4.7(2)相似三角形的性质

合集下载

北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计

北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
3.自主学习反思应真实反映学生的学习情况,有助于提高学习效果。
(五)总结归纳
1.让学生回顾本节课所学的相似三角形的性质,总结性质的应用和证明方法。
2.引导学生将相似三角形的性质与全等三角形的性质进行对比,明确它们的联系与区别。
3.强调相似三角形在实际生活中的应用,激课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好铺垫。
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,如对应角相等、对应边成比例,并能运用这些性质解决实际问题。
2.使学生能够运用相似三角形的性质,进行几何图形的证明和计算,提高学生的逻辑思维能力和解题技巧。
3.培养学生运用相似三角形的性质,解决与生活实际相关的问题,如地图比例尺、摄影中的相似变换等。
1.学生对相似三角形定义的理解程度,是否能顺利过渡到性质的学习。
2.学生在几何证明方面的能力,是否能运用已知性质进行严密的逻辑推理。
3.学生在实际问题中运用相似三角形性质的能力,是否能够将理论知识与生活实际相结合。
针对以上情况,教师应采取生动形象的教学方法,如运用多媒体、实物模型等辅助教学,帮助学生形象地理解相似三角形的性质。同时,设计具有启发性的问题和例题,引导学生积极参与课堂讨论,提高他们的逻辑思维能力和解题技巧。在课后,关注学生的作业完成情况,及时发现并解决他们在学习过程中遇到的问题,确保学生对相似三角形性质的理解和应用。
(3)采用小组合作法,鼓励学生相互交流、讨论,共同解决几何证明和实际问题;
(4)实施启发式教学法,教师通过提问、引导学生思考,激发学生的思维潜能。
2.教学策略:
(1)逐步引导:从复习相似三角形的定义入手,逐步过渡到性质的学习,让学生在已有知识的基础上自然过渡;

北师大版数学九年级上册4.7.2相似三角形的性质面积之比教学设计

北师大版数学九年级上册4.7.2相似三角形的性质面积之比教学设计
-引导学生通过测量、计算等方法,验证相似三角形面积比的规律。
2.创设生活情境,将几何知识与实际应用相结合,提高学生的应用意识。
-结合现实生活中的实例,如地图、照片等,让学生感受相似三角形面积比在实际中的应用。
-设计相关例题,让学生运用相似三角形面积比解决实际问题,提高学生的应用能力。
3.注重启发式教学,激发学生的思维能力和创新意识。
-学生代表汇报:“我们小组发现,在地图上,两个相似地区的面积比等于它们的比例尺的平方。”
-教师点评,给予肯定和鼓励。
(四)课堂练习
1.设计练习题:根据相似三角形面积比的知识点,设计具有代表性的练习题。
-练习题:“已知三角形ABC与三角形A'B'C'相似,相似比为3:2,求它们的面积比。”
-学生独立完成练习题,教师进行辅导。
北师大版数学九年级上册4.7.2相似三角形的性质面积之比教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的定义及判定方法,理解相似比的概念。
2.引导学生通过探究发现相似三角形面积的性质,能够运用面积比计算方法解决实际问题。
3.培养学生运用几何图形的性质和定理进行推理、论证的能力,提高几何直观和空间想象能力。
-示例:假设有两块相似的地块,已知它们的相似比为5:3,求这两块地块的面积比。
3.提高拓展题:挑选一道具有一定难度的相似三角形面积比问题,鼓励学生挑战自我,培养他们的逻辑思维和解决问题的能力。
-示例:已知三角形ABC与三角形A'B'C'相似,且三角形ABC的面积为24平方单位,求三角形A'B'C'的面积。
4.小组合作题:以小组为单位,共同探讨相似三角形面积比在生活中的其他应用,并撰写一篇小报告,分享学习心得。

4.7 相似三角形的性质2

4.7 相似三角形的性质2
又ADB ADB 90.
所以ABD ∽ABD.
图 18.3.9
〔 两角对应相等,两三角形相似 〕
第五页,编辑于星期三:十九点 四十八分。
探索新知
相似三角形的性质
问题1: 如图, ABC∽ ABC,相似比为k,
其中AD、 AD分别为BC、 BC边上的高,
由ABD∽ABD能否得到 AD 等于什么?
AD
因为ABD∽ ABD,
图 18.3.9
所以 AD AB (相似三角形的对应边成比例) AD AB
k
结论:相似三角形对应
图 18.3.9
高的比等于相似比.
第六页,编辑于星期三:十九点 四十八分。
自主思考--- 类似结论
问题2 : 如图, ABC∽ ABC,相似比为k,
其中AD、 AD分别为BC、 BC边上的中线,
2、相似三角形对应边上的高、对应边上的中线、 对应角平分线的比都等于__相__似__比__.
3、相似三角形周长的比等于__相__似__比__,
相似三角形面积的比等于___相__似__比___的__平__方.
相似多边形 也有同样的结

第二十一页,编辑于星期三:十九点 四十八分 。
平行四边形ABCD与平行四边形 ABC相D似 , AB=5,对应边 =A6B, 平行四边形
△ABC∽△ ,A且B相C似比为k。
求证:△ABC、 AB周C长 的比等于k
证明: ∵△ABC∽△ ABC

AB AB
BC BC
CA CA
k
∴ AB BC CA k AB BC CA
即△ABC、△ABC的 周长比等于相似比
第十四页,编辑于星期三:十九点 四十八分。
相似三角形的性质

北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计

北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计
-组织学生进行小组合作,共同完成一份关于相似三角形性质及其应用的小研究,提高学生的合作能力和研究能力。
4.反思与总结:
-要求学生完成一份学习反思,内容包括本节课学到的知识、遇到的问题、解决方法以及收获等,帮助学生建立自我评价和反思的习惯。
-教师在批改作业时,要及时给予评价和反馈,关注学生的进步,鼓励学生持续努力。
-新知探究:组织学生分组讨论,合作探究相似三角形的性质,教师适时引导和点拨。
-性质应用:设计不同层次的例题和练习,让学生在解决问题的过程中运用相似三角形的性质。
-总结提升:引导学生归纳相似三角形性质的关键点,总结解题策略和方法。
-课堂反馈:通过课堂练习和小结,了解学生的学习情况,及时调整教学策略。
3.教学评价:
-注重培养学生的几何直观和逻辑思维能力,通过逐步引导,帮助学生建立知识体系。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将以生活实例为基础,引导学生从实际问题中发现相似三角形的性质。首先,我会向学生展示一组图片,包括放大镜下的三角形、不同尺寸的国旗图案等,让学生观察并思考这些图形之间是否存在某种关系。通过学生的回答,我会引导他们回顾全等三角形和相似三角形的定义,为新课的学习做好铺垫。
接着,我会提出一个具有挑战性的问题:“如果我们在一个三角形中,知道两边和它们夹角的比例关系,我们能否求出第三边的长度?”这个问题将激发学生的好奇心,促使他们积极思考。在此基础上,导入相似三角形的性质,为接下来的新知学习奠定基础。
(二)讲授新知
在讲授新知阶段,我会采用讲解、示范、引导相结合的方式,让学生逐步理解并掌握相似三角形的性质。
3.引导学生通过观察、实践、探索,发现相似三角形在生活中的应用,提高学生将数学知识应用于实际问题的能力。

4.7.2相似三角形的性质(教案)

4.7.2相似三角形的性质(教案)
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,如相似比的求法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形在实际测量中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
(1)理解并运用相似三角形的性质。
(2)将相似三角形的性质应用到解决具体问题中。
(3)在实际问题中识别相似三角形,并运用其性质解决问题。
举例:
-难点一:学生可能会混淆相似三角形的性质与其他几何图形的性质,如全等三角形。需通过对比讲解,强调相似三角形的独特性质。
-难点二:学生在运用相似三角形的性质解决具体问题时,可能会不知道从何入手。教师应通过典型例题的讲解,引导学生逐步分析问题,找到解题思路。
此外,在小组讨论环节,有些学生表现得比较被动,可能是因为他们对讨论主题不够感兴趣,或者是不善于表达自己的观点。针对这一问题,我将在以后的课堂中,尝试引入更多贴近生活的实例,激发学生的学习兴趣。同时,鼓励学生们积极发表自己的看法,提高他们的交流与合作能力。
在实践活动方面,我发现学生们在实验操作过程中,对于相似三角形性质的应用有了更直观的认识,但也暴露出一些操作上的问题。例如,在测量过程中,部分学生对于如何准确找到相似三角形的对应角和对应边存在困难。针对这一问题,我将在后续的教学中,加强对实验操作的指导,让学生们在实践中掌握相似三角形的性质。

九年级数学上册 4.7.2 相似三角形的性质教案 (新版)北师大版-(新版)北师大版初中九年级上册数

九年级数学上册 4.7.2 相似三角形的性质教案 (新版)北师大版-(新版)北师大版初中九年级上册数

课题:4.7.2相似三角形的性质教学目标:1.相似三角形的一切对应线段的比都等于相似比.2.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.3.能用三角形的性质解决简单的问题.教学重点与难点:重点:相似三角形的性质与运用.难点:相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.课前准备:制作课件.教学过程:一、前置诊断,开辟道路活动内容:复习:(1)什么是相似三角形?相似比?(2)如何证明两个三角形相似?(3)相似三角形具有什么性质?处理方式:学生思考回顾上几节课所学的内容,找3名学生口答,其余学生矫正补充.设计意图:本环节采用开门见山、以旧引新的方式直接提出学习课题,使学生明确学习目的,为下一步引入新知指明了思考的方向,避免了盲目性.激发学生的学习欲望,顺利实行旧知到新知的迁移.二、创设情景,探究新知如图,是一块三角形木板,工人师傅要把它切割成:一块为三角形,另一块为梯形,且要使切割出的三角形与梯形的面积之比为4:5,那么该怎么切割呢?AB C活动1:问题1:已知:△ABC ∽△A'B'C ',根据相似的定义,我们有哪些结论?(从对应边上看;从对应角上看:)问题2:两个三角形相似,除了对应边成比例、对应角相等之外,我们还可以得到哪些结论?问题3:思考(1)如果两个三角形相似,它们的周长之间有什么关系? (2)如果两个三角形相似,它们的面积之间有什么关系?处理方式:对于问题1学生口答;对于问题2、问题3学生以小组形式讨论探索。

性质1 相似三角形周长的比等于相似比,对应高的比等于相似比。

即:如果△ABC ∽△A'B'C ',且相似比为k , 那么k AC C B B A CABC AB =''+''+''++.性质2 相似三角形面积的比等于相似比的平方. 即:如果△ABC ∽△A'B'C ',且相似比为k , 那么22)(k B A AB S S C B A ABC =''='''∆∆.设计意图:本环节采用探索的方式,让学生通过对直观图形的观察、思考及合理的推导,自己发现结论.而且通过三角形中对应高的比等于相似比的推理及等比的性质,类似地得出相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方的结论.这样既调动了学生的积极性和主动性,增强了学生积极参与教学活动的意识,有很好的培养了学生的归纳演绎能力、自学能力和逻辑思维能力。

4.7《相似三角形的性质》第2课时 数学北师大版 九年级上册教学课件

4.7《相似三角形的性质》第2课时 数学北师大版 九年级上册教学课件

课堂练习
3.两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这
两个三角形的周长分别为( A ).
A.75,115
B.60,100
C.85,125
D.45,85
4.如图,在△ABC中,BC=2,
DE是△ABC的中位线,下面三个结论:
(1)DE=1(2)△ADE∽△ABC(3)△ADE的面积与△ABC的面积之比为
∴△GEC∽△ABC(两角分别相等的两个三角形相似).

S△GEC S△ABC
EC BC
2
EC 2
BC2 (相似三角形的面积比等于相似比的平
方),即 1 EC 2 . 2 22
A
D
∴EC2=2.即EC= 2.
G
∴BE=BC-EC 2 2 ,
即△ABC平移的距离为 2 2 . B
E
C
F
课堂练习
第四章 图形的相似
4.7 相似三角形的性质 第 2 课时
学习目标
1.巩固相似三角形的性质定理:相似三角形对应高的比、对应角 平分线的比、对应中线的比都等于相似比. 2.了解相似三角形的性质定理:相似三角形的周长比对应相似比, 面积比等于相似比的平方.
复习引入
相似三角形的性质: 1.相似三角形的对应角相等,对应边成比例. 2.相似三角形对应高的比,对应中线的比与对应角平分线的 比都等于相似比.
结论:两个相似多边形的周长比等于相似比面积比等于相似比的平方.
典例精析
例 如图,将△ABC沿BC方向平移得到△DEF,△ABC 与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的 一半.已知BC=2,求△ABC平移的距离.
A
D

4.7 相似三角形的性质(课件)九年级数学上册(北师大版)

4.7 相似三角形的性质(课件)九年级数学上册(北师大版)

课堂练习
例1 如图,AD是△ABC的高, AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为
1
E。当SR= BC时,求DE长.
3
2)∵SR⟂AD,BC⟂AD,∴RS∥BC
∴∠ASR=∠B,∠ARS=∠C
∴△ASR∽△ABC. ∴
1
2
∴AE= AD 则DE= ℎ
3
3
AE
AD
=
SR
BC
1
3
而SR= BC
∴ ∠=


′′
=
∠′ ′ ′

′ ′
∴ △
B
D
∽△ ′ ′ ′
C
A’
=k
相似三角形对应角平分线的比等于相似比.
B’
D’
C’
探索与思考
如图,已知△ABC∽△A’B’C’,△ABC∽△A’B’C’的相似为k,点D,E在BC边
上,点D’,E’在B’C’边上
1
1
1∶3
1∶9
对应周长的比为__________,对应面积的比为_________.
课堂练习
1 把一个三角形变成和它相似的三角形,
25
1)如果边长扩大为原来的5倍,那么面积扩大为原来的__________倍。
10
2)如果面积扩大为原来的100倍,那么边长扩大为原来的__________倍。
1
3)如果边长缩小到原来的一半,那么面积缩小为原来的__________。
B’
D’
C’
探索与思考
如图, △ ∽△ ′ ′ ′ ,相似比为,其中 、 ′′分别是∠、∠‘的角平分线,问
AD 、 A′D′有什么关系呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
=4:1
自学检测:(9分钟) 自学“例2”,完成“知识技能”—T3:
解:△BDC∽△FHG ,理由如下: ∵△ABC∽△EFG,EF=2AB BC AC AB 1 ∴ ,∠C=∠G; FG EG EF 2 ∵D、H分别是AC、EG的中点 1 AC CD BC CD 2 AC 1 ∴ ∴ GH FG GH 1 EG EG 2 2 相似比为1 : 2
△BCD ∽△FGH 面积比为1: 4
当堂训练:(10分钟)
1.完成P112“联系拓广”
2.完成《练习册》P96--“课堂作业”
1、C;2、A; 3、1:4;4、 3或27; 5、(1) Nhomakorabea30cm
(2)、90cm2;
第四章 图形的相似
4.7(2)相似三角形的性质
初三数学备课组 2015.10.30
学习目标:(1分钟)
能熟练运用相似三角形的性质解决一些 应用问题.
自学指导:(8分钟)
自学P109的所有内容,解决下列问题: 定理: 相似三角形的周长比等于 相似比 , 面积比等于 相似比的平方 . 完成“随堂练习”:(1)、 完成“知识技能”—T2:

(2)、
×
“知识技能”—T2:
解:(1)∵AB=2DE,AC=2DF ∴AB:DE=AC:DF=2:1 又∵ ∠BAC=∠EDF ∴△ABC∽△DEF ∵AG、DH分别是对应边上的中线 ∴AG:DH=AB:DE=2:1
(2)∵△ABC∽△DEF且AB:DE=2:1
∴S△ABC:S△DEF=(2:1)
相关文档
最新文档