自由度,据主自由度得到近似的 [M]矩阵和[C]矩阵。
ansys谐响应分析步骤
谐响应分析步骤full(完全法)允许定义各种类型的荷载;预应力选项不可用;reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等)modesuperpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应,可以包含预应力,可以考虑振型阻尼,不能施加非零位移1Full法步骤第1步:载入模型Plot>Volumes第2步:指定分析标题并设置分析范畴1设置标题等UtilityMenu>File>ChangeTitleUtilityMenu>File>ChangeJobnameUtilityMenu>File>ChangeDirectory2选取菜单途径MainMenu>Preference,单击Structure,#.击OK第3步:定义单元类型MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现ElementTypes对话框,单击Add现LibraryofElementTypes对话框,选择StructuralSolid,再右滚动栏选择Brick20node95,然后单击OK,单击ElementTypes对话框中的Close按钮就完成这项设置了。
第4步:指定材料性能选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModelso出现DefineMaterialModelBehavior对话框'在右侧Structura卜Linear>Elastic>lsotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。
第5步:划分网格选取菜单途径MainMenu>Preprocessor>Meshing>MeshTool,!l!现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现MeshVolumes对话框,其他保持不变单击PickAll,完成网格划分。
ANSYS谐响应分析
八、谐响应分析8.1问题描述单自由度系统如图所示,质量m=1kg,弹簧刚度k=10000N/m,阻尼系数c=63,作用在系统上的激振力N t t f F F 2000,sin )(00==ω,ω为激振频率。
单自由度系统8.2求解步骤1、建立工作文件名和工作标题2、定义单元类型及实常数1)定义单元类型:Main Menu→Preprocessor→Element Type→Add/Edit /Delete。
弹出对话框,单击“Add”按钮;弹出对话框,在左侧列表中选“Structural Mass”,在右侧列表中选“3D mass 21”,单击“Apply”按钮;再在左侧列表中选“Combination”,在右侧列表中选“Spring-damper14”,单击“Ok”按钮;单击对话框的“Close”按钮。
2)定义实常数:Main Menu→Preprocessor→Real Constants→Add/Edit /Delete。
单击“Add”按钮,弹出对话框,在列表中选择“Type 1MASS21”,单击“OK”按钮,弹出对话框,在“MASSX”文本框中输入1,单击“OK”按钮;返回对话框,单击“Add”按钮,再次弹出对话框,在列表中选择“Type 2COMBIN14”,单击“OK”按钮,弹出图所示的对话框,在“K”文本框中输入10000,在“CV1”文本框中输入63,单击“OK”按钮;返回,单击“Close”按钮。
3、生成几何模型,划分网格1)创建节点:Main Menu→Preprocessor→Modeling→Create→Nodes→In ActiveCS。
弹出对话框,在“NODE”文本框中输入1,在“X,Y,Z”文本框中分别输入0,0,0,单击“Apply”按钮;在“NODE”文本框中输入2,在“X,Y,Z”文本框中分别输入1,0,0,单击“OK”按钮。
2)设置要创建单元的属性:Main Menu→Preprocessor→Modeling→Create →Elements→Elem Attributes。
ANSYS中的模态分析与谐响应分析
ANSYS中的模态分析与谐响应分析模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。
谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。
比如,在ANSYS谐响应分析中要给出这样的语句FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角)HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100, !指定频率从0到2.5之间分100步进行计算这样,结构所受的这个点荷载的表达式实际上是F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。
个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。
如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。
但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。
因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。
另外,谐响应分析应该是频域分析方法的一个部分。
对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。
而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。
ansys弹簧单元的使用
【问题1】ANSYS中弹簧的设置现在做机床分析,在原有螺栓的地方要加弹簧单元,每个弹簧单元有三个方向的自由度。
为了方便添加弹簧单元,模型应该如何建立呢(比如,为了方便在将机床与地面连接的螺栓处添加弹簧单元,我现在建模时会建立凸台,将凸台与机床连接添加三个方向的弹簧单元);另外就是导轨与床身连接处添加弹簧单元时,是否需要添加三个方向的自由度呢(因为如果不加凸台的话,沿导轨的方向不方便加弹簧);最后,假如我的机床中共有20处需要添加弹簧,每个弹簧有三个方向添加参数,不知大家的参数如何设置比较方便(我以前没做过弹簧,现在是建立一个combin14单元,添加该单元的刚度和阻尼系数,比较麻烦。
如果弹簧的X 方向系数都一样的话,是否有简便方法呢)。
非常感谢大家的帮助,如果答案满意的话,愿追加50分【最佳答案】第一,如果建弹簧单元方便的问题:你可以用一些命令流来建立,比如你知道具体位置时想得到node编号,可以用Nnum=node(x,y,z),其中Nnum就是返回得到的(x,y,z)位置的node编号;如果知道该位置的关键点号k1,你想得到该位置的节点编号,可以用Nnum=node(kx(k1),ky(k1),kz(k1)) 得到了节点号后,用E,Nnum1,Nnum2建立连接单元,很方便。
这样做的好处,一是减小了重复操作的工作量;二是,如果手动加单元,万一mesh重做后,要重新去找点、手动建单元,很麻烦。
第二,如果想建三方向的连接属性,建议从同一点建3个不同方向的连接单元。
尽量用命令流操作(可以局部写命令流,然后输入到命令窗里),可以减小很多重复工作量,以及方便肉眼难以分辨的内部点选取。
【问题2】ansys中弹簧阻尼单元的设置请教大家一个问题,在ansys中进行机床的静动态分析,机床的导轨和导轨滑块设置硬点之后,连接对应的硬点要建立弹簧阻尼单元。
请问弹簧阻尼单元具体应该怎样建立呢,包括如何将硬点连接起来,如何设置弹簧阻尼单元的参数(参考下图)。
ANSYS谐响应分析(3)
Training Manual
DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0
建模
• 模和材料,忽略各种非线性; –必须输入材料密度; –注意:如果ALPX(热膨胀系数)和ΔT均不为零,就有可 能不经意地包含了简谐热载荷。为了避免这种事情发 生,请将ALPX设置为零. 如果参考温度 [TREF]与均匀 节点温度 [TUNIF]不一致, 那么ΔT为非零值; –请参阅《动力学分析总论》建模需要考虑的问题。
POST26:确定各临界频率和相角
• 注意:最大振幅=3.7出现在48Hz,85.7º时
Training Manual
DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0
• 其中力与位移都是谐波形式的
{F} = {Fmax e iψ }e iω t = ({F1 }+ i{F2 }) e iω t {u } = {u max e iφ }e iω t = ({u 1 }+ i{u 2 }) e iω t
• 谐分析的运动方程
(−ω2 [M ] + iω[C] + [K ])({u1}+ i{u 2 }) = ({F1}+ i{F2 })
POST26:确定各临界频率和相角
• 确定各临界频率和相角
Training Manual
– 用图形显示最高振幅发生时的频率; – 由于位移与施加的载荷不同步(如果存在阻尼),需要 确定出现最大振幅时的相位角;
• 要进行上述工作,首先要选择振幅+相位选项。 • 然后用表列出变量(列表结果见下页)。