高考物理建模之轻绳模型

合集下载

高考物理轻绳、轻弹簧、轻杆模型

高考物理轻绳、轻弹簧、轻杆模型

高考物理轻绳、轻弹簧、轻杆模型在力学中有很多的研究对象是通过“轻绳”“轻杆”“轻弹簧”连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。

特别提醒:轻杆的弹力方向“三百六十度”无死角。

轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩!静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。

高考物理 模型系列之对象模型 专题03 轻绳、轻杆、轻弹簧、接触面模型(2)学案

高考物理 模型系列之对象模型 专题03 轻绳、轻杆、轻弹簧、接触面模型(2)学案

专题03 轻绳、轻杆、轻弹簧、接触面模型(2)3.轻绳、轻杆、接触面形成的临界与极值问题 (i )轻绳形成的临界与极值由轻绳形成的临界状态通常有两种,一种是轻绳松弛与绷紧之间的临界状态,其力学特征是绳仍绷直但绳中张力为零;另一种是轻绳断裂之前的临界状态,其力学特征是绳中张力达到能够承受的最大值.(ii )轻杆形成的临界与极值与由轻绳形成的临界状态类似,一种杆对物体产生拉力与推力之间的临界状态,力学特征是该状态下杆对物体的作用力为零;另一种是轻杆能承受的最大拉力或最大压力所形成的临界状态.(iii )接触面形成的临界与极值 由接触面形成的临界状态相对较多:①接触面间分离形成的临界,力学特征是接触面间弹力为零②接触面间滑动形成的临界.力学特征是接触面间静摩擦力达到最大值③接触面间翻转、滚动形成的状态,力学特征是接触面间弹力的等效作用点与瞬时转轴重合.或说是接触面间弹力的作用线通过瞬时转轴.例10.物体A 质量为kg m 2=,用两根轻绳B 、C 连接到竖直墙上,在物体A 上加一恒力F ,若图中力F 、轻绳AB 与水平线夹角均为︒=60θ,要使两绳都能绷直,求恒力F 的大小。

【答案】N F N 1.236.11≤≤【解析】:要使两绳都能绷直,必须0021≥≥F F ,,再利用正交分解法作数学讨论。

作出A 的受力分析图,由正交分解法的平衡条件:例10题图例11.如图所示,绳子AB能承受的最大拉力为1000N, 轻杆AC能承受的最大压力为2000N, 问:A点最多能悬挂多重的物体?例11题图【答案】1366N【解析】:以结点A为研究对象,作出其受力图如图所示。

例11答图A点受三个力作用而平衡,且F N和T的合力大小为G。

若T取临界值时,G的最大值为G T;若F N取临界值时,G的最大值为G N,那么A点能悬挂的重物的最大值是G T和G N中的较小值。

在如图所示的力三角形中,由三力平衡条件得:75sin 60sin G F N =,75sin 45sin GF = 当F Nmax = 2000N 时,G N = F Nmax sin75°/sin60°= 2230N 当F max =1000N 时,G T = F max sin75°/sin45° =1366N.当F 最大时,重物的最大重力只能是1366N, 若挂上重2230N 的重物时,AB 绳早被拉断。

高中物理动力学-轻绳轻杆模型

高中物理动力学-轻绳轻杆模型

轻绳轻杆模型一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。

“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。

1.“死结”问题的解决方法:(动态平衡问题)(1)正交分解法:建立直角坐标系,把力分解到X 轴和Y 轴上,然后水平方向合力为零,竖直方向合力为零列方程组。

(2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。

把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。

(3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角), 那么会有:定力与θ角的变化情况相同当θ角为钝角时,变力与θ角的变化情况相同当θ角为直角时,变力有最小值。

当θ角为锐角时,变力与θ角的变化情况相反。

无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。

2.“活结”问题的解决方法:(1) 无论OB 与水平方向的角度如何,OA 、OC 的拉力都不会变,都等于C 的重力。

(2)轻绳的拉力与MN 之间的距离有关,距离越大拉力大,距离约小拉力越小。

如果距离不变(即a 点或b点只是竖直方向移动),那么拉力不变,轻绳与水平方向的夹角也不会变化。

二、轻杆模型:“活杆”与“死杆” 死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。

1. “死杆”问题的解决方法:由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,那么只能先求出除了杆受到的弹力之外的所有力的合力,那么杆受到的弹力与这个合力大小相等,方向相反。

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习,吊着重为180N的物体,不计摩向上移动些,二绳张力大例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为()A.mgB.33mg C.21mg D.41mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳() A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。

在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。

(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。

) 左运动时,则对于:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧上移的高度是多少?的劲度系数分别为k1和k2,若在m1上随时间t变化的图像如图(乙)所示,则(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,,的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计向上移动些,二绳张力两端被悬挂在水平点A.mgB.33mg C.21mg D.41mg 2-1.一段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳(A )A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC2-2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.F 的取值范围为:≤F≤2-3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时(D )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大2-4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。

竖直平面内圆周运动的“轻绳、轻杆”模型

竖直平面内圆周运动的“轻绳、轻杆”模型
转 解析
(1)当 (2)当
v=0 时,FN=mg,沿半径背离圆心 0<v< gr时,-FN+mg=mvr2,FN
背离
mg=mvr2
圆心,随 v 的增大而减小 (3)当 v= gr时,FN=0
(2)不能过最高点 v< gr, 在到达最高点前球已脱离
(4)当 v>
gr时,FN+mg=mvr2,F增大
【例 3】如图示,长为 L 的轻杆一端固定质量为 m 的小球,另一端固定 在转轴 O,现使小球在竖直平面内做圆周运动,P 为圆周的最高点,若
小球通过圆周最低点时的速度大小为 92gL,忽略摩 擦阻力和空气阻力,则以下判断正确的是( ) A.小球不能到达 P 点 B.小球到达 P 点时的速度大于 gL C.小球能到达 P 点,且在 P 点受到轻杆向上的弹力 D.小球能到达 P 点,且在 P 点受到轻杆向下的弹力
临界问题分析 物体在竖直平面内做的圆周运动是一种典型的变速 曲线运动,该类运动常有临界问题,并伴有“最 大”“最小”“刚好”等词语,现就两种模型分析 比较如下:
轻绳模型
轻杆模型
常见 类型
过最高点的 临界条件
v 临= gr
小球恰能做圆周运动,v临=0
讨论 分析
(1)过最高点时,v≥ gr,绳、 轨 道 对 球 产 生 弹 力 FN+
B.只要改变h的大小,就能使小球通过a 点后,既可能落回轨道内,又可能落到de 面上
C.无论怎样改变h的大小,都不可能使 小球通过a点后落回轨道内 D.调节h的大小,可以使小球飞出de面 之外(即e的右侧)
审题导析 1.理解小球通过 a点的意义. 2.分析小球整体 运动过程中遵从 的规律.
转 解析
【训练 3】 (多选)如图所示,一个固定在竖直平面上的光滑半圆 形管道,管道里有一个直径略小于管道内径的小球,小球在管道内 做圆周运动,从 B 点脱离后做平抛运动,经过 0.3 s 后又恰好垂直 与倾角为 45°的斜面相碰。已知半圆形管道的半径为 R=1 m,小 球可看做质点且其质量为 m=1 kg,g 取 10 m/s2。则( ) A.小球在斜面上的相碰点 C 与 B 点的水平距离是 0.9 m B.小球在斜面上的相碰点 C 与 B 点的水平距离是 1.9 m C.小球经过管道的 B 点时,受到管 道的作用力 FNB 的大小是 1 N D.小球经过管道的 B 点时,受到管 道的作用力 FNB 的大小是 2 N

高中物理轻绳、轻杆、轻弹簧三种模型之比较专题辅导

高中物理轻绳、轻杆、轻弹簧三种模型之比较专题辅导

高中物理轻绳、轻杆、轻弹簧三种模型之比拟在力学中有很多的研究对象是通过“轻绳〞“轻杆〞“轻弹簧〞连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。

下面就这三种模型的特点和不同之处与应用进展归纳,希望对大家有所帮助。

一. 三种模型的主要特点1. 轻绳〔1〕轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

〔2〕轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆〔l〕轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

〔2〕轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧〔1〕轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

〔2〕轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

二. 三种模型的主要区别1. 静止或匀速直线运动时例1. 如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可,方向是沿着绳子向上。

知,绳子对小球的弹力为F mg假设将轻绳换成轻弹簧,其结果是一样的。

例2. 如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

专题03 轻绳、轻杆、轻弹簧、接触面模型(1)-高考物理模型系列之对象模型(解析版)

专题03 轻绳、轻杆、轻弹簧、接触面模型(1)-高考物理模型系列之对象模型(解析版)

一模型界定本模型主要讨论绳和杆的弹力以及接触面间作用力的特点、形成的挂件模型、出现的临界与极值问题,以及它们的力的作用的瞬时性即暂态过程的问题等。

二模型破解 1."轻质"的含义 (i)质量为零(ii)任何状态下所受合力为零例1.如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦。

现将质量分别为M 、m(M>m)的小物块同时轻放在斜面两侧的绸带上。

两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等。

在α角取不同值的情况下,下列说法正确的有A .两物块所受摩擦力的大小总是相等B .两物块不可能同时相对绸带静止C .M 不可能相对绸带发生滑动D .m 不可能相对斜面向上滑动 【答案】 C时还应满足m f f ≤,即当m M M +≥2μ时两物块都相对绸带静止,B 错误.当mM M+<2μ时,m 相对绸带滑动,物块所受摩擦力达到最大值:M m f mg f <=αμcos ,M 仍相对绸带静止,C 正确.当m 相对绸带滑动时,若满足ααμsin cos mg mg <即αμtan <时m 相对斜面下滑;若αμtan =时m 静止;αμtan >时m 上滑,故D 错误.模型演练1.某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f . 轻杆向右移动不超过l 时,装置可安全工作. 一质量为m 的小车若以速度v 0 撞击弹簧,将导致轻杆向右移动4l. 轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦.(1)若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的压缩量x;(2)求为使装置安全工作,允许该小车撞击的最大速度v m ; (3)讨论在装置安全工作时,该小车弹回速度v ’和撞击速度v 的关系.【解析】:(1)轻杆开始移动时,弹簧的弹力kx F = ① 且f F = ② 解得kfx =③2.弹力 (I)弹力的方向 (i )绳的弹力①绷直的轻绳,其弹力方向沿着绳,与物体的运动状态无关 ②绳只能对物体施加拉力,不能对物体施加推力練1图③质量不能忽略的绳,绳中某处的张力沿该点绳的切线方向(ii)杆的弹力①轻杆的弹力不一定沿着杆,具体方向与物体的运动状态、杆与物体的连接方式有关②杆既可以对物体产生拉力,也可以对物体产生推力③满足下列条件时杆的弹力一定沿着杆:A.轻杆B.轻杆的一端由转轴或绞链固定C.除转轴或绞链对杆的作用力外,其它作用力作用于杆上同一点.(iii)弹簧的弹力①弹簧弹力的方向沿弹簧的中轴线方向,与运动状态无关②弹簧的弹力可以是拉力也可以是推力(iv)接触面的弹力①接触面的弹力一定垂直于接触面,与物体的运动状态无关②接触面只能对物体产生推力,不能对物体产生拉力③接触面间还可以存在摩擦力(II).弹力的大小①无论轻绳、轻杆还是接触面间的弹力,它们的大小具有一点相同的特征,即弹力的大小与系统所处于的运动状态有关,通常需要从平衡条件或牛顿运动定律来求解.②绕过光滑物体的同一条轻绳上各点的张力仍是相大小等的,如光滑滑轮、光滑挂钩等两侧的轻绳;系于一点的两段绳上张力大小不一定相等.③弹簧的弹力大小与运动状态无关,取决于弹簧劲度系统与形变量,遵从胡克定律.例2.重G的均匀绳两端悬于水平天花板上的A、B两点.静止时绳两端的切线方向与天花板成α角.求绳的A端所受拉力F1和绳中点C处的张力F2.例2 题图【答案】例3.如图所示,车厢里悬挂着两个质量不同的小球,上面的球比下面的球质量大,当车厢向右作匀加速运动(空气阻力不计)时,下列各图中正确的是【答案】B【解析】:由于无论系统是处于平衡状态还是处于非平衡状态,轻绳的张力总是沿着绳的.设上面一段绳与竖直方向的夹角为α,下面一段绳与竖直方向的夹角为β,先把M 、m 看做一个整体,对整体分析可知受到重力和上段绳的拉力如图所示,则由牛顿第二定律知:F 合=(m +M)gtanα=(M +m)a 得:a =gtanα.以下面的小球m 为研究对象,则有:mgtanβ=ma′,其中a′=a ,所以tanβ=tanα,即α=β,故选项B 正确.例 4.如图所示,固定在小车上的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球,下列关于杆对球的作用力F 的判断中,正确的是 ( )A 、小车静止时,cos F mg θ=,方向沿杆向上例3答图例4题图θ例3题图B 、小车静止时,cos F mg θ=,方向垂直杆向上C 、小车向右以加速度a 运动时,一定有/cos F mg θ=D 、小车向左以加速度a 运动时,22g a m F +=,方向斜向左上方,与竖直方向的夹角为arctan(/)a g α=【答案】D根据牛顿第二定律有: sin ,F ma α= cos F mg α=可解得:/cos F mg α=,arctan(/)a g α=,可见α随a 大小而改变,不一定等于θ。

2021高考物理模型系列之对象模型专题03轻绳轻杆轻弹簧接触面模型学案

2021高考物理模型系列之对象模型专题03轻绳轻杆轻弹簧接触面模型学案

专题03 轻绳、轻杆、轻弹簧、接触面模型(1)一模型界定本模型主要讨论绳和杆的弹力和接触面间作使劲的特点、形成的挂件模型、出现的临界与极值问题,和它们的力的作用的瞬时性即暂态进程的问题等。

二模型破解 1."轻质"的含义 (i)质量为零(ii)任何状态下所受合力为零例1.如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的双侧,绸带与斜面间无摩擦。

现将质量别离为M 、m(M>m)的小物块同时轻放在斜面双侧的绸带上。

两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等。

在α角取不同值的情况下,下列说法正确的有A .两物块所受摩擦力的大小老是相等B .两物块不可能同时相对绸带静止C .M 不可能相对绸带发生滑动D .m 不可能相对斜面向上滑动 【答案】 C时还应知足m f f ≤,即当m M M +≥2μ时两物块都相对绸带静止,B 错误.当mM M+<2μ时,m 相对绸带滑动,物块所受摩擦力达到最大值:M m f mg f <=αμcos ,M 仍相对绸带静止,C 正确.当m 相对绸带滑动时,若满足ααμsin cos mg mg <即αμtan <时m 相对斜面下滑;若αμtan =时m 静止;αμtan >时m 上滑,故D 错误.模型演练1.某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f . 轻杆向右移动不超过l 时,装置可安全工作. 一质量为m 的小车若以速度v 0 撞击弹簧,将致使轻杆向右移动4l. 轻杆与槽间的最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦.(1)若弹簧的劲度系数为k,求轻杆开始移动时,弹簧的紧缩量x;(2)求为使装置安全工作,允许该小车撞击的最大速度v m ; (3)讨论在装置安全工作时,该小车弹回速度v ’和撞击速度v 的关系.【解析】:(1)轻杆开始移动时,弹簧的弹力kx F = ① 且f F = ② 解得kfx =③2.弹力 (I)弹力的方向練1图(i)绳的弹力①绷直的轻绳,其弹力方向沿着绳,与物体的运动状态无关②绳只能对物体施加拉力,不能对物体施加推力③质量不能忽略的绳,绳中某处的张力沿该点绳的切线方向(ii)杆的弹力①轻杆的弹力不必然沿着杆,具体方向与物体的运动状态、杆与物体的连接方式有关②杆既可以对物体产生拉力,也可以对物体产生推力③知足下列条件时杆的弹力必然沿着杆:A.轻杆B.轻杆的一端由转轴或绞链固定C.除转轴或绞链对杆的作使劲外,其它作使劲作用于杆上同一点.(iii)弹簧的弹力①弹簧弹力的方向沿弹簧的中轴线方向,与运动状态无关②弹簧的弹力可以是拉力也可以是推力(iv)接触面的弹力①接触面的弹力必然垂直于接触面,与物体的运动状态无关②接触面只能对物体产生推力,不能对物体产生拉力③接触面间还可以存在摩擦力(II).弹力的大小①无论轻绳、轻杆仍是接触面间的弹力,它们的大小具有一点相同的特征,即弹力的大小与系统所处于的运动状态有关,通常需要从平衡条件或牛顿运动定律来求解.②绕过滑腻物体的同一条轻绳上各点的张力仍是相大小等的,如滑腻滑轮、滑腻挂钩等双侧的轻绳;系于一点的两段绳上张力大小不必然相等.③弹簧的弹力大小与运动状态无关,取决于弹簧劲度系统与形变量,遵从胡克定律.例2.重G的均匀绳两头悬于水平天花板上的A、B两点.静止时绳两头的切线方向与天花板成α角.求绳的A端所受拉力F1和绳中点C处的张力F2.例2 题图【答案】例3.如图所示,车箱里悬挂着两个质量不同的小球,上面的球比下面的球质量大,当车箱向右作匀加速运动(空气阻力不计)时,下列各图中正确的是例3题图【答案】B【解析】:由于无论系统是处于平衡状态仍是处于非平衡状态,轻绳的张力老是沿着绳的.设上面一段绳与竖直方向的夹角为α,下面一段绳与竖直方向的夹角为β,先把M、m看做一个整体,对整体分析可知受到重力和上段绳的拉力如图所示,例3答图则由牛顿第二定律知:F合=(m+M)gtanα=(M+m)a 得:a=gtanα.以下面的小球m为研究对象,则有:mgtanβ=ma′,其中a′=a,所以tanβ=tanα,即α=β,故选项B正确.例4.如图所示,固定在小车上的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球,下列关于杆对球的作使劲F的判断中,正确的是()θ例4题图A 、小车静止时,cos F mg θ=,方向沿杆向上B 、小车静止时,cos F mg θ=,方向垂直杆向上C 、小车向右以加速度a 运动时,必然有/cos F mg θ=D 、小车向左以加速度a 运动时,22g a m F +=,方向斜向左上方,与竖直方向的夹角为arctan(/)a g α=【答案】D按照牛顿第二定律有: sin ,F ma α= cos F mg α=可解得:/cos F mg α=,arctan(/)a g α=,可见α随a 大小而改变,不必然等于θ。

高考物理常用模型四:轻绳、轻杆

高考物理常用模型四:轻绳、轻杆

╰α 模型四:轻绳、轻杆 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

◆ 通过轻杆连接的物体
如图:杆对球的作用力由运动情况决定只有θ=arctg(
g a )时才沿杆方向
最高点时杆对球的作用力。

假设单B 下摆,最低
点的速度V B =R 2g ⇐mgR=22
1B mv 整体下摆2mgR=mg 2R +'2B '2A mv 21mv 2
1+ 'A 'B V 2V = ⇒ 'A V =gR 53 ; 'A 'B V 2V ==gR 25
6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功
◆ 通过轻绳连接的物体
①在沿绳连接方向(可直可曲),具有共同的v 和a 。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v 和a 在沿绳方向分解,求出两物体的v 和a 的关系式,
②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。

讨论:若作圆周运动最高点速度 V 0<gR ,运动情况为先平抛,绳拉直时沿绳方向的速度消失。

即是有能量损失,绳拉紧后沿圆周下落机械能守恒。

而不能够整个过程用机械能守恒。

自由落体时,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒
E m
L
·。

物理建模系列 竖直平面内圆周运动的“轻绳、轻杆”模型

物理建模系列  竖直平面内圆周运动的“轻绳、轻杆”模型

物理建模系列 竖直平面内圆周运动的“轻绳、轻杆”模型1.模型条件(1)物体在竖直平面内做变速圆周运动。

(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑。

2.常用模型该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:好能在竖直面内做完整的圆周运动。

已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。

不计空气阻力。

(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力F T 恰好为小球重力的6倍,且小球经过B 点的瞬间细线断裂,求小球的落地点到C 点的距离。

解题指导: 解答本题可按以下思路进行:解析: (1)若小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有mg =m v 2AL解得v A =gL 。

(2)小球在B 点时,根据牛顿第二定律有F T -mg =m v 2BL其中F T =6mg解得小球在B 点的速度大小为v B =5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得竖直方向上:1.9L -L =12gt 2水平方向上:x =v B t 解得x =3L即小球落地点到C 点的距离为3L 。

答案: (1)gL (2)3L [即学即练](2016·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小解析: 轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R ,随v 增大,F 增大,故C 、D 均错误。

高中物理轻绳模型浅析

高中物理轻绳模型浅析

高中物理轻绳模型浅析轻绳模型,又称倒立摆模型,是高中物理教学上的一个重要模型,它解释了重力受到空气的阻力而不断减小的原理。

它的原理是在牛顿定律的有重力的情况下,半个周期内发挥作用的力分别是重力和空气阻力(称为气动阻力),即重力和空气动力学互相抵消,从而使运动量保持平衡,半个周期后重复出现。

尽管轻绳模型是一个简单的模型,但它对动量守恒定律和动量散失的认识却有重要的意义。

实验装置轻绳模型的实验装置由悬挂系统、振动支架和调节系统构成。

悬挂系统是由一根垂直的轻绳支撑,用滑轮架固定在地面上;振动支架有一根弹簧绳和一枚质量系统,支持弹簧绳,弹簧绳贴紧质量系统两面,通过位移限位器控制位移,以保证系统的实验稳定性。

实验原理在实验前,首先将系统中位移限位器偏转一定角度,使系统质量点处于非平衡状态,此时重力加上弹簧弹力组成的张力将使质量点往下偏移;随后,质量点在弹簧和重力的参差不齐的作用下,运动的特性就很像在牛顿定律的物体在弹力存在的情况下运动的情况一样。

当物体从它的偏转角度开始往下滑动时,它的滑动距离越长,重力的作用就越强,而由于气动阻力的存在,物体的速度越来越小,当它停止滑动时,气动阻力完全抵消了重力,此时物体也停止了运动;随后,由于滑动过程中发生的动量损失,物体便重新开始朝上运动,同时重力和气动阻力仍被张力抵消半个周期,即完成一次倒立摆的运动。

总的来说,在倒立摆的实验中,弹簧和光滑面由于受到外力的影响而变得不平衡,这时弹簧和天平上的质量开始运动,重力和摩擦力(气动阻力)加在质量上,使质量朝上抛出,当质量变得不平衡时,重力被气动阻力抵消,质量重新向下移动,重力再次配合气动阻力使质量变得不平衡,即开始下一个周期。

结论轻绳模型是高中物理中常见的一种实验,它是以弹性反作用和重力、摩擦力的抵消为基础的,倒立摆的基本原理可以帮助学生更加深刻地理解动量守恒定律及动量的损失,从而增强学生的直观感受。

高中物理动力学-轻绳轻杆模型

高中物理动力学-轻绳轻杆模型

高中物理动力学-轻绳轻杆模型轻绳轻杆模型一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。

“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。

1.“死结”问题的解决方法:(动态平衡问题)(1)正交分解法:建立直角坐标系,把力分解到X轴和Y轴上,然后水平方向合力为零,竖直方向合力为零列方程组。

(2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。

把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。

(3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角),那么会有:定力与θ角的变化情况相同当θ角为钝角时,变力与θ角的变化情况相同当θ角为直角时,变力有最小值。

当θ角为锐角时,变力与θ角的变化情况相反。

无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。

2.“活结”问题的解决方法:(1)无论OB与水平方向的角度如何,OA、OC的拉力都不会变,都等于C的重力。

(2)轻绳的拉力与MN之间的距离有关,距离越大拉力大,距离约小拉力越小。

如果距离不变(即a点或b点只是竖直方向移动),那么拉力不变,轻绳与水平方向的夹角也不会变化。

二、轻杆模型:“活杆”与“死杆”死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。

1. “死杆”问题的解决方法:由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,那么只能先求出除了杆受到的弹力之外的所有力的合力,那么杆受到的弹力与这个合力大小相等,方向相反。

高考物理艺考生大二轮总复习 下篇 专题一 五大经典模型(科学思维、科学态度与责任)教学案-人教版高三

高考物理艺考生大二轮总复习 下篇 专题一 五大经典模型(科学思维、科学态度与责任)教学案-人教版高三

专题一五大经典模型〔科学思维、科学态度与责任〕模型一轻绳(杆)模型[模型释义]轻绳连接体模型1.绳杆模型的特点2.无论是轻绳还是轻杆,都先要进行整体或局部的受力分析,然后结合运动的合成与分解知识求解即可.3.竖直面内做圆周运动的轻绳(杆)模型(1)通常竖直面内的圆周运动只涉及最高点或最低点的分析,在这两个点有F合=F向,由牛顿第二定律列出动力学方程即可求解.(2)研究临界问题时,要牢记“绳模型〞中最高点速度v≥gR,“杆模型〞中最高点速度v≥0这两个临界条件.[模型突破]1.(2020·某某某某模拟)如下图,细绳一端固定在A点,另一端跨过与A等高的光滑定滑轮B后悬挂一个砂桶Q(含砂子).现有另一个砂桶P(含砂子)通过光滑挂钩挂在A、B之间的细绳上,稳定后挂钩下降至C点,∠ACB=120°,以下说法正确的选项是( )A .假设只增加Q 桶中的砂子,再次平衡后P 桶位置不变B .假设只增加P 桶中的砂子,再次平衡后P 桶位置不变C .假设在两桶内增加相同质量的砂子,再次平衡后P 桶位置不变D .假设在两桶内增加相同质量的砂子,再次平衡后Q 桶位置上升解析:C [对砂桶Q 分析有,Q 受到细绳的拉力大小F T =G Q ,设AC 、BC 之间的夹角为θ,对C 点分析可知C 点受三个力而平衡,由题意知,C 点两侧的绳X 力相等,故有2F T cos θ2=G P ,联立可得2G Q cos θ2=G P ,故只增加Q 桶中的砂子,即只增加G Q ,夹角θ变大,P 桶上升,只增加P 桶中的砂子,即只增加G P ,夹角θ变小,P 桶下降,选项A 、B 错误;由2G Q cos θ2=G P 可知,当θ=120°时有G Q =G P ,此时假设在两砂桶内增加相同质量的砂子,上式依然成立,那么P 桶的位置不变,选项C 正确,D 错误.]2.(2020·某某聊城一中模拟)一端装有定滑轮的粗糙斜面体放在地面上,A 、B 两物体通过跨过定滑轮的细绳连接,并处于静止状态,不计绳的质量和绳与滑轮间的摩擦,如下图,现将水平力F 作用于物体B 上,将B 缓慢拉开使与B 连接的细绳和竖直方向成一小角度,此过程中斜面体与物体A 仍然静止.那么在缓慢拉开B 的过程中,以下说法正确的选项是( )A .水平力F 不变B .物体A 所受细绳的拉力一定变大C .物体A 所受斜面体的摩擦力一定变大D .物体A 所受斜面体的作用力一定变大解析:B [缓慢拉开物体B 的过程中,对物体B 进行受力分析,如下图,物体B 始终受力平衡,根据共点力平衡条件有F =m B g tan θ,T =m B gcos θ,在缓慢拉开B 的过程中,θ变大,故F 和T 变大,A 错误,B 正确;未施加力F 时,对物体A 进行受力分析,物体A 受重力、支持力、细绳的拉力,由于A 、B 的质量关系和斜面的倾角未知,故物体A 可能不受静摩擦力,也可能受沿斜面向下的静摩擦力,还有可能受沿斜面向上的静摩擦力,故拉力T变大后,物体A所受静摩擦力不一定变大,而物体A所受支持力不变,故斜面体对物体A的作用力也不一定变大,C、D错误.]3.(多项选择)如下图,倾角为θ的光滑斜面固定在水平地面上,斜面上有三个小球A、B、C,上端固定在斜面顶端的轻绳a,下端与A相连,A、B间由轻绳b连接,B、C间由一轻杆相连.初始时刻系统处于静止状态,轻绳a、轻绳b与轻杆均平行于斜面.A、B、C的质量分别为m、2m、3m,重力加速度大小为g.现将轻绳b烧断,那么烧断轻绳b的瞬间,以下说法正确的选项是( )A.轻绳a的拉力大小为6mg sin θB.B的加速度大小为g sin θ,方向沿斜面向下C.C的加速度为0D.杆的弹力为0解析:BD [轻绳b被烧断的瞬间,A受力平衡,合力为零,那么轻绳a的拉力大小T=mg sin θ,选项A错误;轻绳b被烧断的瞬间,B、杆与C的加速度相同,对B、杆和C整体进行受力分析,并根据牛顿第二定律有(2m+3m)g sin θ=(2m+3m)a0,解得a0=g sin θ,方向沿斜面向下,可知选项B正确,C错误;对B进行受力分析并根据牛顿第二定律有2mg sin θ+F=2ma0,解得杆对B的弹力F=0,选项D正确.]4.(2019·某某新X一中第四次调研)如下图,一条不可伸长的细线两端分别连接着甲、乙两物体,甲物体能沿着竖直固定的半径为R的半圆环滑动,B、D两定滑轮的大小忽略不计,其连线与水平平台平行,且与半圆环在同一竖直平面内.B与半圆环最高点C、半圆环的圆心O在同一竖直线上,BC=0.5R.将甲物体由图示位置释放后,甲物体沿半圆环下滑,当甲物体运动到半圆环最底端A点时,甲、乙两物体的速度大小分别为v甲和v乙,两者的关系为(甲、乙可视为质点)( )A .v 甲=23v 乙 B .v 甲=32v 乙 C .v 甲=133v 乙 D .v 甲=132v 乙 解析:C [BC =0.5R ,OA =R ,根据几何关系有AB =AO 2+OB 2=132R ,所以cos ∠ABO =OBAB =313.当甲物体运动到半圆环最底端A 点时,实际速度竖直向下,如下图,对甲物体的速度进行分解,沿细线方向的速度大小v 1=v 线=v 甲cos ∠ABO ,乙的速度大小和细线的速度大小相等,即v 乙=v 线,解得v 甲=133v 乙.]5.(2019·某某某某二模)如下图的机械装置可以将圆周运动转化为直线上的往复运动.连杆AB 、OB 可绕图中A 、B 、O 三处的转轴转动,连杆OB 在竖直面内的转动可带动连杆AB 运动从而使滑块在水平横杆上左右滑动.OB 杆长为L ,绕O 点沿逆时针方向做匀速转动的角速度为ω,当连杆AB 与水平方向夹角为α,AB 杆与OB 杆的夹角为β时,滑块的水平速度大小为( )A.ωL sin βsin αB.ωL cos βsin αC.ωL cos βcos αD.ωL sin βcos α 解析:D [设滑块(A 点)的水平速度大小为v ,A 点的速度方向沿水平方向,如图,将A 点的速度分解,根据运动的合成与分解可知,沿AB 杆方向的分速度v 分=v cos α,B 点做圆周运动,B 点的实际速度是B 做圆周运动的线速度,可以分解为沿AB 杆方向的分速度和垂直于AB 杆方向的分速度,设B 的线速度为v ′,那么v B 分=v ′·cos θ=v ′cos(β-90°)=v ′sin β,又v ′=ωL ,且A 、B 沿AB 杆方向的分速度是相等的,即v 分=v B 分,联立可得v =ωL sin βcos α.]6.(2020·某某某某三中模拟)如下图,斜面体c置于水平地面上,不带电绝缘小物块b 置于绝缘斜面上,通过绝缘细绳跨过光滑的定滑轮与带正电小球a连接,连接b的一段细绳与斜面平行.在a所在空间中有竖直向下的匀强电场,在电场强度逐渐增加的情况下,a、b、c都处于静止状态,那么( )A.b对c的摩擦力一定减小B.地面对c的摩擦力一定减小C.地面对c的摩擦力方向一定水平向右D.b对c的摩擦力可能平行斜面向上且一直增加解析:D [由于电场强度增加,所以连接a、b的细绳的拉力增大,假设刚开始时b物块的重力沿斜面向下的分力与细绳的拉力相等,那么随着细绳拉力的增大,b受到的摩擦力沿斜面向下且增大,此时c受到b的摩擦力方向沿斜面向上且一直增大,A错误,D正确;将b、c 看成一个整体,整体受重力,地面的支持力,细绳拉力和地面的摩擦力,绳的拉力方向斜向右上方,所以c受到的摩擦力方向一定水平向左,由于绳的拉力增大,绳与水平面间的夹角不变,那么拉力沿水平方向的分力增大,所以c受到的摩擦力增大,B、C错误.]模型二轻弹簧模型[模型释义]与弹簧相关的平衡问题与弹簧相关的动力学问题与弹簧相关的功能问题1.轻弹簧模型的问题特点轻弹簧模型考查X围很广,变化较多,是考查学生推理、分析综合能力的热点模型,主要是围绕胡克定律进行,弹簧弹力为变力,引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,处理变速问题时要分析物体的动态过程,这些复杂的运动过程中间所包含的隐含条件往往难以挖掘,常有临界值,造成解题难点.2.轻弹簧模型的解题策略(1)力学特征:轻质弹簧不计质量,并且因软质弹簧的形变发生改变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹簧的弹力不突变.(2)过程分析:弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,首先要注意弹力的大小与方向与形变相对应,从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来综合分析物体运动状态.(3)功能关系:在求弹簧的弹力做功时,因该变力随形变量而线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系求解.同时要注意弹力做功等于弹性势能增量的负值,因此在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.(4)临界分析:弹簧一端有关联物、另一端固定时,当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻;假设关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零;假设关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零.3.轻弹簧模型的主要问题(1)与弹簧关联物体受力变化前后的加速度问题.(2)与弹簧关联两个相互接触的物体分离临界问题.(3)与弹簧关联物体的碰撞问题.(4)与热力学、振动、电磁学综合的弹簧问题.[模型突破]1.(2020·西南名校模拟)如下图,轻绳AO绕过光滑的定滑轮,一端与斜面上的物块A 相连,另一端与轻弹簧右端及轻绳BO上端的结点O相连,轻弹簧轴线沿水平方向,斜面体、物块A和悬挂的物块B均处于静止状态.轻绳的OC段与竖直方向的夹角为θ,斜面倾角为α,物块A和B的质量分别为m A、m B,弹簧的劲度系数为k,重力加速度为g.以下说法正确的选项是( )A.弹簧的伸长量为m B gk tan θB.地面对斜面体的摩擦力大小为m B gk cos θtan α,方向水平向右C.假设将斜面体向右移动一小段后,调整物块A的位置,使轻弹簧的轴线仍然沿水平方向,且系统仍处于静止状态,那么物块A受到的摩擦力一定减小D .假设沿水平方向移动斜面体,保持轻弹簧轴线沿水平方向,系统处于静止状态,那么斜面体对地面的压力始终不变解析:D [对结点O 受力分析,设弹簧伸长量为Δx ,那么有tan θ=k ·Δx m B g,解得Δx =m B g tan θk ,选项A 错误;同样对结点O 分析,设绳OC 的拉力为T ,那么有cos θ=m B g T,解得绳的拉力T =m B g cos θ,对斜面体和A 整体受力分析知,绳OC 拉力的水平分力与地面对斜面体的摩擦力平衡,所以地面对斜面体的摩擦力大小为f =T sin θ=m B g tan θ,选项B 错误;根据B 选项的分析知,绳OC 的拉力为T =m B g cos θ,假设斜面体右移,那么θ变大,T 变大,但由于A 、B 两物块的质量未知,所以A 受到的摩擦力方向无法判断,故A 受到的摩擦力大小变化无法确定,选项C 错误;对A 与斜面体组成的整体在竖直方向上受力分析,设地面对斜面体的支持力为N ,斜面体质量为M ,那么(m A +M )g +T cos θ=F N ,由T =m B g cos θ解得F N =(m A +m B +M )g ,与θ无关,选项D 正确.]2.(2019·某某新泰二中月考)如下图,两个完全相同的小球a 、b ,用轻弹簧N 连接,轻弹簧M 和轻绳一端均与a 相连,另一端分别固定在竖直墙和天花板上,弹簧M 水平,当轻绳与竖直方向的夹角为60°时,M 、N 伸长量刚好相同.假设M 、N 的劲度系数分别为k 1、k 2,a 、b 两球的质量均为m ,重力加速度大小为g ,那么以下判断正确的选项是( )A.k 1k 2=2 3 B.k 1k 2= 3C .假设剪断轻绳,那么在剪断的瞬间,a 球的加速度为零D .假设剪断弹簧M ,那么在剪断的瞬间,b 球处于失重状态解析:A [设M 、N 的伸长量均为x ,在图示状态下,a 球、弹簧N 和b 球整体受到重力2mg 、轻绳的拉力T 、弹簧M 的拉力F M 的作用处于平衡状态,根据力的平衡条件有F M =k 1x =2mg tan 60°=23mg ,b 球受重力mg 和弹簧N 的拉力F N 的作用处于平衡状态,那么F N =k 2x =mg ,解得k 1k 2=23,选项A 正确,B 错误;剪断轻绳的瞬间,轻绳的拉力突变为零,而轻弹簧中的弹力不会突变,即剪断轻绳前弹簧弹力与剪断轻绳的瞬间弹簧弹力相同,a 球受重力和两弹簧的拉力,合力不为零,那么加速度不为零,选项C 错误;剪断弹簧M 的瞬间,弹簧M 的弹力突变为零,弹簧N 的弹力不变,那么b 球加速度仍为零,选项D 错误.]3.(2020·某某某某七中模拟)(多项选择)如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为m 的物体A 、B (B 与弹簧连接,A 、B 均可视为质点),弹簧的劲度系数为k ,初始时物体处于静止状态.现用竖直向上的拉力F 作用在A 上,使A 开始向上做加速度大小为a 的匀加速运动,测得A 、B 的v -t 图像如图乙所示,重力加速度大小为g ,那么( )A .施加力F 前,弹簧的形变量为2mg kB .施加力F 的瞬间,A 、B 间的弹力大小为m (g +a )C .A 、B 在t 1时刻分离,此时弹簧弹力等于B 的重力D .上升过程中,B 速度最大时A 、B 间的距离为12at 22-mg k解析:AD [A 与B 分离的瞬间,A 与B 的加速度相同,速度也相同,A 与B 间的弹力恰好为零.分离后A 与B 的加速度不同,速度不同.t =0时刻,即施加力F 的瞬间,弹簧弹力没有突变,弹簧弹力与施加力F 前的相同,但A 与B 间的弹力发生突变.t 1时刻,A 与B 恰好分离,此时A 与B 的速度相等、加速度相等,A 与B 间的弹力为零.t 2时刻,B 的v -t 图线的切线与t 轴平行,切线斜率为零,即加速度为零.施加力F 前,A 、B 整体受力平衡,那么弹簧弹力F 0=kx 0=2mg ,解得弹簧的形变量x 0=2mg k,选项A 正确.施加力F 的瞬间,对B ,根据牛顿第二定律有F 0-mg -F AB =ma ,解得A 、B 间的弹力大小F AB =m (g -a ),选项B 错误.A 、B 在t 1时刻分离,此时A 、B 具有共同的速度与加速度,且F AB =0,对B 有F 1-mg =ma ,解得此时弹簧弹力大小F 1=m (g +a ),选项C 错误.t 2时刻B 的加速度为零,速度最大,那么kx ′=mg ,解得此时弹簧的形变量x ′=mg k ,B 上升的高度h ′=x 0-x ′=mg k ,A 上升的高度h =12at 22,此时A 、B 间的距离Δh =12at 22-mg k,选项D 正确.] 4.如下图,挡板P 固定在足够高的倾角为θ=37°的斜面上,小物块A 、B 的质量均为m ,两物块由劲度系数为k 的轻弹簧相连,两物块与斜面的动摩擦因数均为μ=0.5,一不可伸长的轻绳跨过滑轮,一端与物块B 连接,另一端连接一轻质小钩,初始小物块A 、B 静止,且物块B 恰不下滑,假设在小钩上挂一质量为M 的物块C 并由静止释放,当物块C 运动到最低点时,小物块A 恰好离开挡板P ,重力加速度为g ,sin 37°≈0.6,cos 37°≈0.8.(1)求物块C 下落的最大高度.(2)求物块C 由静止开始运动到最低点的过程中,弹簧弹性势能的变化量.(3)假设把物块C 换成质量为(M +m )的物块D ,小物块A 恰离开挡板P 时小物块B 的速度为多大?解析:(1)开始时,物块B 恰不下滑,B 所受的静摩擦力达到最大值,且方向沿斜面向上,由平衡条件得:kx 1+μmg cos θ=mg sin θ可得弹簧的压缩量为x 1=mg5k小物块A 恰好离开挡板P ,由平衡条件得: kx 2=μmg cos θ+mg sin θ可得弹簧的伸长量为x 2=mg k故物块C 下落的最大高度 h =x 1+x 2=6mg 5k. (2)物块C 由静止开始运动到最低点的过程中,对于A 、B 、C 及弹簧组成的系统,运用能量守恒定律得:Mgh =μmgh cos θ+mgh sin θ+ΔE p那么得弹簧弹性势能的变化量ΔE p =6(M -m )mg 25k. (3)假设把物块C 换成质量为(M +m )的物块D ,小物块A 恰离开挡板P 时,物块D 下落的高度仍为h .对于A 、B 、D 及弹簧组成的系统,运用能量守恒定律得:(M +m )gh =μmgh cos θ+mgh sin θ+ΔE p +12(M +m +m )v 2解得v =2mg35k (M +2m ).答案:(1)6mg 5k (2)6(M -m )mg25k(3)2mg35k (M +2m )模型三 板块模型[模型释义]1.运动情景1.板块模型的特点板块模型一直以来都是高考考查的热点,板块模型问题,至少涉及两个物体,一般包括多个运动过程,板块间存在相对运动,应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意速度是联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度,问题的实质是物体间的相互作用及相对运动问题,应根据题目中的信息及运动学公式综合分析,分段分步列式求解.2.板块模型的求解问题 (1)相互作用、动摩擦因数. (2)木板对地的位移. (3)物块对地的位移. (4)物块对木板的相对位移. (5)摩擦生热,能量转化. 3.板块模型的解题关键解决板块模型问题,不同的阶段要分析受力情况和运动情况的变化,抓住两者存在相对滑动的临界条件是两者间的摩擦力为最大静摩擦力,静摩擦力不但方向可变,而且大小也会在一定X 围内变化,明确板块达到共同速度时各物理量关系是此类题目的突破点:(1)板块达到共同速度以后,摩擦力要发生转变,一种情况是板块间滑动摩擦力转变为静摩擦力;另一种情况是板块间的滑动摩擦力方向发生变化.(2)板块达到共同速度时恰好对应物块不脱离木板时板具有的最小长度,也就是物块在木板上相对于板的最大位移.(3)分析受力,求解加速度,画运动情境图寻找位移关系,可借助v t 图像.[模型突破]1.如下图,质量为3m 的木板静止在光滑的水平面上,一个质量为2m 的物块(可视为质点),静止在木板上的A 端,物块与木板间的动摩擦因数为μ.现有一质量为m 的子弹(可视为质点)以初速度v 0水平向右射入物块并穿出,子弹穿出物块时的速度为v 02,子弹穿过物块的时间极短,不计空气阻力,重力加速度为g .求:(1)子弹穿出物块时物块的速度大小.(2)子弹穿出物块后,为了保证物块不从木板的B 端滑出,木板的长度至少多大? 解析:(1)设子弹穿过物块时物块的速度为v 1,对子弹和物块组成的系统,由动量守恒定律得:mv 0=m v 02+2mv 1,解得v 1=v 04.(2)物块和木板达到的共同速度为v 2时,物块刚好到达木板右端,设板的长度最小为L ,对物块和木板组成的系统,由动量守恒得:2mv 1=5mv 2,此过程系统摩擦生热:Q =2μmgL由能量守恒定律得:2μmgL =12×2mv 21-12×5mv 22代入数据解得:L =3v 2160μg .答案:(1)v 04 (2)3v 2160μg2.(2019·某某二模)如下图,光滑水平面上放有用绝缘材料制成的“L〞型滑板,其质量为M ,平面部分的上表面光滑且足够长,在距滑板的A 端为l 的B 处放置一个质量为m 、带电量为q 的小物体C (可看成是质点),在水平的匀强电场作用下,由静止开始运动.M =3m ,电场的场强为E .假设物体C 在运动中及与滑板A 端相碰时不损失电量.(1)求物体C 第一次与滑板A 端相碰前瞬间的速度大小.(2)假设物体C 与滑板A 端相碰的时间极短,而且碰后弹回的速度大小是碰前速度大小的15,求滑板被碰后的速度大小. (3)求小物体C 从开始运动到与滑板A 第二次碰撞这段时间内,电场力对小物体C 做的功. 解析:(1)设物体C 在电场力作用下第一次与滑板的A 端碰撞时的速度为v 1,由动能定理得:qEl =12mv 21,解得v 1=2qElm(2)小物体C 与滑板碰撞过程中动量守恒,设滑板碰撞后的速度为v 2,由动量守恒定律得mv 1=Mv 2-m 15v 1解得v 2=25v 1=252qElm(3)小物体C 与滑板碰撞后,滑板向左以速度v 2做匀速运动;小物体C 以15v 1的速度先向右做匀减速运动,然后向左做匀加速运动,直至与滑板第二次相碰,设第一次碰后到第二次碰前的时间为t ,小物体C 在两次碰撞之间的位移为s ,根据题意可知,小物体加速度为a =qEm小物体C 与滑板从第一次碰后到第二次碰时位移相等,即v 2t =-15v 1t +12at 2,解得t =652ml qE两次相碰之间滑板运动的距离s =v 2t =2425l设小物体C 从开始运动到与滑板A 第二次碰撞这段过程电场力对小物体做功为W ,那么W =qE (l +s )解得W =4925qEl答案:(1)2qEl m (2)252qEl m (3)4925qEl 3.如图,倾角θ=30°的光滑斜面底端固定一块垂直于斜面的挡板.将长木板A 静置于斜面上,A 上放置一小物块B ,初始时A 下端与挡板相距L =4 m ,现同时无初速释放A 和B .在A 停止运动之前B 始终没有脱离A 且不会与挡板碰撞,A 和B 的质量均为m =1 kg ,它们之间的动摩擦因数μ=33,A 或B 与挡板每次碰撞损失的动能均为ΔE =10 J ,忽略碰撞时间,重力加速度大小g 取10 m/s 2.求:(1)A 第一次与挡板碰前瞬间的速度大小v .(2)A 第一次与挡板碰撞到第二次与挡板碰撞的时间Δt . (3)B 相对于A 滑动的可能最短时间t .解析:(1)B 和A 一起沿斜面向下运动,由机械能守恒定律有2mgL sin θ=12(2m )v 2①由①式得v =210m/s ②(2)第一次碰后,对B 有mg sin θ=μmg cos θ故B 匀速下滑③对A 有mg sin θ+μmg cos θ=ma 1④得A 的加速度a 1=10 m/s 2,方向始终沿斜面向下.⑤ 设A 第1次反弹的速度大小为v 1,由动能定理有 12mv 2-12mv 21=ΔE ⑥ Δt =2v 1a 1⑦由⑥⑦式得Δt =255s ⑧(3)设A 第2次反弹的速度大小为v 2,由动能定理有 12mv 2-12mv 22=2ΔE ⑨ 得v 2=0⑩即A 与挡板第2次碰后停在底端,B 继续匀速下滑,与挡板碰后B 反弹的速度为v ′,加速度大小为a ′,由动能定理有12mv 2-12mv ′2=ΔE ⑪ mg sin θ+μmg cos θ=ma ′⑫由⑪⑫式得B 沿A 向上做匀减速运动的时间t 2=v ′a ′=55s ⑬ 当B 速度为0时,因mg sin θ=μmg cos θ≤f m ,B 将静止在A 上.⑭假设当A 停止运动时,B 恰好匀速滑至挡板处,B 相对A 运动的时间t 最短,故t =Δt +t 2=355s.答案:(1)210 m/s (2)255 s (3)355s模型四 电磁偏转模型[模型释义]1.明种类:明确叠加场的种类及特征.2.析特点:正确分析带电粒子的受力特点及运动特点.3.画轨迹:画出运动轨迹过程示意图,明确圆心、半径及边角关系. 4.用规律:灵活选择不同的运动规律.(1)两场共存时,电场与磁场中满足qE =qvB 或重力场与磁场中满足mg =qvB 或重力场与电场中满足mg =qE ,都表现为匀速直线运动或静止,根据受力平衡列方程求解.(2)三场共存时,合力为零,受力平衡,粒子做匀速直线运动.其中洛伦兹力F =qvB 的方向与速度v 垂直.(3)三场共存时,粒子在复合场中做匀速圆周运动.mg 与qE 相平衡,根据mg =qE ,由此可计算粒子比荷,判定粒子电性.粒子在洛伦兹力作用下做匀速圆周运动,应用受力平衡和牛顿运动定律结合圆周运动规律求解,有qvB =mrω2=m v 2r =mr 4π2T2=ma .(4)当带电粒子做复杂的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.[模型突破]1.如下图,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里的匀强磁场,线段CO =OD =L ,CD 边在x 轴上,∠ADC =30°.在第四象限正方形ODQP 内存在沿+x 方向的匀强电场,在y =-L 处垂直于y 轴放置一平面足够大的荧光屏,屏与y 轴交点为P .一束带电量为e 的电子束以与+y 方向相同的速度v 0从CD 边上的各点射入磁场,这些电子在磁场中做圆周运动的半径均为L3.忽略电子之间的相互作用力以及电子的重力.试求:(1)磁感应强度B .(2)假设电场强度E 与磁感应强度B 大小满足E =2Bv 0,求从x 轴最右端射入电场中的电子打到荧光屏上的点与Q 点间的距离.解析:(1)由题意可知,电子在磁场中的轨迹半径:r =13L ,洛伦兹力提供向心力,由牛顿第二定律得:ev 0B =m v 20r ,解得,磁感应强度:B =3mv 0eL.(2)假设电子能进入电场中,且离O 点最远,那么电子在磁场中运动圆轨迹应恰好与边OA 相切,即粒子从F 点离开磁场进入电场时,离O 点最远.由几何关系可知:OF =23L ,从F 射入电场的电子做类平抛运动, 有:23L =12eE m t 2,y =v 0t ,解得:y =23L ,设电子射出电场时与竖直方向的夹角为θ,有:tan θ=at v 0=eE mt v 0,解得:tan θ=22,设从x 轴最右端射入电场中的电子打到荧光屏上的点为G ,那么它与Q 点的距离:GQ =L +(L -y )tan θ,解得:GQ =(62-1)L3.答案:(1)3mv 0eL (2)(62-1)L32.如下图,在平面直角坐标系xOy 内,第二、三象限内存在沿y 轴正方向的匀强电场,第一、四象限内存在半径为L 的圆形匀强磁场,磁场的圆心在M (L,0),磁场方向垂直于坐标平面向外.一个质量m 电荷量q 的带正电的粒子从第三象限中的Q (-2L ,-L )点以速度v 0沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L,0)点射出磁场.不计粒子重力,求:(1)电场强度E .(2)从P 点射出时速度v P 的大小. (3)粒子在磁场与电场中运动时间之比.解析:粒子在电场中做类平抛运动,在磁场中做圆周运动,运动轨迹如下图:(1)粒子在电场中做类平抛运动,x 轴方向:2L =v 0t ,y 方向:L =12at 2=12qE mt 2解得电场强度:E =mv 202qL(2)设粒子到达坐标原点时竖直分速度为v y ,粒子在电场中做类平抛运动,x 方向:2L =v 0ty 方向:L =v y2t ,联立得:v y =v 0t粒子进入磁场时的速度:v =v 20+v 2y =2v 0粒子进入磁场做匀速圆周运动,粒子速度大小不变,那么:v P =v =2v 0 (3)粒子在磁场中做匀速圆周运动的周期:T =2πrv粒子在磁场中的运动时间:t ′=θ360°T =2α360°T =2×45°360°×2π×2L 2v 0=πL2v 0。

专题三 过桥模型、轻绳轻杆模型

专题三 过桥模型、轻绳轻杆模型

专题三过桥模型、轻绳轻杆模型知识点一:汽车过桥模型1、凸形桥2、凹形桥失重现象 超重现象竖直平面内的圆周运动是典型的变速圆周运动。

一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。

知识点二:轻绳轻杆模型1、轻绳模型(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2v m R ⇒ v 临界=Rg(2)小球能过最高点条件:v ≥Rg (当v >Rg 时,绳对球产生拉力,轨道对球产生压力)(3)不能过最高点条件:v <Rg(实际上球还没有到最高点时,就脱离了轨道)2、轻杆模型(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。

)(1)小球能最高点的临界条件:v = 0,F = mg (F 为支持力)(2)当0< v <Rg 时,F 随v 增大而减小,且mg > F > 0(F 为支持力)(3)当v =Rg 时,F =0 (4)当v >Rg 时,F 随v 增大而增大,且F >0(F 为拉力)典例1.一汽车通过拱形桥顶点时的速度为10 m/s ,车对桥顶的压力为车重的34,如果要使汽车在桥顶对桥面没有压力,车速至少为( ).A .15 m/sB .20 m/sC .25 m/sD .30 m/s 解析 当F N =34G 时,因为G -F N =m v 2r ,所以14G =m v 2r ,当F N =0时,G =m v ′2r ,所以v ′=2v =20 m/s. 答案 B典例2.如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,正确的说法是( ).A .小球在圆周最高点时所受的向心力一定为重力B .小球在最高点时绳子的拉力有可能为零C .若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D .小球经过最低点时绳子的拉力一定大于小球重力解析 设在最高点小球受的拉力为F 1,最低点受到的拉力为F 2,则在最高点F 1+mg =m v 12L,即向心力由拉力F 1与mg 的合力提供,A 错.当v 1=gL 时,F 1=0,B 对.v 1=gL 为球经最高点的最小速度,即小球在最高点的速率不可能为0,C 错.在最低点,F 2-mg =m v 22L, F 2=mg +m v 22L,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D 对. 答案 BD 典例3.如图6-11-3所示,一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球做半径为R 的圆周运动,以下说法正确的是 ( )A .球过最高点时,杆所受的弹力可以等于零B .球过最高点时,最小速度为RgC .球过最高点时,杆对球的弹力一定与球的重力方向相反D .球过最高点时,杆对球的弹力可以与球的重力反向,此时重力一定大于杆对球的弹力解析:小球用轻杆支持过最高点时,0v =临,故B 不正确;当v Rg =时,F = 0故A 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理建模之轻绳模型
轻质绳是高考物理常见的一种建模,很多题型涉及到轻绳模型,考查方式多样化,可以以选择、计算题出现,可以是简单的受力,也可以是复杂的讨论形式。

可以说,轻绳模型是高中物理最常见也最重要的建模之一。

轻绳模型特点
首先,它的质量可忽略不计,不考虑其重力。

其次,它只能产生拉力(弹力),不能产生压力或支持力,因此拉力方向一定沿着绳子指向绳子收缩的方向。

轻绳模型规律
▪同一条绳子拉力处处相等;
▪轻绳松弛时不产生拉力,轻绳不能像弹簧一样伸长;
▪用轻绳连接的物体发生碰撞时,会引起机械能损失,即非弹性碰撞;
▪轻绳的拉力会发生突变,具有瞬时突变;
轻绳模型处理方法
根据物体运动状态,选择相对应的定理或定律。

具体表现为:静止或动态平衡时涉及共点平衡原理,加速或减速涉及牛顿第二定律,圆周运动涉及向心力,绳子关联问题涉及运动的合成与分解等等。

轻绳模型常见题型
▪轻绳涉及的平衡问题
这类题型特点在于物体处于静止状态或动态平衡(缓慢移动、匀速运动),结合受力分析利用合成法或正交分解法解决。

特别提醒,轻绳会与定滑轮挂钩形成"活结",至于"活结类"的轻绳模型,可以参考这篇文章《高考物理建模型之活结和死结模型》加以理解。

经典例题
如图所示,将一根不能伸长、柔软的轻绳两端分别系于A、B两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为θ3,绳子张力为F3,不计摩擦,则( )
A. θ1=θ2=θ3
B. θ1=θ2<θ3
C. F1> F2> F3
D. F1= F2< F3 答案:BD
解析:先要证明θ跟什么因素有关。

根据轻绳模型可知,不管悬挂点在B、C、D点哪个位置,两段绳子的拉力是一样的,并且拉力的合力刚好在两段绳子夹角的角平分线上。

受力如图所示,做出相应辅助线,可知∠AO1O2=∠BO1O2=∠AO3O1=∠O3BE=θ/2。

设两段绳子总长度为l,A、B两点的水平距离为d,则l= O1A+ O1B,而O1A=O1O3,O3B= O1O3+O1B=l,而F1=F2,且F1与F2的合力F=mg,由几何知识得:
可见,不管悬挂点在B点还是C点,l与d不变,故θ1=θ2,但悬点在D点时,A到D点的水平距离d AD比A到B水平距离d要大,l还是一样,则有θ1<θ3,因此θ1=θ2<θ3,B正确。

对于CD选项,不管θ如何变化,F1与F2的合力F一定与mg等值反向,所以当合力F 一定前提下,θ越小,两分力(即绳子张力)越小,故F1= F2< F3
▪轻绳涉及的牛顿第二定律问题
这类问题往往涉及轻绳突变问题,由于受外力影响,轻绳的张力会突变,恢复时间极短,恢复时间可忽略不计,故引起张力前后变化。

解决这类问题关键利用牛顿第二定律进行处理。

经典例题
如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,A、B的加速度是多少?
解析:分别对两球烧断绳子前后进行受力分析,如图所示:
对于轻绳,烧断后F T立马为0,而弹簧弹力不会突变,烧断绳子瞬间大小不变。

根据受力可知,烧断前,对B球有:kx=mgsinθ
烧断后,B球所受弹力不变,则a B=0。

烧断后,对A球有:mgsinθ+kx=ma A,即2mgsinθ=ma A,因此a A=2gsinθ。

▪轻绳涉及的圆周运动的问题
这类题型往往考查圆周运动向心力知识,解题步骤4步曲:①定圆心,定半径,画圆弧;
②受力分析;③利用合成法或正交分解法求径向合力,即向心力来源;④代向心力公式F向
=mv2/R=mω2R。

经典例题
质量分别为M和m的两个小球,分别用长2l和l的轻绳拴在同一转轴上,当转轴稳定转动时,拴质量为M和m的小球悬线与竖直方向夹角分别为α和β,如图所示,则()
答案:A
解析:先定圆心,过质点分别做转轴垂线,交点即是各自圆周运动的圆心。

半径分别为R M=2lsinα,R m=lsinβ。

然后进行受力分析,如图所示。

对M有:Mgtanα=Mω2R M= Mω2﹒2lsinα
对m有:mgtanβ=mω2R m= mω2﹒lsinβ
由于ω相等,联立以上两式,可知A选项正确。

▪轻绳涉及的关联问题
这类题型往往考查的是运动的合成与分解,这类题型往往依赖滑轮或光滑挂钩让两个物体关联在一起。

两个主要特点表现:
1.当物体的速度方向沿绳子方向时,v物体=v绳子
2.当物体的速度方向不沿绳子方向时,v物体≠v绳子,此时物体的速度为合速度,绳子
速度即是物体的一个分速度,另外一个分速度必定垂直于绳子的速度。

然后利用
平行四边形结合三角函数求解。

经典例题
在水平面上有A、B两个物体,通过一根跨过定滑轮的不可伸长的轻绳相连接,现A物体以v A的速度向右匀速运动,当绳被拉成与水平面夹角分别为α、β时,B物体的运动速度v B 为(绳始终有拉力) ( )
答案:D
解析:由于A、B运动方向都不沿绳子方向,则v A≠v绳,v B≠v绳。

分别对A、B进行运动的分解,如图所示可得:
对A物体有:v绳=v A cosα,对B物体有:v绳=v B cosβ,联立两式可知D项正确。

相关文档
最新文档