最新八年级下册数学期中考试题(含答案)
八年级数学下册期中考试题及答案【必考题】

八年级数学下册期中考试题及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知3y=,则2xy的值为()A.15-B.15C.152-D.1522.若实数m、n满足02m-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.下列运算正确的是()A=±2 B2=4C 4 D)2=﹣44是同类二次根式的是()A B C D5.下列方程组中,是二元一次方程组的是()A.4237x yx y+=⎧⎨+=⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.284x yx y+=⎧⎨-=⎩6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)181________.2x有意义,则x的取值范围为__________.3.若关于x的分式方程333x ax x+--=2a无解,则a的值为________.4.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.5.如图,四边形ABCD中,点M,N分别在AB,BC上,将BMN△沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =________°.6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中3,y=23.3.已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (-3,m +8),B (n ,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB 的面积.6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、C5、A6、C7、D8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、0x ≥且1x ≠. 3、1或124、1.55、956、32°三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、3xy,33、(1)略;(2)4或4+.4、(1)(0,3);(2)112y x =-. 5、(1)y=-6x,y=-2x-4(2)8 6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
八年级期中试卷数学及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。
12. 绝对值小于2的有理数有______。
13. 若|a| = 5,则a的值为______。
14. 已知a、b是实数,且a - b = 3,则a + b的值为______。
15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。
16. 若|a| = |b|,则a和b的关系是______。
17. 若a^2 = b^2,则a和b的关系是______。
18. 若a、b是实数,且a + b = 0,则a和b互为______。
19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。
20. 若|a| > |b|,则a和b的关系是______。
2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
2023年部编版八年级数学下册期中考试卷【含答案】

2023年部编版八年级数学下册期中考试卷【含答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.若实数m、n满足2m-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63n()A.2 B.3 C.4 D.54.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.65.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.关于x的不等式组314(1){x xx m->-<的解集为x<3,那么m的取值范围为()A .m=3B .m >3C .m <3D .m ≥37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.关于▱ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则▱ABCD 是菱形B .若AC ⊥BD ,则▱ABCD 是正方形 C .若AC=BD ,则▱ABCD 是矩形 D .若AB=AD ,则▱ABCD 是正方形9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.因式分解:22ab ab a -+=__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为__________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、D7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、1002、()21a b -3、2x (x ﹣1)(x ﹣2).4、x >15、36、45︒三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、20xy-32,-40.3、(1)102b -≤≤;(2)24、略.5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)120件;(2)150元.。
八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
数学八下期中考试题及答案

数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是2,那么这个数是______。
答案:1/24. 一个数的绝对值是5,那么这个数可能是______。
答案:5或-55. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。
(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。
(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。
人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
八年级数学下册期中测试卷及完整答案

八年级数学下册期中测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.56.估计()-⋅1230246的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)21324x x x -+-=0 (2)13222x x x-+=--2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、﹣33、x (x+1)(x -1)4、25、2456、85三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、-33a +,;12-.3、(1)略;(2)4或4+.4、(1)DE=3;(2)ADB S 15∆=.5、略6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
数学初二期中试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √3 - √22. 下列运算中,正确的是()A. (-3)² = 9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2433. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 5B. -5C. 0D. 14. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ - 2D. y = √x5. 已知二次函数y = ax² + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则a、b、c的值分别为()A. a > 0,b = 2,c = -1B. a > 0,b = -2,c = -1C. a < 0,b = -2,c = -1D. a < 0,b = 2,c = -16. 下列各数中,属于实数集R的是()A. √-1B. πC. 2/3D. √4 - √97. 已知一元二次方程x² - 4x + 3 = 0,则该方程的解为()A. x₁ = 1,x₂ = 3B. x₁ = 3,x₂ = 1C. x₁ = -1,x₂ = -3D. x₁ = -3,x₂ = -18. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 19. 已知a、b是方程2x² - 5x + 3 = 0的两个实数根,则a + b的值为()A. 5/2B. -5/2C. 2D. -210. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x² + 2x + 1C. y = k/x(k ≠ 0)D. y = 3x³ - 2二、填空题(每题3分,共30分)11. 已知a = -3,b = 4,则a² + b²的值为________。
江苏苏州2024年八年级下学期期中数学试题+答案

初二年级调研试卷数学2024.04本卷由选择题、填空题和解答题组成,共27题,满分130分,调研时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、调研号等信息填写在答题卡相应的位置上.2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效;如需作图,先用2B 铅笔画出图形,再用0.5毫米,黑色墨水签字笔描黑,不得用其他笔答题.3.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效;一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.下面四个图形分别是苏州博物馆、苏州轨道交通、苏州银行和苏州电视台的标志,在这四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A .必然事件B .随机事件C .不可能事件D .都有可能 3.若分式221x x ++有意义,则x 的取值范围是( ) A .2x >− B .12x >− C .2x ≠− D .12x ≠− 4.国际奥委会于2001年7月13日在莫斯科举行会议,通过投票确定2008年奥运会举办城市.在第二轮投票中,北京获得总计105张选票中的56票,得票率超过50%,取得了2008年奥运会举办权.在第二轮投票中,北京得票的频数是( )A .50%B .56105C .56D .105 5.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值是( )A .1−B .1C .2−D .26.“孔子周游列国”是流传很广的故事.相传有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院.设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+ B .30301.51x x =+ C .303011.5x x =− D .30301.51x x =−7.如果关于x 的一元二次方程210kx x −+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k ≤且0k ≠ D .14k < 8.如图,在矩形ABCD 中,点E 是CD 的中点,点F 在BD 上,3BF DF =,若4,3AB BC ==,则EF 的长为( )(第8题)A .1B .54C .32D .52二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.根据市生态环境局发布的数据,2023年上半年,全市环境空气质量优良天数比率为80.7%.要调查市区环境空气质量状况,适合的调查方式是___________(填“普查”或“抽样调查”)。
八年级数学下册期中考试题(及答案)

八年级数学下册期中考试题(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.9的算术平方根是________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、B5、B6、A7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、-1或5或1 3 -3、3.4、1456、三、解答题(本大题共6小题,共72分)1、2x=2、13、3a-b+c的平方根是±4.4、略.5、(1)略;(2)112.5°.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
八年级下册数学期中考试试题【含答案】

八年级下册数学期中考试试题【含答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(3分)若代数式有意义,则x的取值范围()A.x≥5B.x≤5C.x>5D.x<52.(3分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.(3分)在、、、、中,最简二次根式的个数是()A.1B.2C.3D.44.(3分)下列命题的逆命题正确的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则=.A.0个B.1个C.2个D.3个5.(3分)下列算式正确的是()A.B.C.D.6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°8.(3分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)9.(3分)如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个10.(3分)一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若实数a、b满足|a+2|,则=.12.(3分)如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于.13.(3分)若5+的整数部分是a,则a=.14.(3分)已知矩形的面积是,其中一边长为,则对角线长为.15.(3分)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC 于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.16.(3分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:(1)+(2)(2)()18.(6分)实数a,b在数轴上的位置如图所示,化简.19.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.20.(10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画出AD∥BC且AD=BC(要求D在网格图中),连接CD;(2)判断三角形ABC的形状,并说明理由;(3)若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.21.(8分)如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.22.(8分)如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B'恰好落在DA的延长线上,且PB'⊥AD,若CD=3,BC=4.(1)求证:∠DCB′=90°;(2)求BP的长度.23.(8分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①模仿上例的过程填空:=====②根据上述思路,试将下列各式化简.(1)(2).24.(8分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=MN,求AB2、BC2、CD2、AD2之间的关系.25.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=8,BD=6,现有两动点M、N分别从A、C同时出发,点M沿线段AB向终点B运动,点N沿折线C ﹣D﹣A向终点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(秒).(1)填空:AB=;菱形ABCD的面积S=;菱形的高h=.(2)若点M的速度为每秒1个单位,点N的速度为每秒2个单位,连接AN、MN.当0<t<2.5时,是否存在t的值,使△AMN为等腰直角三角形?若存在,请求出t的值;若不存在,请说明理由.(3)若点M的速度为每秒1个单位,点N的速度为每秒a个单位(其中a<),当t =4时在平面内存在点E使得以A、M、N、E为顶点的四边形为菱形,请求出所有满足条件的a的值.2017-2018学年广东省实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(3分)若代数式有意义,则x的取值范围()A.x≥5B.x≤5C.x>5D.x<5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:代数式有意义,则x﹣5>0,解得:x>5.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.(3分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形的判定定理解得即可.【解答】解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.【点评】本题考查的是勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(3分)在、、、、中,最简二次根式的个数是()A.1B.2C.3D.4【分析】根据最简二次根式的定义对二次根式分析判断即可得.【解答】解:在所列二次根式中,最简二次根式有,这2个,故选:B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.(3分)下列命题的逆命题正确的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则=.A.0个B.1个C.2个D.3个【分析】分别写出各个命题的逆命题后再判断其正确或错误,即确定它是真命题还是假命题.【解答】解:①“对顶角相等”的逆命题是“相等的角是对顶角”,相等的角不一定是对顶角,所以逆命题错误,故是假命题;②“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”正确,故是真命题;③“若a=b,则=”的逆命题是“若=,则a=b”正确,故是真命题.故选:C.【点评】主要考查了逆命题和真假命题的定义.对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.举出反例能有效的说明该命题是假命题.5.(3分)下列算式正确的是()A.B.C.D.【分析】根据二次根式的加减运算顺序和运算法则计算可得.【解答】解:A.、不是同类二次根式,不能合并;B.3﹣2=,此选项错误;C.3+3=6,此选项正确;D.==,此选项错误;故选:C.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的加减运算顺序和运算法则.6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°【分析】根据中位线定理和已知,易证明△EPF是等腰三角形.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°.故选:D.【点评】本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.8.(3分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)【分析】所给点的纵坐标与A的纵坐标相等,说明这两点所在的直线平行于x轴,这两点的距离为:1﹣(﹣3)=4;点O和点B的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为:3﹣0,相对的边平行,但不相等,所以A选项的点不可能是行四边形顶点坐标.【解答】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选:A.【点评】理解平行四边形的对边平行且相等,是判断本题的关键.9.(3分)如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,矩形、菱形以及正方形的判定方法对各组条件进行判断即可得出答案.【解答】解:①AB=BC,∠A=90°;根据有一个角是直角且有一组邻边相等的平行四边形是正方形,能判定▱ABCD是正方形,故此选项正确;②AC⊥BD,AC=BD;由对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;③OA=OD,BC=CD;由ABCD是平行四边形,可得AC与BD互相平分,而OA=OD,所以AC=BD,对角线相等的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;④∠BOC=90°,∠ABD=∠DCA;由∠BOC=90°,根据对角线互相垂直的平行四边形是菱形,可得▱ABCD是菱形;由ABCD是平行四边形,可得AC与BD互相平分,AB∥CD,则∠ABD=∠CDB=∠DCA,所以OC=OD,又对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确.故选:D.【点评】本题主要考查了正方形的判别方法,正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③还可以先判定四边形是平行四边形,再用1或2进行判定.10.(3分)一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11【分析】根据等腰三角形的三线合一,得底边上的高也是底边上的中线.根据勾股定理知:底边的一半的平方加上高的平方应等于腰的平方,即可得出正确结论.【解答】解:由题可知,在等腰三角形中,底边的一半、底边上的高以及腰正好构成一个直角三角形,且()2+122=132,符合勾股定理,故选B.【点评】考查了等腰三角形的三线合一以及勾股定理的逆定理.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.(3分)如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【分析】根据直角三角形斜边上的中线等于斜边的一半求出CD=AD,得到△ADC是等边三角形,求出∠A的度数,根据直角三角形两锐角互余求出∠B的度数.【解答】解:∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.【点评】本题考查的是直角三角形的性质和等边三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.13.(3分)若5+的整数部分是a,则a=7.【分析】根据的取值范围进行估计解答即可.【解答】解:∵2<<3,∴7<5+<8,∴5+的整数部分是a=7,故答案为:7【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.14.(3分)已知矩形的面积是,其中一边长为,则对角线长为.【分析】先运用矩形面积公式求出它的另一边,再运用勾股定理求出对角线即可.【解答】解:∵矩形的面积是,其中一边长为,∴另一边=,∴对角线长=,故答案为:【点评】考查了二次根式的应用,关键是根据矩形的性质和勾股定理求出对角线.15.(3分)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC 于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB=EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.16.(3分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).【分析】根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.【解答】解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC+AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).【点评】此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:(1)+(2)(2)()【分析】(1)先化简二次根式,再计算乘法,最后合并同类二次根式即可得;(2)先化简二次根式,再利用平方差公式计算可得.【解答】解:(1)原式=4×+=3+;(2)原式=(2﹣2)(2+2)=(2)2﹣(2)2=20﹣12=8.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(6分)实数a,b在数轴上的位置如图所示,化简.【分析】先根据数轴得出b﹣1>0,a﹣b<0,再根据=|a|和绝对值的性质化简可得.【解答】解:由数轴知a<1<b,∴b﹣1>0,a﹣b<0,则原式=|a|﹣|b﹣1|﹣|a﹣b|=﹣a﹣(b﹣1)﹣(b﹣a)=﹣a﹣b+1﹣b+a=1.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握=|a|和绝对值的性质.19.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【分析】利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【解答】证明:如图,∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点评】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.20.(10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画出AD∥BC且AD=BC(要求D在网格图中),连接CD;(2)判断三角形ABC的形状,并说明理由;(3)若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.【分析】(1)利用平移的性质画出图象即可;(2)利用勾股定理等逆定理证明;(3)根据平行四边形的判定定理证明即可.【解答】解:(1)如图所示.(2)△ABC是直角三角形,理由:∵AB=,AC=2,BC=5,∴AB2+AC2=BC2,∴△ABC是直角三角形,(3)四边形AECF是平行四边形,理由:∵E为BC中点,∴AE=BC,∵F为AD中点,∴AF=AD,∵AD=BC,AD∥BC,∴AF=BE,AF∥BE,∴四边形AECF是平行四边形.【点评】本题考查了勾股定理的逆定理,平行线的性质、平行四边形的判定和性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.【分析】(1)由矩形的性质得出∠ADB=∠CBD,由已知条件∠CBD=∠EBD,证出∠ADB=∠EBD,即可得出结论;(2)延长MP交BC于Q,先由角的平分线性质得出PQ =PN,再由AB=MQ,即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵∠CBD=∠EBD,∴∠ADB=∠EBD,∴BE=DE;(2)解:PM+PN=AB;理由如下:延长MP交BC于Q,如图所示:∵AD∥BC,PM⊥AD,∴PQ⊥BC,∵∠CBD=∠EBD,PN⊥BE,∴PQ=PN,∴AB=MQ=PM+PQ=PM+PN.【点评】本题考查了矩形的性质、平行线的性质以及角平分线的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.22.(8分)如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B'恰好落在DA的延长线上,且PB'⊥AD,若CD=3,BC=4.(1)求证:∠DCB′=90°;(2)求BP的长度.【分析】(1)由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD 中,PB′⊥AD,求得△B′CD是直角三角形;(2)根据勾股定理求得DB′的长,然后设BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.【解答】解:(1)由折叠的性质可得:PB′=PB,∠PB′C=∠B,∵四边形ABCD是平行四边形,PB′⊥AD,∴∠B=∠D,∠PB′A=90°,∴∠D+∠CB′D=90°,∴∠DCB′=90°,(2)∵CD=3,BC=4,∴AD=B′C=BC=4,∴DB′==5,∴AB′=DB′﹣AD=1,设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,PA2=AB′2+PB′2,∴x2+12=(3﹣x)2,解得:x=,∴BP=.【点评】本题考查了轴对称﹣最短问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出DE=PE+PB,题目比较典型,综合性比较强,主要培养学生的计算能力.23.(8分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①模仿上例的过程填空:====|3+|=3+②根据上述思路,试将下列各式化简.(1)(2).【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【解答】解:①原式====|3+|=3+;故答案为:;;|3+|;3+;②(1)原式===|5﹣|=5﹣;(2)原式===|+|=+.【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.24.(8分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=MN,求AB2、BC2、CD2、AD2之间的关系.【分析】(1)先利用正方形的性质判断出△ABE≌△BCF即可;(2)连接AN、DN,过点C作CE∥BD,过点B作BE∥DC则四边形BECD为平行四边形,连接DE,则D、N、E三点共线,过点B作BF⊥CE于F,过点D作DG⊥EC交EC延长线于点G,证明△BEF≌△DCG,得出BF=DG,EF=CG,由勾股定理得出BC2=BF2+FC2=BF2+(EC﹣EF)2,DE2=DG2+EG2=DG2+(EC+CG)2=BF2+(EC+EF)2,得出BC2+DE2=2BD2+2CD2,得出BC2+4DN2=2BD2+2CD2,DN2=(2BD2+2CD2﹣BC2),同理:AN2=(2AB2+2AC2﹣BC2),MN2=(2AN2+2DN2﹣AD2)=AC2+(AB2+CD2﹣BC2﹣AD2),由已知得出MN2=AC2,MN2=MN2+(AB2+CD2﹣BC2﹣AD2),即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(2)解:连接AN、DN,过点C作CE∥BD,过点B作BE∥DC,则四边形BECD为平行四边形,连接DE,则D、N、E三点共线,过点B作BF⊥CE于F,过点D作DG⊥EC交EC延长线于点G,如图2所示:∵四边形BECD为平行四边形,∴BE=DC,BE∥DC,ED=2DN,∴∠BEF=∠DCG,在△BEF和△DCG中,,∴△BEF≌△DCG(AAS),∴BF=DG,EF=CG,在Rt△BFC中,BC2=BF2+FC2=BF2+(EC﹣EF)2,在Rt△DEG中,DE2=DG2+EG2=DG2+(EC+CG)2=BF2+(EC+EF)2,∴BC2+DE2=2BF2+2EC2+2EF2=2(BF2+EF2)+2EC2=2BE2+2EC2=2BD2+2CD2,∴BC2+4DN2=2BD2+2CD2,∴DN2=(2BD2+2CD2﹣BC2),同理:AN2=(2AB2+2AC2﹣BC2),MN2=(2AN2+2DN2﹣AD2)=(BD2+CD2﹣BC2+AB2+AC2﹣BC2﹣AD2)=(AC2+CD2﹣BC2+AB2+AC2﹣BC2﹣AD2)=AC2+(AB2+CD2﹣BC2﹣AD2),∵AC=MN,∴MN2=AC2,∴MN2=MN2+(AB2+CD2﹣BC2﹣AD2),即:(AB2+CD2﹣BC2﹣AD2)=0,∴AB2+CD2=BC2+AD2.【点评】此题考查了新定义,平行四边形的判定与性质、正方形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大.25.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=8,BD=6,现有两动点M、N分别从A、C同时出发,点M沿线段AB向终点B运动,点N沿折线C ﹣D﹣A向终点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(秒).(1)填空:AB=5;菱形ABCD的面积S=24;菱形的高h=.(2)若点M的速度为每秒1个单位,点N的速度为每秒2个单位,连接AN、MN.当0<t<2.5时,是否存在t的值,使△AMN为等腰直角三角形?若存在,请求出t的值;若不存在,请说明理由.(3)若点M的速度为每秒1个单位,点N的速度为每秒a个单位(其中a<),当t =4时在平面内存在点E使得以A、M、N、E为顶点的四边形为菱形,请求出所有满足条件的a的值.【分析】(1)AB由勾股定理直接求出,菱形面积为对角线之积的一半,还可以表示为边长×高,由此可得高h的长;(2)当0<t<2.5时,M在边AB上,N在边CD上,当∠AMN=90°时,如图1所示,因为t<,此种情况不成立,可得结论;(3)t=4,时间固定,AM的长度也就固定,A、M、N、E四点要形成菱形,分两大类情况,第一类以AM为边,这种情况可以画两种菱形;第二类以AM为对角线,只有一种.因此共三种情况,分别计算.【解答】解:(1)∵四边形ABCD是菱形,AC与BD交于点O,AC=8,BD=6,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AB=5,设菱形的高为h,则菱形ABCD的面积为×8×6=AB×h=24,∴h=,故答案为:5,24,;(2)当0<t<2.5时,M在边AB上,N在边CD上,当∠AMN=90°时,如图1所示,由(1)知:MN=,当AM=t=时,AM=MN,所以此种情况不成立,∴当0<t<2.5时,不存在t的值,使△AMN为等腰直角三角形;(3)当t=4时,AM=4,①如图2,四边形AMEN为菱形,∴AN=AM=4,∴ND+CD=10﹣4=6,∴4a=6,a=.②如图3,AENM为菱形,EM交AN于点R,作DP垂直BC于P,∵菱形面积为24,∴DP=4.8,∴CP=,∵∠MAR=∠BCD∴∠AMR=∠PDC∴sin∠AMR=sin∠PDC∴,∴AR=1.12,∴AN=2.24,∴a=(ND+CD)÷4=(10﹣2.24)÷4=1.94,③如图4,AEMN为菱形,EN交AM于点T,作BS垂直CD于S,则AT=MT=2,∴BT=NS=5﹣2=3,∵BS =4.8, ∴CS =1.4,∴CN =NS +CS =1.4+3=4.4, ∴a =CN ÷4=4.4÷4=1.1;综上所述,a 的取值有 1.5或1.94或1.4.【点评】本题考查了菱形的性质、相似三角形的判定与性质、勾股定理、面积计算,分类讨论等重要知识点和技能,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,是一道经典压轴题.人教版八年级第二学期下册期中模拟数学试卷【答案】一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A 、 B 、 C 、 D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内 .1.下列“表情图”中,属于轴对称图形的是( )A. B. C. D.2. 已知一个三角形的两边长为3cm 和5cm,则此三角形的第三边长可能是 ( ) A .1cm B .2cm C .3cm D .8cm 3.下列式子中,一定成立的是( )A .2a a a =⋅ B .23325a a a += C .321a a ÷= D .()22ab ab =4.若一个多边形内角和等于540°,则该多边形边数是( ) A .4 B .5 C .6 D .75.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或226.如图,已知点A D C F 、、、在同一条直线上,AB DE =,BC EF =,要使ABC DEF △≌△,还需要添加一个条件是( )A .BCA F ∠=∠B .B E ∠=∠C .BC EF ∥D .A EDF ∠=∠ 7.如图,在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点的坐标为( ) A.(3-,5-) B.(3,5) C.(3,5-) D.(5,3-)8. 如图,△ABC 中,AB =AC ,点D 在AC 边上,且BD=BC=AD,则∠A 的度数是( ) A .18° B .24° C .30° D .36°9.如图,直线DE 是ABC △的边AB 的垂直平分线,已知5cm AC =,ADC △的周长为17cm ,则BC 的长为( ).A .7cmB .10cmC .12cmD .22cmA10.已知: 3x=2,9y=3,则3x+2y的值为( )A .1B .4C .5D .611.在下列去括号或添括号的变形中,错误的是( ).A .a-(b-c)=a-b+cB .a-b+c=a-(b+c)C .(a+1)-(b-c)=a+1-b+cD .a-b+c-d=a-(b-c+d)12.等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或10二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上。
八年级数学下册期中考试卷及答案

八年级数学下册期中考试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标是( )A .(﹣4,0)B .(6,0)C .(﹣4,0)或(6,0)D .(0,12)或(0,﹣8)3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有( )A .4个B .3个C .2个D .1个9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.若x2+kx+25是一个完全平方式,则k的值是____________.3.因式分解:2a2﹣8=________.4.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.先化简,再求值:a3a2++÷22a6a9a-4++-a1a3++,其中50+-113⎛⎫⎪⎝⎭2(-1).3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、A5、C6、C7、A8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、752、±10.3、2(a+2)(a-2).4、24.5、2806、(-10,3)三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、-33a+,;12-.3、(1)略;(2)△ABC的周长为5.4、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)略(2)90°(3)AP=CE6、(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.。
2024年最新人教版初二数学(下册)期中考卷及答案(各版本)

2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。
2. 下列各数中,不是有理数的是________。
3. 下列等式中,正确的是________。
4. 下列各数中,绝对值最小的是________。
5. 下列各数中,是正数的是________。
6. 下列各数中,是整数的是________。
7. 下列各数中,是分数的是________。
8. 下列各数中,是负数的是________。
9. 下列各数中,是偶数的是________。
10. 下列各数中,是奇数的是________。
三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。
2. 解方程:2x 5 = 3x + 5。
3. 解方程:4x + 6 = 2x 8。
四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。
八年级期中试卷数学卷答案

一、选择题1. 答案:C。
解析:A选项是正比例函数,B选项是反比例函数,D选项是指数函数,只有C选项是一次函数。
2. 答案:B。
解析:A选项是奇函数,C选项是偶函数,D选项是非奇非偶函数,只有B选项既是奇函数又是偶函数。
3. 答案:A。
解析:A选项是正数,B选项是负数,C选项是零,D选项是正负数,只有A选项是正数。
4. 答案:D。
解析:A选项是平方根,B选项是立方根,C选项是算术平方根,D选项是开方,只有D选项是开方。
5. 答案:C。
解析:A选项是等差数列,B选项是等比数列,D选项是调和数列,只有C选项是递增数列。
二、填空题6. 答案:2。
解析:根据勾股定理,直角三角形的两条直角边分别为3和4,斜边长为5。
7. 答案:3。
解析:根据等差数列的性质,第二项是首项加公差,第三项是首项加2倍公差,所以第三项是3。
8. 答案:8。
解析:根据等比数列的性质,第二项是首项乘公比,第三项是首项乘公比的平方,所以第三项是8。
9. 答案:3。
解析:根据指数运算法则,a的平方乘以a的立方等于a的五次方,所以a的立方是3。
10. 答案:5。
解析:根据根号下a的平方等于a,所以根号下25等于5。
三、解答题11. 答案:(1)x=-2;(2)y=2。
解析:将x=-2代入方程x+2y=0,得到-2+2y=0,解得y=1;将y=2代入方程2x-y=4,得到2x-2=4,解得x=3。
12. 答案:(1)x=3;(2)y=2。
解析:将x=3代入方程x+2y=0,得到3+2y=0,解得y=-1.5;将y=2代入方程2x-y=4,得到2x-2=4,解得x=3。
13. 答案:(1)x=4;(2)y=6。
解析:将x=4代入方程x+2y=0,得到4+2y=0,解得y=-2;将y=6代入方程2x-y=4,得到2x-6=4,解得x=5。
14. 答案:(1)x=1;(2)y=2。
解析:将x=1代入方程x+2y=0,得到1+2y=0,解得y=-0.5;将y=2代入方程2x-y=4,得到2x-2=4,解得x=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新八年级下册数学期中考试题(含答案)一、选择题(每小题3分,共30分)1.若式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x<﹣2C.x≠﹣2D.x≥﹣22.下列各式是最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.下列各组数中不能作为直角三角形的三条边的是()A.6,8,10B.9,12,15C.1.5,2,3D.7,24,255.如图,Rt△ABC中,∠ACB=90°,以AC、BC为直径作半圆S1和S2,且S1+S2=2π,则AB的长为()A.16B.8C.4D.26.甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°7.下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形8.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°9.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF10.在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()A.B.C.D.二、填空题(每小题3分,共18分)11.=.12.当x=﹣1时,代数式x2+2x+2的值是.13.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边长是.14.如图,若将四根木条钉成的矩形木框变成▱ABCD的形状,并使其面积变为矩形面积的一半,则▱ABCD的最小内角的度数为.15.如图,A(1,0),B(0,1)点P在线段OA之间运动,BP⊥PM,且PB=PM,点C 为x轴负半轴上一定点,连CM,N为CM中点,当点P从O点运动到A点时,点N运动的路径长为.16.在大小为4×4的正方形方格中,三个顶点都在单位小正方形的顶点上的直角三角形共有个.(全等三角形只算一个)三、解答题(共72分)17.(8分)计算:(1)3;(2)(4).18.(8分)已知:a=2+,b=2﹣,求:①a2+b2,②的值.19.(8分)如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.(1)求∠DAB的度数.(2)求四边形ABCD的面积.20.(8分)如图,在4×3正方形网格中,每个小正方形的边长都是1(1)分别求出线段AB、CD的长度;(2)在图中画线段EF、使得EF的长为,以AB、CD、EF三条线段能否构成直角三角形,并说明理由.21.(8分)如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).22.(10分)如图,在Rt△ABC中,∠BAC=90°,E,F分别是BC,AC的中点,延长BA 到点D,使AD=AB.连接DE,DF.(1)求证:AF与DE互相平分;(2)若BC=4,求DF的长.23.(10分)已知△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰Rt△PCQ,∠PCQ=90°.探究并解决下列问题:(1)如图1,若点P在线段AB上,且AC=1+,P A=,求线段PC的长.(2)如图2,若点P在AB的延长线上,猜想P A2、PB2、PC2之间的数量关系,并证明.(3)若动点P满足,则的值为.24.(12分)在平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0),A(﹣x,0),C(0,y),且x、y满足.(1)矩形的顶点B的坐标是.(2)若D是AB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BE交y轴于Q点.①求证:四边形DBOQ是平行四边形.②求△OEQ面积.(3)如图2,在(2)的条件下,若R在线段AB上,AR=4,P是AB左侧一动点,且∠RP A=135°,求QP的最大值是多少?2017-2018学年湖北省武汉市武昌区武珞路中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:根据题意得:x+2≥0,解得x≥﹣2.故选:D.2.【解答】解:(A)原式=2,故A不选;(B)原式=,故B不选;(C)原式=,故C不选;故选:D.3.【解答】解:A、原式=2+=3,所以A选项错误;B、原式=,所以B选项错误;C、原式==,所以C选项正确;D、原式=2÷2=,所以D选项错误.故选:C.4.【解答】解:A、∵62+82=102,∴此三角形是直角三角形,不合题意;B、∵92+122=152,∴此三角形是直角三角形,不符合题意;C、1.52+22≠32,∴此三角形不是直角三角形,符合题意;D、72+242=252,∴此三角形是直角三角形,不合题意.故选:C.5.【解答】解:由勾股定理得,AC2+BC2=AB2,π×()2+π×()2=π×(AC2+BC2)=2π,解得,AC2+BC2=16,则AB2=AC2+BC2=16,解得,AB=4,故选:C.6.【解答】解:甲的路程:40×15=600m,乙的路程:20×40=800m,∵6002+8002=10002,∴甲和乙两艘轮船的行驶路线呈垂直关系,∵甲客轮沿着北偏东30°,∴乙客轮的航行方向可能是南偏东60°,故选:C.7.【解答】解:根据平行四边形和矩形的性质和判定可知:选项A、B、C均正确.D中说法应为:对角线相等且互相平分的四边形是矩形.故选:D.8.【解答】解:A、如图1,∵AD∥CB,∴∠A+∠B=180°,如果∠A+∠C=180°,则可得:∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B、如图1,∵AD∥CB,∴∠A+∠B=180°,如果∠B+∠D=180°,则可得:∠A=∠D,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;C、如图1,∵AD∥CB,∴∠A+∠B=180°,再加上条件∠A+∠B=180°,也证不出是四边形ABCD是平行四边形,故此选项错误;D、如图2,∵∠A+∠D=180°,∴AB∥CD,∵AD∥CB,∴四边形ABCD是平行四边形,故此选项正确;故选:D.9.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.10.【解答】解:设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,得或,解得或,∵2×<(此时不能构成三角形,舍去)∴取,其中n是3的倍数∴三角形的面积S△=××=n2,对于S△=n2=n2,当n>0时,S△随着n的增大而增大,故当n=3时,S△=取最小.故选:C.二、填空题(每小题3分,共18分)11.【解答】解:=4×3=12.12.【解答】解:∵x=﹣1,∴x+1=,∴(x+1)2=23,即x2+2x=22,∴x2+2x+2=22+2=24.13.【解答】解:当第三边是直角边时,根据勾股定理,第三边的长==4,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,5,亦能构成三角形;综合以上两种情况,第三边的长应为4或.14.【解答】解:如图,过点A作AE⊥BC于点E,∵平行四边形的面积为矩形的一半且同底BC,∴平行四边形ABCD的高AE是矩形宽AB的一半.在直角三角形ABE中,AE=AB,∴∠ADC=30°.故答案为:30°.15.【解答】解:取AC中点E,连接NE,∴N的运动轨迹是线段NE,又∵N为CM中点,当点P运动到A点时,PM=P A,∴EN=P A,∵A(1,0),B(0,1),BP⊥PM,且PB=PM,此时△ABM是等腰直角三角形,∴AM=AB=,∴EN=,故答案为;16.【解答】解:斜边长分别为;2;2;4;3;4;;;的直角三角形各1个;斜边为5的直角三角形有2个;斜边长为的直角三角形有3个,斜边长为2的直角三角形有3个;∴三个顶点都在格点的直角三角形共有17个;故答案为:17.三、解答题(共72分)17.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=2﹣.18.【解答】解:当a=2+,b=2﹣时,a+b=2++2﹣=4,a﹣b=2+﹣2+=2,ab=(2+)(2﹣)=4﹣3=1,①a2+b2=(a+b)2﹣2ab=42﹣2×1=14;②====8.19.【解答】解:(1)连结AC,∵∠B=90°,AB=BC=2,∴,∠BAC=45°,∵AD=1,CD=3,∴,CD2=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠DAC+∠BAC=135°.(2)在Rt△ABC中,,在Rt△ADC中,.∴.20.【解答】解:(1)AB==;CD==2.(2)如图,EF==,∵CD2+EF2=8+5=13,AB2=13,∴CD2+EF2=AB2,∴以AB、CD、EF三条线可以组成直角三角形.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴▱GBCH,▱ABFE,▱EFCD,▱EGFH,▱ACHD它们面积=▱ABCD的面积,∴与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH.22.【解答】(1)证明:连接EF,AE.∵点E,F分别为BC,AC的中点,∴EF∥AB,EF=AB.又∵AD=AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.∴AF与DE互相平分.(2)解:在Rt△ABC中,∵E为BC的中点,BC=4,∴AE=BC=2.又∵四边形AEFD是平行四边形,∴DF=AE=2.23.【解答】解:(1)如图①所示:∵△ABC是等腰直直角三角形,AC=1+,∴AB====+,∵P A=,∴PB=AB﹣P A=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,PC=CQ,∠ACB=∠PCQ,∴∠ACP=∠BCQ,在△APC和△BQC中,,∴△APC≌△BQC(SAS).∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ==2.故答案为:2;(2)AP2+BP2=PQ2.理由如下:如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵=,∴P1A=AB=DC.∴P1D=DC.在Rt△CP1D中,由勾股定理得:CP1===DC,在Rt△ACD中,由勾股定理得:AC===DC,∴==.②当点P位于点P2处时.∵=,在Rt△CP2D中,由勾股定理得:P2C===DC,在Rt△ACD中,由勾股定理得:AC===DC,∴==.综上所述,的比值为或;故答案为:或.24.【解答】解:(1)∵x﹣4≥0,4﹣x≥0∴x=4,∴y=6∴点A(﹣4,0),点C(0,6)∴点B(﹣4,6)故答案为:(﹣4,6)(2)①∵D是AB中点,∴AD=BD∵折叠∴AD=DE,∠ADO=∠ODE∴∠DBE=∠DEB∵∠ADE=∠DBE+∠DEB∴∠ADO+∠ODE=∠DBE+∠DEB∴∠ADO=∠DBE∴OD∥BQ,且AB∥OC∴四边形BDOQ是平行四边形,②如图,过点D作DF⊥BQ于点F,∵AD=3,AO=4∴DO==5∵四边形BDOQ是平行四边形,∴BD=OQ=3,BQ=DO=5,∴CQ=CO﹣OQ=3∵AB∥CO∴∠ABQ=∠BQC,且∠BFD=∠BCQ=90°∴△BFD∽△QCB∴∴∴BF=,DF=∵DE=BD,DF⊥BQ∴BE=2BF=∵S△DEO=S△ADO=S▱BDOQ=×AD×AO=6,∴S▱BDOQ=12∴S△EOQ=S▱BDOQ﹣S△DEO﹣S△BDE=12﹣6﹣=(3)如图,连接RO,以RO为直径作圆H,作HF⊥OQ于点F,∵RA=4=AO∴∠AOR=∠ARO=45°,RO==4∵∠APR+∠AOR=135°+45°=180°∴点A,点P,点R,点O四点共圆∴点P在以点H为圆心,RO为直径的圆上,∴点P,点H,点Q三点共线时,PQ值最大,∵∠HOF=45°,HF⊥OQ,∴∠FHO=∠HOF=45°,且OH=2∴HF=OF=2,∴QF=OQ﹣OF=3﹣2=1∴HQ==∴PQ的最大值为2+八年级下学期期中考试数学试题(含答案) 一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤33.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.247.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a8.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.9.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,4),则△AOC的面积为()A.6B.12C.18D.2410.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是.15.(3分)若关于x的方程=6+有增根,则m=.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.18.先化简,再求值.,其中a=2.19.解方程=+2.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD 的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.2017-2018学年福建省泉州五中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.【分析】根据分式的定义即可求出答案.【解答】解:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由y=,得3﹣x<0,解得x<3,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数的性质判断出点的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点(a2+1,﹣1)一定在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等【分析】根据平行四边形的性质即可判断.【解答】解:平行四边形的对角线互相平分.故选:C.【点评】本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.24【分析】根据线段垂直平分线的性质可得AF=FC,那么由△ABF的周长为6可得AB+BC =6,再根据平行四边形的性质可得AD=BC,DC=AB,进而可得答案.【解答】解:∵对角线AC的垂直平分线分别交AD,BC于点E,F,∴AF=CF,∵△ABF的周长为6,∴AB+BF+AF=AB+BF+CF=AB+BC=6.∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∴▱ABCD的周长为2(AB+BC)=12.故选:B.【点评】此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等,平行四边形对边相等.7.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【分析】将各数化简后即可比较大小.【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.【点评】本题考查零指数幂以及负整数指数幂的意义,解题的关键是正确理解零指数幂以及负整数指数幂的意义,本题属于基础题型.8.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.【分析】根据一次函数及反比例函数的图象与系数的关系作答.【解答】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、因为y=kx+3的图象交y轴于正半轴,故B选项错误;C、因为y=kx+3的图象交y轴于正半轴,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,4),则△AOC的面积为()A.6B.12C.18D.24【分析】由点D为线段OA的中点可得出D点的坐标,将点D的坐标代入双曲线解析式中解出k值,即可得出双曲线的解析式,再令x=﹣8可得点C的坐标,根据边与边的关系结合三角形的面积公式即可得出结论.【解答】解:∵点D为线段OA的中点,且点A的坐标为(﹣8,4),∴点D的坐标为(﹣4,2).将点D(﹣4,2)代入到y=(k<0)中得:2=,解得:k=﹣8.∴双曲线的解析式为y=﹣.令x=﹣8,则有y=﹣=1,即点C的坐标为(﹣8,1).∵AB⊥BO,∴点B(﹣8,0),AC=4﹣1=3,OB=8,∴△AOC的面积S=AC•OB=×3×8=12.故选:B.【点评】本题考查了反比例函数系数k的几何意义、中点坐标公式以及三角形的面积公式,解题的关键是找出点C、D的坐标.解决该题型题目时,求出点的坐标由待定系数法求出反比例函数解析式是关键.10.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=【分析】归纳总结得到一般性规律,即可得到结果.【解答】解:由a1=n,得到a2=1﹣=1﹣=,a3=1﹣=1﹣=﹣=,a4=1﹣=1﹣(1﹣n)=n,以n,,为循环节依次循环,∵2013÷3=671,∴a2013=.故选:D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为8.1×10﹣8.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 081=8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=120°.【分析】利用平行四边形的邻角互补,和已知∠A﹣∠B=60°,就可建立方程求出两角.【解答】解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=60°,把这两个式子相加相减即可求出∠A=∠C=120°,故答案为:120°.【点评】本题考查了平行四边形的性质:邻角互补,对角相等,建立方程组求解.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=80°.【分析】依据尺规作图的痕迹,可得EF是AB的垂直平分线,根据线段垂直平分线的性质得出EA=EB,根据等边对等角得到∠EAB=∠B=50°,利用三角形内角和定理求出∠AEB=180°﹣∠EAB﹣∠B=80°,再根据平行四边形的对边平行以及平行线的性质求出∠DAE=∠AEB=80°.【解答】解:∵EF是AB的垂直平分线,∴EA=EB,∴∠EAB=∠B=50°,∴∠AEB=180°﹣∠EAB﹣∠B=80°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB=80°.故答案为80°.【点评】本题考查了平行四边形的对边平行的性质,线段垂直平分线的性质,等边对等角的性质,三角形内角和定理以及平行线的性质.求出∠AEB的度数是解题的关键.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是y=2x+2.【分析】根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(1,4)代入即可得出直线的函数解析式.【解答】解:设平移后直线的解析式为y=2x+b.把(1,4)代入直线解析式得4=2×1+b,解得b=2.∴平移后直线的解析式为y=2x+2.故答案为:y=2x+2.【点评】本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y =kx+b(k≠0)平移时,k的值不变是解题的关键.15.(3分)若关于x的方程=6+有增根,则m=6.【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m的值即可.【解答】解:最简公分母为x﹣6,当x﹣6=0时,x=6,去分母得:x=6(x﹣6)+m,因为方程有增根,所以增根为x=6当x=6时,m=6,故答案为:6【点评】本题考查增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为(,).【分析】过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN =PM,PN=CM,设AD=a,求出DN=2a﹣1,得出2a﹣1=1,求出a=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).【点评】本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5+1﹣2+2=6.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、绝对值的性质是解答此题的关键.18.先化简,再求值.,其中a=2.【分析】先把除法运算转化为乘法运算以及把各分式的分子和分母因式分解得到原式=•﹣,约分后得到原式=﹣,再通分得,接着把a=2代入计算.【解答】解:原式=•﹣=﹣=,当a=2时,原式==2.【点评】本题考查了分式的化简求值:先把除法运算转化为乘法运算和把各分式的分子或分母因式分解,然后进行约分得到最简分式或整式,最后把满足条件的字母的值代入进行计算.19.解方程=+2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3+4x﹣4,移项合并得:2x=1,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解;设每个小组有x名学生,根据题意得:,解之得x=10,经检验,x=10是原方程的解,且符合题意.答:每组有10名学生.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.【分析】(1)证出AC=BD,由SAS证明△ACE≌△DBF即可;(2)由全等三角形的性质得出CE=BF,∠ACE=∠DBF,得出CE∥BF,即可得出结论.【解答】(1)证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中,,∴△ACE≌△DBF(SAS)).(2)证明:∵△ACE≌△DBF,∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.【点评】此题主要考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.【分析】根据提示,先设比值为k,再利用等式列出三元一次方程组,即可求出k的值是2,然后把x+y=2z代入所求代数式.【解答】解:设===k,则:,(1)+(2)+(3)得:2x+2y+2z=k(x+y+z),∵x+y+z≠0,∴k=2,∴原式===.【点评】本题主要考查分式的基本性质,重点是设“k”法.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA=PB时,可得(n+1)2+4=(n﹣2)2+1.②当AP=AB 时,可得22+(n+1)2=(3)2.③当BP=BA时,可得12+(n﹣2)2=(3)2.分别解方程即可解决问题;【解答】解:(1)把A(﹣1,2)代入y=,得到k2=﹣2,∴反比例函数的解析式为y=﹣.。