中考数学压轴题解题技巧及训练(完整版)

合集下载

数学中考数学压轴题知识点及练习题附解析

数学中考数学压轴题知识点及练习题附解析

一、中考数学压轴题1.已知:菱形ABCD,点E 在线段BC 上,连接DE,点F 在线段AB 上,连接CF、DF, CF 与DE 交于点G,将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上.(1)求证:CD=CF;(2)设∠CED= x,∠DCF= y,求y 与x 的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,当x=45°时,以CD 为底边作等腰△CDK,顶角顶点K 在菱形ABCD 的内部,连接GK,若GK∥CD,CD=4 时,求线段KG 的长.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.3.如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.(1)如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,当∠EPF=90°,F P平分∠EFC时,求证:EP平分∠AEF;(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由;4.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.5.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 6.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.9.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC =-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.10.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒3的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.11.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.12.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.13.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+6214.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是15.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.16.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.17.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).18.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.19.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,AB=10时,请直接写出....线段ME 的长. 20.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 21.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.22.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式;②若CB BE =45,求y 的值. 23.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).24.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.25.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.D解析:(1)见解析;(2)y=1603x +;(2)2 【解析】【分析】(1)根据翻折的性质得△DFG ≌△DFA ,从而推导得出∠FDC=∠DFG ,进而得到CF=DC ; (2)在等腰△DGC 和等腰△CFD 中,可用y 表示出∠GDC 、∠FDC 的值,从而求出∠ADF ,根据∠ADE=∠DEC ,得出y 与x 的关系式;(3)先证△KCD 是等腰直角三角形,根据CD 的长得到KC 的值,然后再△KGC 中求得KG 的值.【详解】(1)∵将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上∴△DFG ≌△DFA ,∠AFD=∠FDC∴∠AFD=∠DFG∴∠FDC=∠DFG∴CF=DC ;(2)∵AD=DG=DC=FC ,∠DCF=y∴在△DGC 中,∠DGC=y ,∠GDC=180-2y在△CFD 中,∠CFD=∠CDF=902y -∴∠FDG=∠FDC -∠GDC=3902y - ∴∠ADF=∠FDG=3902y -,∴∠ADE=3y -180 ∵AD ∥BC∴∠ADE=∠DEC ,即3y -180=x化简得:y=1603x +; (3)如下图,过点K 作CD 的垂线,交CD 于点I ,延长KG 交BC 于点L ,过点C 作GL 的垂线,交GL 于点Q ,过点C 作GD 的垂线,交GD 于点N ,∵x=45°,∴y=75°,∠ADE=x=45°∴∠DGC=∠DCG=75°,∴∠NDC=30°,∴∠ADC=45°+30°=75°,∵四边形ABCD是菱形,∴∠B=75°,∵KG∥DC,∴KG∥AB,∠KGD=∠NDC=30°,∴∠GLC=∠B=75°,∠KGC=30°+75°=105°,∴∠LGC=75°,∴∠CGL=∠CGN,∴GC是∠LGN的角平分线,∴CQ=CN,∵CD=4,∠CDE=30°,∴在Rt△CND中,CN=2,∴CQ=2,∵KG∥CD,∴∠QKI=∠KIC=90°∵CQ⊥KL∴四边形CQKI是矩形,∵CK=KD,KI⊥CD,∴CI=ID=2,∴CI=CQ=2,∴矩形CQKI是正方形∴IK=CQ=2,∴在Rt△KIC中,CK=22,如下图,过点G作CK的垂线,交CK于点M,∴△KGM是等腰直角三角形,△GMC是直角三角形,且∠C=30°,设GM=x,则在Rt△GKM中,KM=GM=x,在Rt△GMC中,CG=2x,3x,∴322解得:62∴2=232x.【点睛】本题考查菱形的性质和翻折的性质,需要注意,翻折后的图形和翻折前的图形时完全相等的,这个条件不可忽略.2.B解析:(1)①(2,0),(12),(﹣12y2x;③y=﹣22x2;(2)①半径为2,M(3333);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC =CD =1,OA =BC =2,∴BD =OE =1,OD =CF =BE=2, ∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE ∥OD 交OA 于E ,作PM ∥OD 交OA 于M .∵OD ∥BE ,OD ∥PM ,∴BE ∥PM ,∴BE OE PM OM=, ∴21y x=, ∴y =2x .故答案为:y =2x .③如图2﹣3中,作QM ∥OA 交OD 于M .222MQ DM OA DOx y ∴=-∴= ∴222y x =-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=23,∴OF=FA=3,∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN=233,ON=2MN=433,∴M4323,33⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EPF【解析】【分析】(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF2,最后在四边形EPFQ中得出结论.【详解】(1)如下图,过点P作PQ∥AB∵PQ∥AB,AB∥CD,∴PQ∥CD ∴∠AEP=∠EPQ,∠QPF=∠PFC 又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P作PQ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90°∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90°∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300°∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=∠QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中: ∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.4.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.5.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x =的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x =的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x =的图象上 ∴8q p=代入方程260px x q -+=得: 2860px x p -+=解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.6.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到1DH =,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)EF =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F ,1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=. //AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.7.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,22(12)(20)1332DC =--+-=<⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得1131m =+,2131m =-当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【解析】【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法一、图形旋转知识与方法1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。

2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.3、图形的旋转有三个要素:①旋转中心;②旋转方向;③旋转角度.三要素中只要任意改变一个,图形就会不一样.4、旋转具有以下性质:①对应点到旋转中心的距离相等,即边相等。

②对应点与旋转中心所连线段的夹角等于旋转角,即角相等③旋转前、后的图形全等。

5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。

利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。

有旋转点的,有旋转线段的,更多的是旋转图形的。

旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。

其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。

二、典例精讲典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.思路点拨:(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得1==4AF CDAB CB、1==2AF CDAB CB,代入数据求解即可;满分解答:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴1==4 AF CDAB CB,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴1==2 AF CDAB CB,∵AB=8,∴BE=AF=4,故BE的长为2或4.名师点评:(1)本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.(2)旋转问题三步走:。

满分突破中考数学压轴题之专题练习(一)—解答压轴题方法与技巧

满分突破中考数学压轴题之专题练习(一)—解答压轴题方法与技巧

满分突破中考压轴题之专题练习(一)1.等腰△ ABC中,CA=CB点D为边AB上一点,沿CD折叠△ CAD得到△ CFD边CF交边(2)连接AF交CD的延长线于点M,连接ME交线段DF于点N,若EF=4EC AB=22,求MN的长.【考点】翻折变换(折叠问题);等腰三角形的性质.菁优网版权所有【解答】(1) 证明:如图1,•/ CA=CB •••/ A=Z ABC,•/ CD=CE CDE=/ CED,'Z A=Z ABC在厶ACE与厶BCD 中,,ZAEC二ZBDC t AC=C&•△ACE^A BCD (AAS)•AE=BD, AD=EB•/ AD=DF, • DF=EBI F二EB在厶DCF与厶ECB中 , “ CF二CBLCD=CE•••△DCF^A ECB ( SSS ,/ DCE=/ ECB / DFE=/ EBC,•/ FDE=Z BCE•••/ DEC=ZFEB•/ DCE=/ EBF,•△DEF^A CEBAB 于点E, CD=CE 连接BF.• FD=FB•△DE3A FEB, •/ FDB=/ FBD,(2) 解:•••沿CD 折叠△ CAD 得到△ CFD,••• CA=CF / CAD=Z CFD,•••/ CAD=Z CBE•••/ DEF=Z CEB又•••/ CED=/ BEF•••/ CFD=/ CBE, • △ DEF ^A CEB • △ CED^A BEF,•/ CD=CE• BE=BF , △ EBF 为等腰三角形,•/ CF=CBBCF 为等腰三角形, 则/ BCF=Z EBF,• / DCE=/ BCF, CEBCD 和/ BCD 的平分线,由角平分线定理,可得 CB _ EB CE+EF CD^ED ? CE =ED ?•/ EF=4EC•「_5・・ =5 ,ED•/ AB=AD+ED+EB=22,• 5ED+ED+5ED=22 ,解得ED=2,• •匸■ W TT•- 4CW=5ED 2 , EC=",由余弦定理,可得 ED 2=C D 2+C E ?- 2CD X CEcos / DCE cos / DCE=;.5如图2,过点M 作AE 的平行线分别交 FD EF 于点G 、H ,• M 为AF 边的中点,•••点G 、H 是FD EF 的中点,•/ EF=4EC• EH=2EC• MD=2CD , MH=3ED , •/ GH=- ED, 2• / DCE=/ EBF郢2•/△MNG s^ END,,讥=,MN= ME,ED EN EN 2 7在厶MCE中,由余弦定理,可得ME2=MC2+EC? - 2MC X EC X cos/ DCEME2=10EC - 3.6EC=6.4E(C ,• ME=4 二MN」2 .如图,Rt A ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点MB、MC、AC于点D、E、P,以DE为边向下作等边厶DEF,设厶DEF与厶MBC重叠部分的面积为S( cm2),直线I的运动时间为t (秒).(1) 求边BC的长度;(2) 求S与t的函数关系式;(3) 在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4) 在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.菁优网版权所有【解答】解:(1)设/ B=a,•/ MB=MC,M时停止•直线I分别交线段A•/ MC=MA,•••/ A=Z AMC=a ,•••/ B+Z A=90 ,•- a+2 a =90;•a =30°•Z B=30°;■/ cotB= I -;AC•BC=AC X cotB=8 ;厂;;(2)由题意,若点F恰好落在BC上,• MF=4 ( 4 - t) =4;--1=3.当0v t w3时,如图,• BD=2t;DM=8 - 2t ;•/ l // BC,•時」,•L1 :J-•: :,•DE= : (8 - 2t).•点D到EF的距离为FJ= DE=3 (4 - t),2•/ l // BC,•:V i;l】• ---DE"FJ•/ FN=FJ- JN=3 (4 - t)- t=12 - 4t,• "= 一( 3-t)S=S弟形DHG (HG+DE)X FN=-当3 v t w 4时,重叠部分就是厶DEF,S=S年匚詔=3二t2- 24和48 =.即:S= 3 2 砺t+4 结血(3<t<4)(3) 当 O v t w 3 时,/ FC 禺 90°••• Fd CP,•••△ PCF 不可能为等腰三角形当3 v t w 4时,若△ PCF 为等腰三角形,•只能FC=FP•-=3( 4 - t ), 2• t (7)•••存在这样的时刻t=— 时,使得以P 、C 、F 为顶点的三角形为等腰三角形,7 (4 )若相切,理由:•••/ B=30° ,• BD=2t , DM=8 - 2t ,•/ l // BC,…時」,•li :: ■'•-,• DE=二(8 - 2t ).• 2t=3 (4 - t ),解得t=—. 5•••存在这样的时刻t=l —时,使得以点D 为圆心、BD 为半径的圆与直线 EF 相切.^t Z +8V3t(O<t<3) DE=3 (4 - t )3.在Rt A ABC 中,/ ACB=90°, AC=BC=2点P 为BC 边上的一个动点 (不与B 、C 重合).点 第7页(共25页)• AP=AM=AN ,Z 1 = / 2,7 3=/4,•••/ CAB=/ 2+/ 3=45°,MAN=90(1) 当点P 为线段BC 的中点时,求/ M 的正切值;(2) 当点P 在线段BC 上运动时(不与 B 、C 重合),连接AM 、AN ,求证:① 厶AMN 为等腰直角三角形;② 厶 AEF ^A BAM .【考点】相似形综合题.菁优网版权所有【解答】(1 )解:连接NB ,如图1 ,•••在 Rt A ABC 中,/ ACB=90 , AC=BC•••△ ACB 为等腰直角三角形,•••/ A=Z CBA=45 ,•••点P 关于直线AB 的对称点为N ,关于直线AC 的对称点为M ,• AB 垂直 PN, BN=BP,•••/ NBA=Z PBA=45 ,•••/ PBN=90 ,•••点P 为BC 的中点,BC=2,• MC=CP=PB=NB=1• tan / M= m =X 1厂二(2)证明:①连接AP,如图2,•••点P 关于直线AC AB 的对称点分别为M 、N , P 关于直线AC 、AB 的对称点分别为 M 、N ,连接MN 交AC 于点E,交AB 于点F .•••△AMN为等腰直角三角形;②•••△ AMN为等腰直角三角形,•••/ 5=/ 6=45°,•••/ AEF=/ 5+/ 仁45° + / 1 ,•// EAF=45•/ BAM=/ EAF+/ 仁45° + / 1,•/ AEF=/ BAM,又•••/ B=/ EAF=45•△AEF^A BAM.d4. 已知:在梯形ABCD中,AD// BC, AC=BC=10cos/ ACB=:,点E在对角线AC上,且CE=AD,5BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,A AEF的面积为y.(1 )求证:/ DCA=/ EBC;(2) 如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3) 如果△ DFG是直角三角形,求△ AEF的面积.【考点】相似形综合题.菁优网版权所有【解答】(1)证明:T AD / BC,•/ DAC=/ ECB 在厶DCA和厶ECB中,r AD=CE,ZDAC^ZECB ,M 二BC•△DCA^A ECB( SAS,• / DCA=/ EBC(2)T AD// BC,•••△ AEF^A CEB,• .': T !\ : 即I J…茁—:T.,: ,,解得:AF=』'',X作EH丄AF于H ,如图1所示,• EH=;AE=;(10 -x),5 51 3--y=S^ AEF= x —25(10- x)10(10-x) =3(10P)2•- 0v x w 5訂.:-5 ,• y关于x的函数解析式为: y_ " ' ||:, ' 11y=(0v x< 5 , I - 5); (3)分两种情况考虑:①当/ FDG_90时,如图2所示:A在Rt A ADC 中,AD_AC X—_8 ,即x_8 ,5• S L :…AAEF_y_ —②当/ DGF_90时,过E作EM丄BC于点M,如图3所示,由(1)得:CE_AF_x3 4在Rt A EMC 中,EM_ x , MC_ x ,5 5•BM_BC- MC_10-二x,5•••/ GCE_/ GBC, / EGC_/ CGB,•△CGE^A BGC,.CE_CG 即工_CG•g_ j ' : _ ,•••点G在线段CD上,• AF> AD ,即 _ > x,(1) (2)(3) 求厶BCQ 的面积S 与t 的函数关系式.t 为何值时,QP// AC ?t 为何值时,直线 QR 经过点P ?当点P 在AB 上运动时,以PQ 为边在AB 上方所作的正方形 PQMN 在 Rt A ABC 内部,求此时t 的取值范围.【考点】相似形综合题.菁优网版权所有【解答】解:(1 )过C 作CD 丄AB 于D 点,如图所示:•/ AB=10, AQ=2+2t ,• QB=AB- AQ=10-( 2+2t ) =8 - 2t ,在 Rt A ABC 中,AB=10, AC=8,根据勾股定理得:BC=6,•••/ EBM=Z CBG, / BME=Z BGC=90 ,•••△ BMEs^ BGC,-■<?1!=匸''丽硕io4/53• 1 =,即 x=5, 10碍 5此时 y= ;「’=15,综上,此时△ AEF 的面积为「或15.5. 在 Rt A ABC 中,/ C=90° AB=10, AC=8,点 Q 在 AB 上,且 AQ=2,过 Q 做 QR 丄 AB,垂 足为Q , QR 交折线AC- CB 于R (如图1),当点Q 以每秒2个单位向终点B 移动时,点P 同时从A 出发,以每秒6个单位的速度沿 AB - BC- CA 移动,设移动时间为t 秒(如图2).•••丄AC?BC= AB?CD,即卩-X 6X X 10X CD,2 2 2 2••• CD二,5则S^BCQ F QB?CD= (8- 2t) =- 〔t+ ( 0 < t w 4);2 5 5 5(2)当PQ// AC 时,可得/ BPQ=Z C,Z BQP=Z A,• △ BPQ^A BCA, 又BQ=8- 2t, BP=6t- 10,•讥=[F 即-'■ J" -一…, i _ -,整理得:6 (8 - 2t) =10 (6t - 10),解得:t=',18则t= 1时,QP/ AC;18(3)①当Q、P 均在AB 上时,AP=6t , AQ=2+2t ,可得:AP=AQ,即6t=2+2t,解得:t=0.5s ;②当P在BC上时,P与R重合,如图所示:•••/ PQB=Z ACB=90 , / B=Z B ,•△BP2A BAC,•—,又BP=6t- 10 , AB=10 , BQ=8- 2t ,BC=6 AB BC'1= :,即6 (6t - 10) =10 (8 - 2t),10 6解得:t=2.5s;③当P在AC上不存在QR经过点P ,综上,当t=0.5s或2.5s时直线QR经过点P;(4) 当点P在点Q的左侧时,若点N落在AC上,如图所示:•/ AP=6t , AQ=2+2t ,•PQ=AQ- AP=2+2t - 6t=2 - 4t ,•••四边形PQMN是正方形,•PN=PQ=2- 4t,•••/ APN=Z ACB=90 , / A=Z A ,第10页(共25页)。

【初中数学】中考数学压轴题解题技巧+题型汇总

【初中数学】中考数学压轴题解题技巧+题型汇总

【初中数学】中考数学压轴题解题技巧+题型汇总2022中考数学压轴题题型思路数学压轴题9种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中考数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5.多种函数交叉综合问题中考数学所涉及的函数就一次函数,反比例函数以及二次函数。

作为福建中考,近年,反比例函数连续四年作为填空压轴出现,一次函数与二次函数作为解答题压轴题出现,特别是第三问区分度大,难度大,在中考中面对这类问题,有步骤有分,对优生而言尽量多得分。

2024数学中考压轴题-圆(九大题型和解题方法)

2024数学中考压轴题-圆(九大题型和解题方法)

专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。

目录:题型1:圆与三角形综合题型2:圆与四边形综合题型3:圆有关的动态问题题型4:圆与坐标系或函数题型5:以实际问题为背景,求圆与三角形、四边形综合问题题型6:最值问题题型7:在解三角形、四边形中作辅助圆题型8:定值问题题型9:在圆综合中求解三角函数值题型1:圆与三角形综合1.(2024·黑龙江哈尔滨·一模)已知,AD 、BC 为O 两条弦,AD BC ⊥于点E ,连接OE ,AE CE =.(1)如图1,连接OE ,求AEO ∠的度数;(2)如图2,连接AC ,延长EO 交AC 于点N ,点F 为AC 上一点,连接EF ,在EF 上方作等腰直角三角形EFG ,且90EGF ∠=︒,连接NG ,求证:NG BC ∥;(3)在(2)的条件下,连接AB ,CD ,当点G 落在线段AB 上时,过点O 做OL OE ⊥,交CD 于点L ,交CE于点T ,若2OE EG CL ==,求O 半径的长.2.(2024·黑龙江哈尔滨·一模)已知:AB 为O 的直径,点C 为 AB 上一点,连接AC ,点D 为 BC上一点,连接AD ,过点D 作AB 的垂线,垂足为点F ,交O 于点E ,连接CE ,分别交AD 和AB 于点H 和点K ,且90AHE =︒∠.(1)如图1,求证:CAD BAD ∠=∠;(2)如图2,连接HF ,过点H 作HF 的垂线交AB 于点T ,求证:2AB FT =;(3)如图3,在(2)的条件下,连接BC 交AD 于点G ,延长CD 交AB 的延长线于点M ,若CM AG =,5FT =,求CG 的长.3.(2024·黑龙江哈尔滨·一模)如图1,在O 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,HF =EN 的长.4.(2024·浙江·模拟预测)如图1,ABC 内接于O ,作AD BC ⊥于点D .(1)连结AO ,BO .求证:2180AOB DAC ∠+∠=︒;(2)如图2,若点E 为弧AC 上一点,连结BE 交AD 于点F ,若2BAD CAD ∠∠=,490DBF CAD ∠+∠=︒,连结OF ,求证:OF 平分AFB ∠;(3)在(2)的条件下,如图3,点G 为BC 上一点,连结EG ,2BGE C ∠=∠.若AD =3BD EG +=,求DF 的长.题型2:圆与四边形综合5.(2024·浙江杭州·模拟预测)如图,四边形ABCD 内接于O ,AC 为O 的直径,DE AC ⊥于点F 交BC 于点E .(1)设DBC α∠=,试用含α的代数式表示ADE ∠;(2)如图2,若3BE CE =,求BDDE的值;(3)在(2)的条件下,若,AC BD 交于点G ,设FGx CF=,cos BDE y ∠=.①求y 关于x 的函数表达式.②若BC BD =,求y 的值.6.(2024·广东珠海·一模)如图1,F 为正方形ABCD 边BC 上一点,连接AF , 在AF 上取一点O , 以OA 为半径作圆, 恰好使得O 经过点B 且与CD 相切于点E .(1)若正方形的边长为4时,求O 的半径;(2)如图2, 将AF 绕点A 逆时针旋转45︒后,其所在直线与O 交于点G ,与边CD 交于点H ,连接DG BG ,.①求ADG ∠的度数;②求证:··²AB BF AG FG BG +=.题型3:圆有关的动态问题7.(2024·广东·一模)综合探究:如图,已知10AB =,以AB 为直径作半圆O ,半径OA 绕点O 顺时针旋转得到OC ,点A 的对应点为C ,当点C 与点B 重合时停止.连接BC 并延长到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,连接AD ,AC .(1)如图1,当点E 与点O 重合时,判断ABD △的形状,并说明理由;(2)如图2,当1OE =时,求BC 的长;(3)如图3,若点P 是线段AD 上一点,连接PC ,当PC 与半圆O 相切时,判断直线PC 与AD 的位置关系,并说明理由.8.(2024·浙江湖州·一模)如图,在ABCD Y 中,∠B 是锐角,AB =10BC =,在射线BA 上取一点P ,过P 作PE BC ⊥于点E ,过P ,E ,C 三点作O .(1)当3cos 5B =时,①如图1,若AB 与O 相切于点P ,连结CP ,求CP 的长;②如图2,若O 经过点D ,求O 的半径长.(2)如图3,已知O 与射线BA 交于另一点F ,将BEF △沿EF 所在的直线翻折,点B 的对应点记为B ',且B '恰好同时落在O 和边AD 上,求此时PA 的长.9.(2024·云南昭通·模拟预测)如图,在O 中,AB 是O 的直径,点M 是直径AB 上的一个动点,过点M 的弦CD AB ⊥,交O 于点C 、D ,连接BC ,点F 为BC 的中点,连接DF 并延长,交AB 于点E ,交O 于点G .图1 图2 备用图(1)如图1,连接CG ,过点G 的直线交DC 的延长线于点P .当点M 与圆心O 重合时,若PGC MDE ∠=∠,求证:PG 是O 的切线;(2)在点M 运动的过程中,DE kDF =(k 为常数),求k 的值;(3)如图2,连接BG OF MF 、、,当MOF △是等腰三角形时,求BGD ∠的正切值.题型4:圆与坐标系或函数10.(2024·福建龙岩·一模)如图,抛物线234y x x =-++与x 轴分别交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C .(1)直接写出A 、B 、C 三点的坐标;(2)如图(1),P 是抛物线上异于A ,B 的一点,将点B 绕点P 顺时针旋转45︒得到点Q ,若点Q 恰好在直线AP 上,求点P 的坐标;(3)如图(2),MN 是抛物线上异于B ,C 的两个动点,直线BN 与直线CM 交于点T ,若直线MN 经过定点()1,3,求证:点T 的运动轨迹是一条定直线.11.(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q 为平面内不重合的两个点,其中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.12.(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy 中,抛物线23y ax bx =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,已知点A 的坐标为(10)-,,点B 的坐标为(30),.(1)求出这条抛物线的函数表达式;(2)如图2,点D 是第一象限内该抛物线上一动点,过点D 作直线l y 轴,直线l 与ABD △的外接圆相交于点E .①仅用无刻度直尺找出图2中ABD △外接圆的圆心P .②连接BC 、CE ,BC 与直线DE 的交点记为Q ,如图3,设CQE △的面积为S ,在点D 运动的过程中,S是否存在最大值?如果存在,请求出S 的最大值;如果不存在,请说明理由.13.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =--∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =-,②41y x =-,③23y x =-+,④31y x =--中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号)(2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =-+是函数2)304(2y x x x =-++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.题型5:以实际问题为背景,求圆与三角形、四边形综合问题14.(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ;【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积;【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.15.(2024·陕西西安·一模)【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______;【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值;【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.题型6:最值问题16.(2024·湖南长沙·三模)如图1,,,A B C 为O 上不重合的三点,GC 为O 的切线,1902G A ∠+∠=︒.(1)求证:GB 为O 的切线;(2)若ABC 为等腰三角形,345,tan 4BAC BAC ∠<︒∠=,求BC AG的值;(3)如图2,若AB 为直径,M 为线段AC 上一点且GM GB ⊥,2223880AM OB GB GB +-+-=,02GB <<,求MGBA S 四边形的最大值.17.(2024·重庆·模拟预测)如图,在直角ABC 中,90BAC ∠=︒.点D 为ABC 内一点,且60ADB ∠=︒,E 为线段BD 的中点,连接AE .(1)如图1,若AB AC ==,2AD =,求BE 的长;(2)如图2,连接CD ,若AB AC =,BAE ACD ∠=∠,过点E 作EF AD ⊥交于F ,求证:AE =;(3)如图3,过点D 作DM AC ⊥于点M ,DN BC ⊥于点N ,连接MN ,若AB =4AC =,求MN 的最小值.题型7:在解三角形、四边形中作辅助圆18.(2024·福建泉州·一模)如图1,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,F 是CD 上一点,且DF DE =.(1)求证:BE EF ⊥;(2)如图2,若120A ∠=︒,FG BC ⊥于点G ,H 是BF 的中点,连接DG ,EH ,EG ,且EG 与BF 相交于点K .①求证:DG EH =;②若2CF DF =,求KFGK的值.题型8:定值问题19.(2024·浙江·模拟预测)如图1,E 点为x 轴正半轴上一点,E 交x 轴于A 、B 两点,P 点为劣弧 BC上一个动点,且(1,0)A -、(1,0)E .(1) BC的度数为 °;(2)如图2,连结PC ,取PC 中点G ,则OG 的最大值为 ;(3)如图3,连接AC 、AP 、CP 、CB .若CQ 平分PCD ∠交PA 于Q 点,求AQ 的长;(4)如图4,连接PA 、PD ,当P 点运动时(不与B 、C 两点重合),求证:PC PDPA+为定值,并求出这个定值.题型9:在圆综合中求解三角函数值20.(2024·湖南长沙·一模)如图1,在Rt ABC △中,90ABC ∠=︒,30C ∠=︒,B C =,D 是BC 的中点.经过A ,B ,D 三点的O 交AC 于点E ,连接BE .(1)求AE 和BE 的长;(2)如图2,两动点P 、Q 分别同时从点A 和点C 出发匀速运动,当点P 运动到点E 时,点Q 恰好运动到点B ,P 、Q 停止运动,连接PQ .①记AP x =,当PQC △的面积最大时,求x 的值;②如图3,连接BP 并延长交O 于点F ,连接AF 、FE .当BE 平分FBC ∠时,求sin ABF ∠的值.21.(2024·上海杨浦·一模)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,连接OF .(1)如图1,当FE 的延长线经过点A 时,求CDAF的值;(2)如图2,作FG AB ⊥,垂足为点G ,连接EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG 是等腰三角形,且4sin 5COD ∠=,求OE OD的值.专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。

九年级数学中考压轴题研究全等三角形构造技巧方法技巧(一)作平行构全等专题训练含答案解析

九年级数学中考压轴题研究全等三角形构造技巧方法技巧(一)作平行构全等专题训练含答案解析

专题二 模块研究(一)全构造微专题1 方法技巧(一)作平行构全等典例精讲【例】如图,在四边形BDEC 中,∠B =∠C ,DE ⊥EC ,DF ⊥BC 于点F ,G 为CF 上一点,且DG =EG , 求FGBC的值.典题精练核心方法1 作平行线→构X 型1.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过点M 作MP ∥AD 交AC 于点P .求证: AB +AP =PC .BCDE FGABCD P核心方法2 作平行线→构等腰或等线段2.(2020大连)如图,△ABC 中,点D 、E 、F 分别在边AB ,BC ,AC 上,BE =CE ,点G 在线段CD 上,CG = CA ,GF =DE ,∠AFG =∠CDE .求证:BD =2AD .核心方法3 作平行线→构平行四边形3.如图,已知∠ABC =90°,D 是直线AB 上的一点,且AD =BC ,E 是直线BC 上的一点,且CE =BD ,直线AE 、CD 相交于点P .求AECD的值.ABCD EF G专题二 模块研究(一)全构造微专题1 方法技巧(一)作平行构全等典例精讲【例】如图,在四边形BDEC 中,∠B =∠C ,DE ⊥EC ,DF ⊥BC 于点F ,G 为CF 上一点,且DG =EG , 求FGBC的值.【思路分析】过点D 作D ∥BC 交C 于点H ,延长DGBC 交于点M ,证BF =FH ,HG =GC .【解答】过点D 作DH ∥BC 交BC 于点H ,则易得等腰△DBH ,∴BF =HF ,延长DG 、EC 交于点M ,∵∠DEM =90°,DG =EG ,∴DG =MG ,∴△DHG ≌△MCG ,∴GH =CG ,∴12FG BC .【方法总结】1.直角三角形蚪边上的中线等于斜边的一半,反过来,本题中若有GE =GD ,∠DEC =90°,则可证出DG =GM ;2.作平行线,构等腰三角形,证三角形全等;3.等腰(边)三角形中作平行线可造等腰(边)构全等.典题精练核心方法1 作平行线→构X 型1.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过点M 作MP ∥AD 交AC 于点P .求证: AB +AP =PC .解:延长BA 交MP 的延长线于点E ,过点B 作BF ∥AC 交PM 的延长线于点F , ∵∠BAD =∠CAD ,∠BAD =∠E ,∠CAD =∠APE =∠CPM ,∴∠E =∠APE ,BCDE FGMGFE DCBH ABCD MP∴AP =AE ,再证△BMF ≌△CMP (ASA ),∴PC =BF ,∠F =∠CPM ,∴∠F =∠E , ∴BE =BF ,∴PC =BE =BA +AE =BA +AP .核心方法2 作平行线→构等腰或等线段2.(2020大连)如图,△ABC 中,点D 、E 、F 分别在边AB ,BC ,AC 上,BE =CE ,点G 在线段CD 上,CG = CA ,GF =DE ,∠AFG =∠CDE .求证:BD =2AD .解:过点F 作FM ∥AG 交CD 于点M .则AF CAGM CG=, ∵CA =CC ,∴AF =GM ,∠CAG =∠CGA .∵AG =AG ,∴△FAG ≌△MGA ,∴AM =GF ,∠AFG =∠AMG .∵∠AFG =∠CDE ,GF =DE ,∴∠AMG =∠CDE ,AM =DE ,∴AM ∥DE . ∴四边形ADEM 为平行四边形,∴AD =ME ,AD ∥ME∴DM BEMC EC=∵BE =CE ,∴DM =MC ,∴BD =2ME ,∵AD =ME ,∴BD =2AD .核心方法3 作平行线→构平行四边形3.如图,已知∠ABC =90°,D 是直线AB 上的一点,且AD =BC ,E 是直线BC 上的一点,且CE =BD ,直线AE 、CD 相交于点P .求AECD的值. FE PM D CBAABCD EF GMGF ED CBA解:方法一,将线段CE 沿BA 方向平移至AF 的位置,连接FD ,FC .则四边形AFCE 是平行四边形,易证△ADF ≌△BCD ,∴DF =CD ,∠FDC =90°,∴AE =CF,AECD. 方法二:将线段CE 沿CD 方向平移至DF 的位置,连接AF ,EF ; 方法三:将线段AD 沿AE 方向平移至EF 的位置,连接CF ,DF .解:设M (x 1,-x 22),N (x ,-x 22),则MN :y =(-x 1-x 2)x +x 1x 2,OM :y =-x 1x ,∴F (0,x 1x 2),又∵G 的坐标为0),可得FG :y(x∵NH ⊥x 轴,∴x E =x 2,∴y E =-x 1x 2(x 2),解得x 2=x E∴点E 在定直线xFA BCDEPFABCD EPFPEDCBA。

中考数学压轴题解题方法大全和技巧

中考数学压轴题解题方法大全和技巧

2015年中考数学压轴题解题技巧练习如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8 …………………1分将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为4+12t,8-t.∴点G的纵坐标为:-124+12t2+44+12t=-18t2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t. ∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3= 8525+. …………………11分 一、对称翻折平移旋转1.2014年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形 说明你的理由.3在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2013年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分 2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分12yxAO B PM图1C 2C 321 yxAO B PN图C 1C 4Q EF 22二、动态:动点、动线3.2014年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由.4.2013年山东省青岛市已知:如图①,在Rt △ACB 中,∠C B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 为2cm/s ;连接PQ .若设运动的时间为ts0<t <2,解答下列问题: 1当t 为何值时,PQ ∥BC2设△AQP 的面积为y 2cm ,求y 与t 之间的函数关系式;3是否存在某一时刻t,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分 若存在,求出此时t 的值;若不存在,说明理由;4如图②,连接PC,并把△PQC 沿QC 翻折,得到四边形PQP ′C,那么是否存在某一时刻t,使四边形PQP ′C 为菱形 若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为x秒时,△APQ 与△ABC 重叠部分....的面积为y 平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P 、Q 从出发到相遇所用时间是__________秒;B 图C2点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是__________秒; 3求y 与x 之间的函数关系式.6.2012年浙江省嘉兴市如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. 1求x 的取值范围;2若△ABC 为直角三角形,求x 的值; 3探究:△ABC 的最大面积8.2009年中考天水如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +ca >0的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为3,0,OB =OC ,tan ∠ACO =错误!.1求这个二次函数的解析式;2若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G 2,y 是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大 求此时点P 的坐标和△AGP 的最大面积.9.14年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; 2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切 若存在,求出该圆的半径,若不存在,请说明理由.xOy坐标O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. 3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.第24题四、比例比值取值范围11.2014年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标; 2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2013年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy ,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2AC ABP ∆BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;图9 图1BA P x CQ O y第26题图3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况 若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;3是否存在使BCM △为直角三角形的抛物线 若存在,请求出;如果不存在,请说明 理由.15.重庆市潼南县2010年如图,于A 、B,点A 的坐标为2,0,点C 1求抛物线的解析式;2点E 是线段AC 上一动点,过点D 的坐标; 3在直线BC 上是否存在一点P,说明理由.16.2008年福建龙岩如图,抛物线y 轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.1求抛物线的对称轴;2写出A B C ,,三点的坐标并求抛物线的解析式;3探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.题图2617.09年广西钦州26.本题满分10分如图,已知抛物线y =34x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线y =34tx -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.1填空:点C 的坐标是_▲_,b =_▲_,c =_▲_; 2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似 若存在,求出所有t 的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xO y 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .1求过点E 、D 、C 的抛物线的解析式;2将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC交于点G .如果DF 与1中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立 若成立,请给予证明;若不成立,请说明理由;3对于2中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P与点C 、G 构成的△PCG 是等腰三角形 若存在,请求出点Q 的坐标;若不存在,请说明理由.ax 2+bx,12P3在2的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似 若存在,请求出点Q 的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB =BC,AC =DE,∠ABC =∠DEF =90°,∠EDF =30°操作将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P,边EF 与边BC 于点Q 探究一在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系 并给出证明. (2) (3) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系, (4) 并说明理由. (5)(6) 根据你对1、2的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值 若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化 不出相应S 值的取值范围. (3)六、最值类综合题;一函数型综合题:是先给定直角坐标系和几何图形,求已知函数的解析式即在求解前已知函数的类型,然后进行图形的研究,求点的坐标或研究图形的某些性质;初中已知函数有:①一次函数包括正比例函数和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线;求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法图形法和代数法解析法;此类题基本在第24题,满分12分,基本分2-3小题来呈现;二几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点或动线段运动,对应产生线段、面积等的变化,求对应的未知函数的解析式即在没有求出之前不知道函数解析式的形式是什么和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线圆与圆的相切时求自变量的值等;求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系即列出含有x、y的方程,变形写成y=fx的形式;一般有直接法直接列出含有x和y的方程和复合法列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y =fx的形式,当然还有参数法,这个已超出初中数学教学要求;找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法;求定义域主要是寻找图形的特殊位置极限位置和根据解析式求解;而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值;几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现;在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高;解中考数学压轴题秘诀二具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活;解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略;现介绍几种常用的解题策略,供初三同学参考;1、以坐标系为桥梁,运用数形结合思想:纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;2、以直线或抛物线知识为载体,运用函数与方程思想:直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形;因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想;例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得;3、利用条件或结论的多变性,运用分类讨论的思想:分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点;4、综合多个知识点,运用等价转换思想:任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用;中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略;5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,第2小题中等,第3小题偏难,在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性;6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分;因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏;近几年中考数学中运动几何问题倍受青睐,它不仅综合考查初中数学骨干知识,如三角形全等与相似、图形的平移与旋转、函数一次函数、二次函数与反比例函数与方程等,更重要的是综合考查初中基本数学思想与方法;此类题型也往往起到了考试的选拔作用,使学生之间的数学考试成绩由此而产生距离,所以准确快速解决此类问题是赢得中考数学胜利的关键;如何准确、快速解决此类问题呢关键是把握解决此类题型的规律与方法――以静制动;另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是本题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出答案,更重要的是明确此题的方法和思路;下面以具体实例简单的说一说此类题的解题方法;一、利用动点图形位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题例1:北京市石景山区2010年数学期中练习在△ABC中,∠B=60°,BA=24CM,BC=16CM, 1求△ABC的面积;2现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动;如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC的面积的一半3在第2问题前提下,P,Q两点之间的距离是多少点评:此题关键是明确点P、Q在△ABC边上的位置,有三种情况;1当0﹤t≦6时,P、Q分别在AB、BC边上;2当6﹤t≦8时,P、Q分别在AB延长线上和BC边上;3当t >8时, P、Q分别在AB、BC边上延长线上.然后分别用第一步的方法列方程求解.A例2: 北京市顺义2010年初三模考已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,1写出y与x的关系式2求当y=13时,x的值等于多少点评:这个问题的关键是明确点P在四边形ABCD边上的位置,根据题意点P的位置分三种情况:分别在AB上、BC边上、EC边上.第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性;第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来;中等的动点题也就没问题了;但是在难一点的动点题就要你的能力了,比如让你找等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形;因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想;例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得;3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点;4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用;中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略;5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,第2小题中等,第3小题偏难,在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性;6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分;因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏;二. 重点难点:1. 重点:利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律;2. 难点:探索存在的各种可能性以及发现所形成的客观规律;三. 具体内容:通常情景中的“探索发现”型问题可以分为如下类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目;2. 结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目;3. 存在探索型——在一定的条件下,需探索发现某种数学关系是否存在的题目;4. 规律探索型——在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1利用特殊值特殊点、特殊数量、特殊线段、特殊位置等进行归纳、概括,从特殊到一般,从而得出规律;2反演推理法反证法,即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致;3分类讨论法;当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果;4类比猜想法;即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证;以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用;5. 如图所示,抛物线()23m x y --=m >0的顶点为A ,直线l :m x y -=33与y 轴交点为B . 1写出抛物线的对称轴及顶点A 的坐标用含m 的代数式表示;2证明点A 在直线l 上,并求∠OAB 的度数;3动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与⊿OAB 全等 若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,请说明理由.6. 在平面直角坐标系xOy 中,将抛物线22y x =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3x =与平移后的抛物线相交于B ,与直线OA 相交于C .1求△ABC 面积;2点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.7. 设抛物线22y ax bx =+-与x 轴交于两个不同的点A 一1,0、Bm,0,与y 轴交于点C.且∠ACB=90°.1求m 的值和抛物线的解析式;2已知点D1,n 在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.3在2的条件下,△BDP 的外接圆半径等于________________.。

初中数学解题技巧+中考压轴题30道

初中数学解题技巧+中考压轴题30道

初中数学解题技巧+中考压轴题30道选择题法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种 B.6种 C.8种 D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

中考数学压轴题解题技巧

中考数学压轴题解题技巧

中考数学压轴题解题技巧希望能帮到大家。

中考数学压轴题解题技巧填空题——“直扑结果”题型特点:填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。

首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。

对考生独立思考和求解,在能力要求上会高一些。

长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。

其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。

当然并非常常如此,这将取决于命题者对试题的设计意图。

填空题的考点少,目标集中。

否则,试题的区分度差,其考试的信度和效度都难以得到保证。

这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。

解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

中考数学压轴题的技巧 例题解析(最新版)

中考数学压轴题的技巧 例题解析(最新版)

中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题;数形结合.分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.考点:二次函数综合题.菁优网版权所有专题:压轴题;转化思想.分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定.菁优网版权所有专题:压轴题;存在型.分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△=S△BPM+S△APM计算即可;ABM(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.所以P点的横坐标是或.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可.解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD 的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题;分类讨论.分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD PB、②AB PD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.解答:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.周长类6.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S 和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)根据抛物线y=经过点B(0,4),以及顶点在直线x=上,得出b,c即可;(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可.(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可;(4)利用MN∥BD,得出△OMN∽△OBD,进而得出,得到ON=,进而表示出△PMN的面积,利用二次函数最值求出即可.解答:解:(1)∵抛物线y=经过点B(0,4)∴c=4,∵顶点在直线x=上,∴﹣=﹣=,∴b=﹣;∴所求函数关系式为;(2)在Rt△ABO中,OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,∴点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即得ON=,设对称轴交x于点F,则(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线开口向下,S存在最大值.由S△PMN=﹣t2+t=﹣(t﹣)2+,∴当t=时,S取最大值是,此时,点M的坐标为(0,).等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题;分类讨论.分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP 三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),8.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有专题:代数几何综合题;压轴题.分析:(1)首先过点B作BD⊥x轴,垂足为D,易证得△BDC≌△COA,即可得BD=OC=1,CD=OA=2,则可求得点B的坐标;(2)利用待定系数法即可求得二次函数的解析式;(3)分别从①以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,去分析则可求得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.综合类10.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).11.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D 在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)利用待定系数法求出直线解析式;(2)利用待定系数法求出抛物线的解析式;(3)关键是证明△CEQ与△CDO均为等腰直角三角形;(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.解答:解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(0,1),D(1,0)代入得:,解得:b=1,k=﹣1,∴直线CD的解析式为:y=﹣x+1.(2)设抛物线的解析式为y=a(x﹣2)2+3,将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.∴y=(x﹣2)2+3=x2+2x+1.(3)证明:由题意可知,∠ECD=45°,∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,∴点E的坐标为(4,1).如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,∴∠QEC=∠QCE=∠ODC=∠OCD=45°,∴△CEQ∽△CDO.(4)存在.如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;而F′C″+F′P′+P′C′是点C′,C″之间的折线段,由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,即△P′CF′的周长大于△PCE的周长.)如答图③所示,连接C′E,∵C,C′关于直线QE对称,△QCE为等腰直角三角形,∴△QC′E为等腰直角三角形,∴△CEC′为等腰直角三角形,∴点C′的坐标为(4,5);∵C,C″关于x轴对称,∴点C″的坐标为(0,﹣1).过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===.综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)利用待定系数法即可求得函数的解析式;(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.解答:解:(1)设抛物线的解析式为y=ax2+bx+c由抛物线与y轴交于点C(0,3),可知c=3.即抛物线的解析式为y=ax2+bx+3.把点A(1,0)、点B(﹣3,0)代入,得解得a=﹣1,b=﹣2∴抛物线的解析式为y=﹣x2﹣2x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)△BCD是直角三角形.理由如下:解法一:过点D分别作x轴、y轴的垂线,垂足分别为E、F.∵在Rt△BOC中,OB=3,OC=3,∴BC2=OB2+OC2=18在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,∴CD2=DF2+CF2=2在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,∴BD2=DE2+BE2=20∴BC2+CD2=BD2∴△BCD为直角三角形.解法二:过点D作DF⊥y轴于点F.在Rt△BOC中,∵OB=3,OC=3∴OB=OC∴∠OCB=45°∵在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1∴DF=CF∴∠DCF=45°∴∠BCD=180°﹣∠DCF﹣∠OCB=90°∴△BCD为直角三角形.(3)①△BCD的三边,==,又=,故当P是原点O时,△ACP∽△DBC;②当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=3﹣a,=,即=,解得:a=﹣9,则P的坐标是(0,﹣9),三角形ACP不是直角三角形,则△ACP∽△CBD不成立;③当AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=3﹣b,则=,即=,解得:b=﹣,故P是(0,﹣)时,则△ACP∽△CBD一定成立;④当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0).则AP=1﹣d,当AC与CD是对应边时,=,即=,解得:d=1﹣3,此时,两个三角形不相似;⑤当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0).则AP=1﹣e,当AC与DC是对应边时,=,即=,解得:e=﹣9,符合条件.总之,符合条件的点P的坐标为:.对应练习13.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.考点:二次函数综合题.菁优网版权所有专题:代数几何综合题;压轴题.分析:(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.解答:解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).14.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB;(4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解答:解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB成立.理由如下:在△AOC与△COB中,∵OA=2,OC=4,OB=8,∴,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.(4)∵抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC===,AQ==,CQ==.i)当AQ=CQ时,有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)当AC=AQ时,有=,t2=﹣5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t2﹣8t+5=0,解得:t=4±,∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).15.如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题.菁优网版权所有专题:压轴题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF 的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式;(3)首先作出▱PACB,然后证明点P在抛物线上即可.解答:解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,。

中考数学几何压轴题解题技巧

中考数学几何压轴题解题技巧

初中几何证明技巧及经典试题证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5 .直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

门.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4•两条平行线的同位角、内错角或平行四边形的对角相等。

5•同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直1•等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4•邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

中考数学压轴题解题技巧汇总

中考数学压轴题解题技巧汇总

45°处理方法1.构造等腰RT 三角形在遇到45°角时,最基本的方法就是构造等腰RT 三角形,利用等腰RT 三角形的两条直角边构造全等三角形,而构造出来的全等三角形,以垂直模型为最常见垂直模型:例题.如图,二次函数y=x2/2+bx-3/2 的图象与x 轴交于点A(-3,0)和点B,以AB 为边在x 轴上方作正方形ABCD,点P 是x 轴上一动点,连接DP,过点P 作DP 的垂线与y 轴交于点E.(1)请直接写出点D的坐标:(2)当点P 在线段AO(点P 不与A、O 重合)上运动至何处时,线段OE 的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED与正方形ABCD 重叠部分的面积;若不存在,请说明理由.22.半角模型基 本 结 论 :BF+DE=EFBN 2+DM 2=M 2S △ABF +S △ADE =S △AEF AH=AB此模型结论是利用旋转的方法证明,所以在遇到大角与半角时,可以选择利用旋转解决类似,∠ABC=45°,点 D 为直线 BC 上一动点(点D C F( CF+CD=BC ;( CF ,BC ( A ,F 分别在直线 BC 的两②若正方形 A DEF 的边长为2,对角线 A E ,DF 相交于点 O ,连接 O C .求 O C 的长度.3.辅助圆当圆心角是90°时,圆周角是45°,有些题目也可用构造圆的方法寻找45°例题.已知:抛物线y=ax2+bx+c与x轴交于点A(-2,0)、B(8,0),与y轴交于点C(0,-4)。

直线y=x+m与抛物线交于点D、E(D在E的左侧),与抛物线的对称轴交于点F。

(1)求抛物线的解析式;(2)当m=2 时,求∠DCF 的大小;(3)若在直线y=x+m 下方的抛物线上存在点P,使得∠DPF=45°,且满足条件的点P只有两个,则m的值为。

数学中考压轴题题型及解题技巧

数学中考压轴题题型及解题技巧

数学中考压轴题题型及解题技巧数学中考压轴题题型及解题技巧一、选择题技巧•仔细阅读题干,理解题意;•列举可能的解题路径;•排除明显错误选项;•尝试代入答案,验证正确性;•注意逻辑关系,避免陷阱选项。

二、填空题技巧•仔细审题,确定待求量的性质和条件;•注意已知条件,利用已知信息进行推理;•使用逆向思维,寻找解题突破点;•采用代入法,验证答案的正确性;•注意计算精度,保留适当位数的小数或分数。

三、解答题技巧1. 利用图像进行分析•观察图像特征,找到隐藏的规律;•利用坐标系,进行几何推理;•借助图形属性,解决复杂的几何问题。

2. 利用代数方法求解•将问题转化为方程或不等式进行求解;•利用代数恒等式化简复杂的计算;•运用代数方法解决函数问题。

3. 利用数学模型解决实际问题•将实际问题抽象化,建立数学模型;•进行变量分析和函数构建;•运用数学方法求解实际问题。

4. 利用数列的性质进行推理•发现数列的规律,寻找递推公式;•利用递推公式求解数列问题;•运用数列的性质解决实际问题。

四、解题技巧注意事项•阅读题干时,要仔细理解题意,避免理解偏差;•注意单位转换,保持计算的一致性;•计算时注意精确度,考虑适当的取舍;•解题过程要清晰、条理,步骤清楚;•检查答案是否符合题目要求。

以上是数学中考压轴题的题型及解题技巧,希望能给同学们在备战中考时提供一些指导和帮助。

通过熟练掌握这些技巧,并在平时的学习中进行实践,相信你们能够在数学中考中取得好成绩!五、解题技巧训练方法•多做题,在做题过程中培养对题型的敏感性;•分析解题思路,归纳总结解题方法;•遇到难题,可以寻找老师、同学或网上资源寻求帮助;•制定复习计划,有针对性地进行题型训练;•多参加模拟考试,提高解题速度和应变能力。

六、总结•数学中考压轴题题型主要包括选择题、填空题和解答题;•解题技巧包括利用图像进行分析、利用代数方法求解、利用数学模型解决实际问题和利用数列的性质进行推理;•解题技巧的注意事项包括仔细阅读题干、注意单位转换、注意精确度、解题过程要清晰、步骤清楚和检查答案的符合;•解题技巧的训练方法包括多做题、分析解题思路、寻求帮助、制定复习计划和参加模拟考试。

中考数学压轴题四个解题技巧

中考数学压轴题四个解题技巧

中考数学压轴题四个解题技巧
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。

对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。

中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,中考数学压轴题的切入点有很多,考试时并不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。

有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。

中考数学压轴题解题技巧解说

中考数学压轴题解题技巧解说

目录一、动态:动点、动线 (2)二、圆 (2)因动点产生的直角三角形问题突破与提升策略 (7)第一步寻找分类标准; (7)第二步列方程; (7)第三步解方程并验根 (8)中考压轴题专项训练 (15)一、知识点睛 (21)二、精讲精练 (21)三、二次函数与几何综合 (22)一、知识点睛 (22)二、精讲精练 (22)三、二次函数与几何综合 (29)中考压轴题专项训练 (34)C xxy yA OBED AC B CD G图1 图2中考数学压轴题解题技巧解说一、 动态:动点、动线4.(浙江嘉兴)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?二、 圆5.(青海) 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .C(第24题)6.(湖南张家界)在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.7.(潍坊市)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围8.(怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.9. (湖南长沙)如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;图9图1(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.五、探究型10.(内江)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;(3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.11.(福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,ABCED xyo题图26BA PxCQ O y 第26题图求出所有符合条件的点P 坐标;不存在,请说明理由.六、最值类12.(恩施) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C ,那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在 请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.中考数学压轴题突破因动点产生的直角三角形问题突破与提升策略问题导入:我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4, 0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1 图2 图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.解直角三角形的存在性问题,一般分三步走:第一步寻找分类标准;第二步列方程;第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.图4如图4,已知A(3, 0), B(1, -4),如果直角三角形ABC的直角顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么=.这个方程有两个解,分别对应图中圆与y轴的两个交点.练习反馈:1.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.思路:1.根据题意作出合适的辅助线;2.证明△ADC和△AOB的关系,即可建立y与x的函数关系;3.可以得到哪个选项是正确的.2. 如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)思路:1.根据一次函数解析式求出点A、B的坐标;2.由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式;3.令y=0即可求出x的值,从而得出点P的坐标.3.如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(4, 3),点A、C在坐标轴上,点P在BC 边上,直线l1: y=2x+3,直线l2: y=2x-3.(1) 分别求直线l1与x轴、直线l2与AB的交点坐标;(2) 已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3) 我们把直线l1和直线l2上的点所组成的图形称为图形F.已知矩形ANPQ的顶点N在图形F 上,Q是坐标平面内的点,且点N的横坐标为x,请直接写出x的取值范围(不用说明理由).思路:1.第(2)题:设M(x, 2x-3),擦去两条直线,在BC上取点P.2.以AP为斜边构造等腰Rt△APM,再以MA和MP为斜边构造直角三角形全等.3.以AP为直角边构造等腰Rt△APM,再以AP和PM为斜边构造直角三角形全等.4.第(3)题与(2)题相同的是∠AMP=∠ANP.求x关于m的关系式.4.如图1,点A的坐标为(2, 0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A的右侧,连结BC,以BC为边在第一象限内作等边△BCD,连结AD交BC于点E.(1) ①直接回答:△OBC与△ABD全等吗?②试说明:无论点C如何移动, AD始终与OB平行;(2) 当点C运动到使AC2=AE·AD时,如图2,经过O、B、C三点的抛物线y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P的坐标;若不存在,请说明理由;(3) 在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.图1 图2思路:1.△CBO绕着点B逆时针旋转60°与△DBA重合,把图形中60°的角都标记出来.2.第(2)题要分三步完成:先确定点C,再求抛物线的解析式,最后分两种情况讨论点P,共有3个符合条件的点P.3.第(3)题采用数形结合思想,当直线与抛物线相切时,联立方程组消去y,那么Δ=0.5.如图,已知☉O的半径长为1, AB、AC是☉O的两条弦,且AB=AC, BO的延长线交AC于点D,连结OA、OC.(1) 求证:△OAD∽△ABD;(2) 当△OCD是直角三角形时,求B、C两点的距离;(3) 记△AOB、△AOD、△COD的面积为S1、S2、S3,若S2是S1和S3的比例中项,求OD的长.思路:1.把相等的弦所对的圆心角标记出来,由此得到的等腰三角形的底角都相等.2.直角三角形OCD存在两种情况,不存在∠OCD为直角的可能.3.第(3)题中的三个三角形都是等高三角形,把面积比转化为对应底边的比.6.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P 与AB、OA的另一个交点分别为C、D,连结CD、QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.思路:1.由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;2.由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;3.若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.7.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.思路:1.由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;2.作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;3.画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.8.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB 边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.思路:1.连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;2.连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;3.由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.中考压轴题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。

中考数学压轴题解题技巧

中考数学压轴题解题技巧

关于中考数学压轴题的思考2013、5、18思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它;其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难;这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法;压轴题难度有约定:历年中考,压轴题一般都由3个小题组成;第1题容易上手,得分率在以上;第2题稍难,一般还是属于常规题型,得分率在与之间,第3题较难,能力要求较高,但得分率也大多在与之间;近十年来,最后小题的得分率在以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注;控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在与之间,即考生的平均得分在7分或8分;由此可见,压轴题也并不可怕;压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识;如果以为这是构造压轴题的唯一方式那就错了;方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例;动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起;在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角;总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题;分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要;如果1、2、3三个小题是平列关系,它们分别以大题的已知为条件进行解题,1的结论与2的解题无关,2的结论与3的解题无关,整个大题由这三个小题“拼装”而成;如果1、2两个小题是“递进关系”,1的结论由大题的已知条件证得,除已知外,1的结论又是解2所必要的条件之一;思考二:中考数学压轴题解题技巧之分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,是满分率比较低的一种题,这一类题的特点就是小题较多,且容易失分,常常会被同学们忽略,经常忘记分类讨论,而大题却经常是讨论不全,讨论全了结果还不一定对;而且,这类题往往陷阱比较多,一个不注意就会掉进出题陷阱中;因此我们在考试当中一定要养成以下几个好习惯;以下几点是需要大家注意分类讨论的1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决;在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合;2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上;3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论;4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍;5、考查点的取值情况或范围;这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围;6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点;7、由动点问题引出的函数关系,当运动方式改变后比如从一条线段移动到另一条线段时,所写的函数应该进行分段讨论;值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的;最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留;思考三:破解中考数学压轴题四个秘诀切入点一:做不出、找相似,有相似、用相似;压轴题牵涉到的知识点较多,知识转化的难度较高;学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形;切入点二:构造定理所需的图形或基本图形即作辅助线;在解决问题的过程中,有时添加辅助线是必不可少的;对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题;中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形;切入点三:紧扣不变量,并善于使用前题所采用的方法或结论;在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变;切入点四:在题目中寻找多解的信息分类思考; 图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题;思考四:压轴题的做题技巧1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”;所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍;2、解数学压轴题做一问是一问;第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问;过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质;例解压轴题解题:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8ba=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t .∴点E的坐标为4+12t,8-t. ∴点G 的纵坐标为:-124+12t 2+44+12t=-18t 2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分压轴题解题技巧练习一、 对称翻折平移旋转1.2010年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形说明你的理由.3在抛物线1l 上是否存在点M ,使得ABMAOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2009年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分二、 动态:动点、动线3.2010年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.4.2008年山东省青岛市已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC =3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts0<t<2,解答下列问题:1当t为何值时,PQ∥BC2设△AQP的面积为y2cm,求y与t之间的函数关系式;3是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分若存在,求出此时t的值;若不存在,说明理由;4如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD的边长为6厘米,∠B=60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,△APQ与△ABC重.叠部分...的面积为y平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P、Q从出发到相遇所用时间是__________秒;2点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是__________秒;3求y与x之间的函数关系式.6.2009年浙江省嘉兴市如图,已知A、B是线段MN上的两点,4=MN,1=MB.以A为中心顺时针旋转点M,以B为中心逆时MA,1>针旋转点N,使M、N两点重合成一点1求x的取值范围;2若△ABC为直角三角形,求x的值;3探究:△ABC的最大面积三、圆7.2010青海如图10,已知点A3,0,以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.1以直线l为对称轴的抛物线过点A及点C0,9,求此抛物线的解析式;2抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;3点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.8.2009年中考天水如图1,在平面直角坐标系xOy,二次函数y=ax2+bx+ca >0的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为3,0,OB=OC,tan∠ACO=错误!. 1求这个二次函数的解析式;2若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G2,y是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大求此时点P 的坐标和△AGP 的最大面积.9.09年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式;2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切若存在,求出该圆的半径,若不存在,请说明理由.角坐标O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.四、比例比值取值范围11.2010年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标;2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2010年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; 3是否存在使BCM △为直角三角形的抛物线若存在,请求出;如果不存在,请说明理由.15.重庆市潼南县2010年如图, 已知抛物线c bx x y ++=221与y 轴相交于C,与x 轴相交于A 、B,点A 的坐标为2,0,点C 的坐标为0,-1.1求抛物线的解析式;2点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D,连结DC,当△DCE 的面积最大时,求点D的坐标;3在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.16.2008年福建龙岩如图,抛物线254y ax ax=-+经过ABC△的三个顶点,已知BC x∥轴,点A在x轴上,点C在y轴上,且AC BC=.1求抛物线的对称轴;2写出A B C,,三点的坐标并求抛物线的解析式;3探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB△是等腰三角形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.17.09年广西钦州26.本题满分10分如图,已知抛物线y=34x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为-1,0,过点C的直线y=34t x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.1填空:点C的坐标是_▲_,b=_▲_,c=_▲_;2求线段QH的长用含t的式子表示;3依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ 相似若存在,求出所有t的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.1求过点E、D、C的抛物线的解析式;2将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与1中的抛物线交于另一点M,6,那么EF=2GO是否成立若成立,请给予证明;若不点M的横坐标为5成立,请说明理由;3对于2中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形若存在,请求出点Q的坐标;若不存在,请说明理由.B19.09年湖南省长沙市如图,抛物线y3,0、B两点,与y轴相交于点C0,3.当x2+bx +ca≠0的函数值y相等,连结AC、1求实数a,b,c的值;2若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;3在2的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似若存在,请求出点Q的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF =90°,∠EDF=30°操作将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF..,并使边DE与边AB交于点P,边EF与边BC于点Q ..E.旋转...绕点探究一在旋转过程中,(1) 如图2,当CE 1EA=时,EP 与EQ 满足怎样的数量关系并给出证明. (2) 如图3,当CE 2EA=时EP 与EQ 满足怎样的数量关系,并说明理由. (3) 根据你对1、2的探究结果,试写出当CE EA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化不出相应S 值的取值范围.六、最值类22.2010年恩施 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为3,0,与y 轴交于C 0,-3点,点P 是直线BC 下方的抛物线上一动点.1求这个二次函数的表达式.2连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C, 那么是否存在点P,使四边形POP/C为菱形若存在,请求出此时点P的坐标;若不存在请说明理由.3当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.。

中考数学压轴题解题技巧及训练(附解析)

中考数学压轴题解题技巧及训练(附解析)

中考数学压轴题解题技巧中考数学压轴题解题技巧数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。

一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

关键是掌握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

二是运用分类讨论的思想。

对问题的条件或结论的多变性进行考察和探究。

三是运用转化的数学的思想。

由已知向未知,由复杂向简单的转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题解题技巧及训练(完整版)0=64a+8b 解得a=-12,b=4∴抛物线的解析式为:y=-12x 2+4x …………………3分(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE=PE AP =BC AB ,即PE AP =48∴PE=12AP=12t .PB=8-t . ∴点E的坐标为(4+12t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t) =-18t 2+t.∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分中考数学《三类押轴题》专题训练第一类:选择题押轴题1. (湖北襄阳3分)如果关于x 的一元二次方程2kx 10-+=有两个不相等的实数根,那么k 的取值范围是【 】A .k <12 B .k <12且k ≠0 C .﹣12≤k <12 D .﹣12≤k<12且k ≠0【题型】方程类代数计算。

【考点】 ; 【方法】 。

2. (武汉市3分)下列命题: ①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.【题型】方程、等式、不等式类代数变形或计算。

【考点】 ; 【方法】 。

3. (湖北宜昌3分)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】A .第四象限B .第三象限C .第二象限D .第一象限 【题型】代数类函数计算。

【考点】 ; 【方O AFCEB 4. (湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0;④8a+c >0.其中正确的有【 】A .3个B .2个C .1个D .0个 【题型】函数类代数间接多选题。

【考点】 ; 【方法】 。

5. (山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为( )A1 BCD .52【题型】几何类动态问题计算。

【考点】 ; 【方法】 。

6. (福建3分)如图,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( )A . EF>AE+BF B. EF<AE+BF C.EF=AE+BF D.EF ≤AE+BF 【题型】几何类证明。

【考点】 ; 【方7. (湖北武汉3分)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为【】A.11.11C.11或11 D.11或12【题型】几何类分类问题计算。

【考点】;【方法】。

8. (湖北恩施3分)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是【】B.2 C.3 DA【题型】几何类面积问题计算。

【考点】;【方法】。

9. (湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【】.A.B.C.D.【题型】几何类识图问题判断。

【考点】;【方法】。

10. (湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P 从点的速度向终点B运A 出发,沿AB速度向终点C 运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为【】【题型】几何类动态问题计算。

【考点】;【方法】。

11. (湖北十堰3分)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④AOBO S 四形边;⑤AOC AOBSS+= 】 A .①②③⑤ B .①②③④ C .①②③④⑤ D .①②③【题型】几何类间接多选题。

【考点】 ; 【方法】 。

12. (湖北孝感3分)如图,在菱形ABCD 中,∠A =60º,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论,其中正确的有【 】①∠BGD =120º;②BG +DG =CG ;③△BDF ≌△CGB ;④2ADE S ∆. A .1个 B .2个 C .3个 D .4个 【题型】几何类间接多选题。

【【考点】 ; 【方法】 。

13. (湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE •CD ;②AD+BC=CD ;③OD=OC ;④S 梯形ABCD =CD •OA ;⑤∠DOC=90°,其中正确的是( )【题型】几何类间接多选题。

【考点】 ; 【方法】 。

14. (山东东营3分) 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE①△CEF 与△DEF 的面积相等; ②△AOB ∽△③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④【题型】坐标几何类间接多选题。

【考点】 ; 【方法】 。

15. (湖北黄石3分)如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D.5(,0)2121y +++-=n x n n n S =+⋅⋅⋅⋅⋅⋅+++2011321S S S S 【题型】坐标几何类计算题。

【考点】 ;【方法】 。

16. (浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】AC .3D .4【题型】坐标几何类动态问题计算题。

【考点】 ; 【方法】 。

17. (山东省威海3分)已知:直线(n 为正整数)与两坐标轴围成的三角形面积为 , 则【题型】坐标几何类规律探究计算题。

【考点】 ; 【方法】 。

18. (湖北鄂州3分)在平面坐标系中,正方形ABCD 的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,………按这样的规律进行下去,第2012个正方形的面积为【 】 A.2010)23(5⋅ B.2010)49(5⋅ B. C.2012)49(5⋅ D.4022)23(5⋅【题型】坐标几何类规律探究计算题。

【考点】 ; 【方法】 。

19(广西柳州3分)小兰画了一个函数的图象如图,那么关于x 的分式方程的解是( )A .x=1 B .x=2 C .x=3 D .x=4【题型】坐标几何类图像信息题。

【考点】 ; 【方法】 。

20(浙江宁波3分)勾股定理是几何中的一个重要定理。

在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。

如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。

图2是由图1放入矩形内得到的,∠BAC=90O ,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为 ( )A 、 90B 、 100C 、 110D 、 121【题型】几何图形信息题。

【考点】 ; 【方法】 。

21.(湖北十堰3分)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )【题型】几何图形图像信息题。

【考点】;【方法】。

22(湖北十堰3分).如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的五个出口中的一个。

下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1、2、3号出水口的出水量之比约为1:4:6;④若净化材料损耗的速度与流经表面水的数量成正比,则更换最慢的一个三角形材料约为更换最快的一个三角形材料使用时间的8倍;其中正确的判断有()A.1个 B.2个 C.3个 D.4个【题型】生活中的数学问题。

【考点】;【方法】第二类:填空题押轴题1. (湖北武汉3分)在平面直角坐标系中,点A的坐标为(3,0),点B为y 轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是▲.【题型】坐标几何类取值范围探究题。

【考点】;【方法】。

2. (湖北黄石3分)如图所示,已知A点从点(1,0)出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=600,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在直线相切,则t= ▲ .【题型】坐标几何类动态问题计算题。

相关文档
最新文档