高考物理常考的24个模型.pdf
高中物理常见模型

2010年高三物理第二轮总复习大纲版第9专题高中物理常见的物理模型方法概述高考命题以考试大纲为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:1选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题.2实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大.3试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型包含子弹射入、带电粒子的加速与偏转、天体问题圆周运动、轻绳轻杆连接体模型、传送带问题、含弹簧的连接体模型.高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.热点、重点、难点一、斜面问题在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.1.自由释放的滑块能在斜面上如图9-1 甲所示匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.图9-1甲2.自由释放的滑块在斜面上如图9-1 甲所示:1静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;2加速下滑时,斜面对水平地面的静摩擦力水平向右;3减速下滑时,斜面对水平地面的静摩擦力水平向左.3.自由释放的滑块在斜面上如图9-1乙所示匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,在m停止前M对水平地面的静摩擦力依然为零见一轮书中的方法概述.图9-1乙4.悬挂有物体的小车在斜面上滑行如图9-2所示:图9-21向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面;2向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上;3向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下.5.在倾角为θ的斜面上以速度v0平抛一小球如图9-3所示:图9-31落到斜面上的时间t=错误!;2落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;3经过t c=错误!小球距斜面最远,最大距离d=错误!.6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止.图9-47.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m=错误!.图9-58.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退的位移s=错误!L.图9-6●例1有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图9-7甲所示,质量为M、倾角为θ的滑块A放于水平地面上.把质量为m的滑块B放在A的斜面上.忽略一切摩擦,有人求得B相对地面的加速度a=错误!g sin θ,式中g为重力加速度.图9-7甲对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错.误.的,请你指出该项2008年高考·北京理综卷A.当θ=0°时,该解给出a=0,这符合常识,说明该解可能是对的B.当θ=90°时,该解给出a=g,这符合实验结论,说明该解可能是对的C.当M≫m时,该解给出a≈g sin θ,这符合预期的结果,说明该解可能是对的D.当m≫M时,该解给出a≈错误!,这符合预期的结果,说明该解可能是对的解析当A固定时,很容易得出a=g sin θ;当A置于光滑的水平面时,B加速下滑的同时A 向左加速运动,B不会沿斜面方向下滑,难以求出运动的加速度.图9-7乙设滑块A的底边长为L,当B滑下时A向左移动的距离为x,由动量守恒定律得:M错误!=m错误!解得:x=错误!当m≫M时,x≈L,即B水平方向的位移趋于零,B趋于自由落体运动且加速度a≈g.选项D中,当m≫M时,a≈错误!>g显然不可能.答案 D点评本例中,若m、M、θ、L有具体数值,可假设B下滑至底端时速度v1的水平、竖直分量分别为v1x、v1y,则有:错误!=错误!=错误!错误!m v1x2+错误!m v1y2+错误!M v22=mghm v1x=M v2解方程组即可得v1x、v1y、v1以及v1的方向和m下滑过程中相对地面的加速度.●例2在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下如图9-8甲所示,它们的宽度均为L.一个质量为m、边长也为L的正方形线框以速度v进入上部磁场时,恰好做匀速运动.图9-8甲1当ab边刚越过边界ff′时,线框的加速度为多大,方向如何2当ab边到达gg′与ff′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab边到达gg′与ff′的正中间位置的过程中,线框中产生的焦耳热为多少线框的ab边在运动过程中始终与磁场边界平行,不计摩擦阻力解析1当线框的ab边从高处刚进入上部磁场如图9-8 乙中的位置①所示时,线框恰好做匀速运动,则有:mg sin θ=BI1L此时I1=错误!当线框的ab边刚好越过边界ff′如图9-8乙中的位置②所示时,由于线框从位置①到位置②始终做匀速运动,此时将ab边与cd边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I1.故线框的加速度大小为:图9-8乙a=错误!=3g sin θ,方向沿斜面向上.2而当线框的ab边到达gg′与ff′的正中间位置如图9-8 乙中的位置③所示时,线框又恰好做匀速运动,说明mg sin θ=4BI2L故I2=错误!I1由I1=错误!可知,此时v′=错误!v从位置①到位置③,线框的重力势能减少了错误!mgL sin θ动能减少了错误!m v2-错误!m错误!2=错误!m v2由于线框减少的机械能全部经电能转化为焦耳热,因此有:Q=错误!mgL sin θ+错误!m v2.答案13g sin θ,方向沿斜面向上2错误!mgL sin θ+错误!m v2点评导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法.二、叠加体模型叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷Ⅰ的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.叠加体模型有较多的变化,解题时往往需要进行综合分析前面相关例题、练习较多,下列两个典型的情境和结论需要熟记和灵活运用.1.叠放的长方体物块A、B在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中如图9-9所示,A、B之间无摩擦力作用.图9-92.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q摩=f·s相.图9-10●例3质量为M的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是注:属于选修3-5模块图9-11A.最终木块静止,d1=d2B.最终木块向右运动,d1<d2C.最终木块静止,d1<d2D.最终木块静止,d1>d2解析木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m,由动量守恒定律得:m v0-m v0=M+2m v解得:v=0,即最终木块静止设左侧子弹射入木块后的共同速度为v1,有:m v0=m+M v1Q1=f·d1=错误!m v02-错误!m+M v12解得:d1=错误!对右侧子弹射入的过程,由功能原理得:Q2=f·d2=错误!m v02+错误!m+M v12-0解得:d2=错误!即d1<d2.答案 C点评摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的公式,它是由动能定理的关系式推导得出的二级结论.三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如2009年高考福建理综卷第21题、山东理综卷第22题、重庆理综卷第24题,2008年高考北京理综卷第22题、山东理综卷第16题和第22题、四川延考区理综卷第14题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.1.静力学中的弹簧问题1胡克定律:F=kx,ΔF=k·Δx.2对弹簧秤的两端施加沿轴线方向大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.●例4如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了图9-12甲A.错误!B.错误!C.m1+m22g2错误!D.错误!+错误!解析取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=m1+m2g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:图9-12乙x1=错误!,x2=错误!故A、B增加的重力势能共为:ΔE p=m1gx1+x2+m2gx2=错误!+错误!.答案 D点评①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=错误!进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功W=错误!·x总=错误!+错误!.2.动力学中的弹簧问题1瞬时加速度问题与轻绳、轻杆不同:一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.2如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A开始分离.图9-13●例5一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14 所示.图9-14现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.取g=10 m/s2解析初始时刻弹簧的压缩量为:x0=错误!=0.15 m设秤盘上升高度x时P与秤盘分离,分离时刻有:错误!=a又由题意知,对于0~0.2 s时间内P的运动有:错误!at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值F min=m1+m2a=72 N分离时刻拉力达到最大值F max=m2g+m2a=168 N.答案72 N168 N点评对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:1弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;2弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.●例6如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面但不继续上升.若将B物块换为质量为2m的物块C图中未画出,仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k =100 N/m,求h2的大小.图9-15解析设A物块落地时,B物块的速度为v1,则有:错误!m v12=mgh1设A刚好离地时,弹簧的形变量为x,对A物块有:mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:错误!m v12=mgx+ΔE p换成C后,设A落地时,C的速度为v2,则有:错误!·2m v22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:错误!·2m v22=2mgx+ΔE p联立解得:h2=0.5 m.答案0.5 m点评由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.如2005年高考全国理综卷Ⅰ第25题、1997年高考全国卷第25题等.●例7用轻弹簧相连的质量均为2 kg 的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:图9-16甲1当弹簧的弹性势能最大时,物体A的速度为多大2弹簧弹性势能的最大值是多少3A的速度方向有可能向左吗为什么解析1当A、B、C三者的速度相等设为v A′时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:m A+m B v=m A+m B+m C v A′解得:v A′=错误!m/s=3 m/s.2B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:m B v=m B+m C v′解得:v′=错误!=2 m/sA的速度为v A′时弹簧的弹性势能最大,设其值为E p,根据能量守恒定律得:E p=错误!m B+m C v′2+错误!m A v2-错误!m A+m B+m C v A′2=12 J.3方法一A不可能向左运动.根据系统动量守恒有:m A+m B v=m A v A+m B+m C v B设A向左,则v A<0,v B>4 m/s则B、C发生碰撞后,A、B、C三者的动能之和为:E′=错误!m A v错误!+错误!m B+m C v错误!>错误!m B+m C v错误!=48 J实际上系统的机械能为:E=E p+错误!m A+m B+m C v A′2=12 J+36 J=48 J根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.方法二B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成即相当于在匀速运动的车厢中两物块相对振动由1知整体匀速运动的速度v0=v A′=3 m/s图9-16乙取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C相对振动的速率最大,分别为:v AO=v-v0=3 m/sv BO=|v′-v0|=1 m/s由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.答案13 m/s212 J3不可能,理由略点评①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A的速度为零.●例8探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:图9-17①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面如图9-17甲所示;②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞如图9-17乙所示;③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处如图9-17丙所示.设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:1外壳与内芯碰撞后瞬间的共同速度大小.2从外壳离开桌面到碰撞前瞬间,弹簧做的功.3从外壳下端离开桌面到上升至h2处,笔损失的机械能.2009年高考·重庆理综卷解析设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.1对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:4m+mgh2-h1=错误!4m+m v错误!-0解得:v2=错误!.2外壳与内芯在碰撞过程中动量守恒,即:4m v1=4m+m v2将v2代入得:v1=错误!错误!设弹簧做的功为W,对外壳应用动能定理有:W-4mgh1=错误!×4m v错误!将v1代入得:W=错误!mg25h2-9h1.3由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量E损=错误!×4m v错误!-错误!4m+m v错误!将v1、v2代入得:E损=错误!mgh2-h1.答案1错误!2错误!mg25h2-9h13错误!mgh2-h1由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.四、传送带问题从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题的能力.如2003年高考全国理综卷第34题、2005年高考全国理综卷Ⅰ第24题等.对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记:1滑块加速过程的位移等于滑块与传送带相对滑动的距离;2对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外相对空载做的功W=m v2=2E k=2Q摩.●例9如图9-18甲所示,物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速运动使传送带随之运动,物块仍从P点自由滑下,则图9-18甲A.物块有可能不落到地面上B.物块仍将落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边解析如图9-18乙所示,设物块滑上水平传送带上的初速度为v0,物块与皮带之间的动摩擦因数为μ,则:图9-18乙物块在皮带上做匀减速运动的加速度大小a=错误!=μg物块滑至传送带右端的速度为:v=错误!物块滑至传送带右端这一过程的时间可由方程s=v0t-错误!μgt2解得.当皮带向左匀速传送时,滑块在皮带上的摩擦力也为:f=μmg物块在皮带上做匀减速运动的加速度大小为:a1′=错误!=μg则物块滑至传送带右端的速度v′=错误!=v物块滑至传送带右端这一过程的时间同样可由方程s=v0t-错误!μgt2解得.由以上分析可知物块仍将落在Q点,选项B正确.答案 B点评对于本例应深刻理解好以下两点:①滑动摩擦力f=μF N,与相对滑动的速度或接触面积均无关;②两次滑行的初速度都以地面为参考系相等,加速度相等,故运动过程完全相同.我们延伸开来思考,物块在皮带上的运动可理解为初速度为v0的物块受到反方向的大小为μmg的力F的作用,与该力的施力物体做什么运动没有关系.●例10如图9-19所示,足够长的水平传送带始终以v=3 m/s的速度向左运动,传送带上有一质量M=2 kg 的小木盒A,A与传送带之间的动摩擦因数μ=0.3.开始时,A与传送带之间保持相对静止.现有两个光滑的质量均为m=1 kg 的小球先后相隔Δt=3 s自传送带的左端出发,以v0=15 m/s的速度在传送带上向右运动.第1个球与木盒相遇后立即进入盒中并与盒保持相对静止;第2个球出发后历时Δt1=错误!s才与木盒相遇.取g=10 m/s2,问:图9-191第1个球与木盒相遇后瞬间,两者共同运动的速度为多大2第1个球出发后经过多长时间与木盒相遇3在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少解析1设第1个球与木盒相遇后瞬间,两者共同运动的速度为v1,根据动量守恒定律得:m v0-M v=m+M v1解得:v1=3 m/s,方向向右.2设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过时间t0与木盒相遇,则有:t0=错误!设第1个球进入木盒后两者共同运动的加速度大小为a,根据牛顿第二定律得:μm+Mg=m+Ma解得:a=μg=3 m/s2,方向向左设木盒减速运动的时间为t1,加速到与传送带具有相同的速度的时间为t2,则:t1=t2=错误!=1 s故木盒在2 s内的位移为零依题意可知:s=v0Δt1+vΔt+Δt1-t1-t2-t0解得:s=7.5 m,t0=0.5 s.3在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s′,木盒的位移为s1,则:s′=vΔt+Δt1-t0=8.5 ms1=vΔt+Δt1-t1-t2-t0=2.5 m故木盒相对于传送带的位移为:Δs=s′-s1=6 m则木盒与传送带间因摩擦而产生的热量为:Q=fΔs=54 J.答案13 m/s20.5 s354 J点评本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法.能力演练一、选择题10×4分1.图示是原子核的核子平均质量与原子序数Z的关系图象,下列说法正确的是A.若D和E结合成F,结合过程中一定会吸收核能B.若D和E结合成F,结合过程中一定会释放核能C.若A分裂成B和C,分裂过程中一定会吸收核能D.若A分裂成B和C,分裂过程中一定会释放核能解析D、E结合成F粒子时总质量减小,核反应释放核能;A分裂成B、C粒子时,总质量减小,核反应释放核能.答案BD2.单冷型空调器一般用来降低室内温度,其制冷系统与电冰箱的制冷系统结构基本相同.某单冷型空调器的制冷机从低温物体吸收热量Q2,向高温物体放出热量Q1,而外界压缩机必须对工作物质做功W,制冷系数ε=错误!.设某一空调的制冷系数为4,若制冷机每天从房间内部吸收2.0×107 J的热量,则下列说法正确的是A.Q1一定等于Q2B.空调的制冷系数越大越耗能C.制冷机每天放出的热量Q1=2.5×107 JD.制冷机每天放出的热量Q1=5.0×106 J解析Q1=Q2+W>Q2,选项A错误;ε越大,从室内向外传递相同热量时压缩机所需做的功耗电越小,越节省能量,选项B错误;又Q1=Q2+错误!=2.5×107 J,故选项C正确.答案 C3.图示为一列简谐横波的波形图象,其中实线是t1=0时刻的波形,虚线是t2=1.5 s时的波形,且t2-t1小于一个周期.由此可判断A.波长一定是60 cmB.波一定向x轴正方向传播C.波的周期一定是6 sD.波速可能是0.1 m/s,也可能是0.3 m/s解析由题图知λ=60 cm若波向x轴正方向传播,则可知:波传播的时间t1=错误!,传播的位移s1=15 cm=错误!故知T=6 s,v=0.1 m/s若波向x轴负方向传播,可知:波传播的时间t2=错误!T,传播的位移s2=45 cm=错误!故知T=2 s,v=0.3 m/s.答案AD4.如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板A的上面放着一个质量为m的物块C,木板和物块均处于静止状态.A、B、C之间以及B与地面之间的动摩擦因数都为μ.若用水平恒力F向右拉动木板A,使之从C、B之间抽出来,已知重力加速度为g,则拉力F的大小应该满足的条件是已知最大静摩擦力的大小等于滑动摩擦力A.F>μ2m+Mg B.F>μm+2MgC.F>2μm+Mg D.F>2μmg解析无论F多大,摩擦力都不能使B向右滑动,而滑动摩擦力能使C产生的最大加速度为μg,故错误!>μg时,即F>2μm+Mg时A可从B、C之间抽出.答案 C5.如图所示,一束单色光a射向半球形玻璃砖的球心,在玻璃与空气的界面MN上同时发生反射和折射,b为反射光,c为折射光,它们与法线间的夹角分别为β和θ.逐渐增大入射角α,下列说法中正确的是A.β和θ两角同时增大,θ始终大于βB.b光束的能量逐渐减弱,c光束的能量逐渐加强C.b光在玻璃中的波长小于b光在空气中的波长D.b光光子的能量大于c光光子的能量。
高中物理24个经典模型

高中物理24个经典模型高中物理中有许多经典的模型,这些模型帮助我们理解物理世界的运作原理。
本文将介绍高中物理中的24个经典模型,让我们一起来了解它们吧!1.单摆模型:单摆模型用来研究摆动的物体的运动规律。
它包括一个质点和一个细线,可以通过改变细线长度或质点的质量来研究摆动的周期和频率。
2.平抛运动模型:平抛运动模型用来研究水平投掷物体的运动轨迹和速度。
它假设没有空气阻力,只有重力作用。
可以通过改变初速度和仰角来研究物体的落点和飞行距离。
3.牛顿第一定律模型:牛顿第一定律模型认为在没有外力作用下物体将保持匀速直线运动或静止。
这个模型帮助我们理解惯性的概念和物体运动状态的变化。
4.牛顿第二定律模型:牛顿第二定律模型描述了物体受力和加速度之间的关系。
它的数学表达式为F=ma,其中F表示物体受力,m表示物体质量,a表示物体加速度。
5.牛顿第三定律模型:牛顿第三定律模型表明对于每个作用力都存在一个等大反向的相互作用力。
这个模型帮助我们理解力的概念和物体之间的相互作用。
6.阻力模型:阻力模型用来研究运动物体与介质之间的相互作用。
它的大小与速度和物体形状有关,在物体运动时会减小其速度。
7.功率模型:功率模型描述了物体转化能量的速度和效率。
它等于功的大小除以时间,可以帮助我们理解物体能量的转变和利用。
8.热传导模型:热传导模型描述了热量在物体间传递的过程。
它通过研究热导率和温度差来解释热量传递的速率和方向。
9.摩擦力模型:摩擦力模型用来描述物体在接触面上滑动或滚动时的相互作用。
它的大小与物体之间的粗糙程度和压力有关,可以通过摩擦力模型来研究物体的运动和停止。
10.力矩模型:力矩模型用来研究物体旋转的平衡和加速度。
它的数学表达式为M=rF,其中M表示力矩,r表示力臂,F表示作用力。
11.浮力模型:浮力模型用来研究物体在液体或气体中的浮力。
它的大小等于液体或气体对物体的推力,可以帮助我们理解物体在液体中的浮沉和船只的浮力原理。
高考物理全国卷专题04 曲线运动常考模型(原卷版)

2020年高考物理二轮复习热点题型与提分秘籍专题04 曲线运动常考模型题型一曲线运动和运动的合成与分解【题型解码】1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向;(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧.2.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质.(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则.【典例分析1】(多选)如图所示,质量为m的物块A和质量为M的重物B由跨过定滑轮O的轻绳连接,A 可在竖直杆上自由滑动。
当A从与定滑轮O等高的位置无初速释放,下落至最低点时,轻绳与杆夹角为37°。
已知sin37°=0.6,cos37°=0.8,不计一切摩擦,下列说法正确的是()A.物块A下落过程中,A与B速率始终相同B.物块A释放时的加速度为gC.M=2m D.A下落过程中,轻绳上的拉力大小始终等于Mg【典例分析2】(2019·江西宜春市第一学期期末)如图所示是物体在相互垂直的x方向和y方向运动的v-t 图象.以下判断正确的是()A.在0~1 s内,物体做匀速直线运动B.在0~1 s内,物体做匀变速直线运动C.在1~2 s内,物体做匀变速直线运动D.在1~2 s内,物体做匀变速曲线运动【提分秘籍】1.解决运动的合成和分解的一般思路(1)明确合运动和分运动的运动性质。
(2)明确是在哪两个方向上的合成或分解。
(3)找出各个方向上已知的物理量(速度、位移、加速度)。
(4)运用力与速度的方向关系或矢量的运算法则进行分析求解。
2.关联速度问题的解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示。
2022年高考物理模型专题突破-绳杆模型

真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。
现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。
当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。
已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。
设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。
解决物理极值问题常用的数学模型

龙源期刊网
解决物理极值问题常用的数学模型
作者:刘继军
来源:《中学生数理化·教与学》2013年第10期
在高考中,借助物理知识渗透考查数学建模能力是高考命题的一个永恒主题.现结合近年
高考物理试题,归纳出常考的数学模型.
一、和差角公式模型
点评:此题考查到了机械能守恒,圆周运动向心力,动能定理,平抛运动规律及求极值问题.关于其中的极值问题,要能熟练地对式子进行数学分析,从而得出结论.
总之,在物理教学过程中,对学生进行数学方法的教育,不仅可以加深学生对物理学的基本概念、基本理论的理解,而且可以提高学生对自然规律的认识,培养学生的创新精神和实践能力.。
2022年高考物理模型专题突破-动量守恒中的“碰撞模型”和“反冲模型

真题模型——动量守恒中的“碰撞模型”和“反冲模型”来源图例考向模型核心归纳2015·新课标全国卷Ⅰ物体A、B、C位于同一直线上动量守恒、机械能守恒、“多物体作用模型”1.常考的模型(1)碰撞中的“两物体作用模型”(2)碰撞中的“多物体作用模型”(3)碰撞中的“图象类问题模型”(4)“反冲模型”(5)“爆炸模型”2.模型解法(1)牢记一个定律:动量守恒定律m1v1+m2v2=m1v1′+m2v2′。
(2)熟记两种碰撞①弹性碰撞:动量守恒和机械能守恒。
②非弹性碰撞:动量守恒、机械能不守恒。
(3)会用两个结论①“一动一静”两物体发生弹性正碰后的速度满足v1=m1-m2m1+m2v0,v2=2015·新课标全国卷Ⅱ滑块a、b沿水平面上同一条直线运动动量守恒、能量守恒(功能关系)2016·新课标全国卷Ⅱ光滑冰面上静止放置一表面光滑的斜面体,一蹲在滑板上的小孩和冰块均静止于冰面上动量守恒、机械能守恒2016·新课标全国卷Ⅲ静止的a和b相距l;b与墙也相距l 动量守恒、机械能守恒、功能关系2017·全国卷Ⅰ模型火箭点火升空动量守恒2m1m1+m2v0。
②质量相等的两物体发生弹性碰撞后交换速度;发生完全非弹性碰撞后两物体共速。
【预测1】如图14所示,在光滑的水平面上,有A、B、C三个物体,开始B、C皆静止且C在B上,A物体以v0=10 m/s的速度撞向B物体,已知碰撞时间极短,撞完后A物体静止不动,而B、C最终的共同速度为4 m/s。
已知B、C 两物体的质量分别为m B=4 kg、m C=1 kg。
图14(1)求A物体的质量;(2)A、B间的碰撞是否造成了机械能损失?如果造成了机械能损失,则损失了多少?解析(1)设B、C最终的共同速度为v,则由整个过程动量守恒可得:m A v0=(m B+m C)v代入数据解得m A=2 kg。
(2)设A与B碰撞后B的速度变为v′,在B与C相互作用的时间里,B与C组成的系统动量守恒,即m B v′=(m B+m C)v,解得v′=5 m/sA与B碰撞的过程中,碰前系统的动能为E k1=12m A v2,代入数据解得E k1=100 J碰后系统的动能为E k2=12m B v′2,代入数据解得E k2=50 J所以碰撞过程中损失了机械能,损失了50 J 。
2025高考物理总复习“平移圆”“放缩圆”“旋转圆”“磁聚焦”和“磁发散”模型

考向三 “旋转圆”模型
典题3 (多选)(2024河南郑州模拟)如图所示,在直角坐标系xOy的第一象限内存在磁
感应强度大小为B、方向垂直纸面向里的匀强磁场,在y轴上S处有一粒子源,它可向
右侧纸面内各个方向射出速率相等的质量均为m、电荷量均为q的同种带电粒子,
所有粒子射出磁场时离S最远的位置是x轴上的P点。已知 OP= 3 =
子带负电,粒子所受重力及粒子间的相互作用均不计,则( AD )
A.粒子的速度大小为
B.从x轴上射出磁场的粒子在磁场中运动的最长时间与
最短时间之比为3∶2
C.沿平行x轴正方向射入的粒子离开磁场时的位置到
3
O点的距离为 2 d
D.从O点射出的粒子在磁场中的运动时间为 3
3d ,粒
解析 根据几何关系可得 SP= ()2 + ()2 =2d,所有粒子射出磁场时离 S
适用
如图所示(图中只画出粒子带正电的
条件
情况),速度v越大,运动半径也越大。
轨迹圆圆心
共线
可以发现这些带电粒子射入磁场后,
它们运动轨迹的圆心在垂直初速度
方向的直线PP'上
界定 以入射点P为定点,圆心位于PP'直线上,将半径放缩作轨迹圆,从而探索
方法 出临界条件,这种方法称为“放缩圆”法
三、“旋转圆”模型
“旋转圆”模型中带电粒子从同一点进入磁场。
带电粒子在圆形边界磁场中的运动是高考试题常见的类型,对于该类问题,
如果满足某种条件,应用“磁聚焦”和“磁发散”模型来分析问题,会达到事半
功倍的效果。为了考查学生分析问题解决问题的能力,命题人常常将某种
专题24 磁流体发电模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题24.磁流体发电模型一.选择题1.(2022河北石家庄二中模拟)磁流体发电机,又叫等离子体发电机,图中的燃烧室在3000K 的高温下将气体全部电离为电子和正离子,即高温等离子体。
高温等离子体经喷管加速后以1000m/s 的速度进入矩形发电通道。
发电通道有垂直于纸面向内的匀强磁场,磁感应强度B=6T 等离子体发生偏转,在两极间形成电势差。
已知发电通道长a=50cm ,宽b=20cm ,高d=20cm ,等高速等高子体离子体的电阻率ρ=2Ω·m 。
则以下判断中正确的是()A.因正离子带电量未知,故发电机的电动势不能确定B.图中外接电阻R 两端的电压为1200VC.当外接电阻R=8Ω时,发电机的效率最高D.当外接电阻R=4Ω时,发电机输出功率最大【参考答案】D 【名师解析】发电机的电动势与高速等离子体的电荷量无关,故A 错误;等离子体所受的电场力和洛伦兹力平衡得UqqvB d=得发电机的电动势1200V E U Bdv ===发电机的内阻为0.2240.20.5l r S ρ==Ω=Ω⨯则图中外接电阻R 两端的电压为1200V RU E R r=<+当外接电阻4R r ==Ω,发电机输出功率最大,故B 错误D 正确;发电机的效率11UI U R r EI E R r Rη====++,可知,外电阻越大,电源的效率越高,故C 错误。
2.(2022山东济南重点高中质检)利用海流发电的磁流体发电机原理示意图如图所示,矩形发电管道水平东西放置,整个管道置于方向竖直向上、磁感应强度大小为B 的匀强磁场中。
其上、下两面是绝缘板,南、北两侧面M 、N 是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连。
已知发电管道长为L 、宽为d 、高为h ,海水在发电管道内以恒定速率v 朝正东方向流动。
发电管道内的海水在垂直流动方向的电阻为r ,海水在管道内流动时受到的摩擦阻力大小恒为f ,不计地磁场的影响,则()A.N 侧的电势高B.开关S 断开时,M 、N 两端的电压为BdvC.开关S 闭合时,发电管道进、出口两端压力差22B d vF f R r =++D.开关S 闭合时,电阻R 上的功率为222B d v R【参考答案】BC 【名师解析】海水向东流动的过程中,正电荷受到的洛伦兹力的方向指向M ,而负电荷受到的洛伦兹力的方向指向N ,所以M 侧聚集正电荷,M 侧的电势高,A 错误;开关S 断开时,设海水中的电荷所带的电荷量为q ,当其所受的洛伦兹力与电场力平衡时,M 、N 两端的电压U 保持恒定,有U qvB q d=解得U Bdv =,B 正确;开关S 闭合后,海水所受的摩擦阻力恒为f ,设开关S 闭合后管道内海水受到的安培力为F 安,发电管道进出口两端压力差F f F =+安有21F F f F =++安,F BId =安根据闭合电路欧姆定律有U I R r=+解得22B d vF f R r=++,C 正确;电阻R 上的功率为22222()B d v RP I R R r ==+,D 错误。
高中物理常见“碰撞”模型及其性质分析

“碰撞”作为高中物理中重要的模型之一,在每年的高考物理题中都会出现,除了会出现在选择题中,还会出现在压轴题中。
而且在很多情况下,其背景较为隐蔽,学生难以准确发掘,因此解答问题也就较为困难。
为了帮助学生快速解答常见的碰撞类问题,笔者结合实际问题,系统性地总结常见题型,分析常见问题。
一、弹性碰撞(一)一动碰一静弹性碰撞是物体碰撞后能够恢复到碰撞前的状态,即碰撞前后满足动量守恒。
如图1所示,两小球质量为m1、m2,小球m1以速度v1与静止小球m2发生弹性碰撞,两小球同时进行运动时,由动量守恒和机械能守恒定律有m1v1=m1v'1+m2v'2,12m1v21=12m1v'21+12m2v'22,则进一步可得v'1=m1-m2m1+m2v1,v'2=2m1m1+m2v1。
学生应当牢记这一结果,以便在计算过程中灵活运用,从而提高解题效率。
图1[例1]如图2所示,速度为v0的中子与静止的氢核和氮核发生弹性碰撞,碰撞后氢核和氮核速度分别为v1和v2,则下列说法正确的是( )。
A.碰撞后,氮核的动量小于氢核B.碰撞后,氮核的动能小于氢核C. v2>v1D. v2>v0图2解析:由题意可知,在碰撞过程中中子、氢核和氮核满足动量守恒和机械能守恒。
设中子的质量为m,氢核的质量为m,氮核的质量为14m,设中子与氢核碰撞后中子的速度为v3,由动量守恒定律和能量守恒定律可得mv0=mv1+mv3,12mv20=12mv21+12mv23,联立即得v1=v0。
设中子与氮核碰撞后中子的速度为v4,由动量守恒定律和能量守恒定律可得mv0=14mv2+mv4,12mv20=12×14mv22+12mv24,联立解得v2=215v0,则v1=v0>v2。
碰撞后,氢核的动量为p H=mv1=mv0,氮核的动量为p N=14mv2=28mv015,可得p N>p H。
高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
高考常用24个物理模型【高考必备】

Fm 高考常用24个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面。
主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定=tg 物体沿斜面匀速下滑或静止 > tg 物体静止于斜面 < tg 物体沿斜面加速下滑a=g(sin 一cos )μθμθμθθμθaθ模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。
隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。
平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N=(N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用讨论:①F 1≠0;F 2=0N=② F 1≠0;F 2≠0 N=(是上面的情况) F=F=F=F 1>F 2 m 1>m 2 N 1<N 2例如:N 5对6=(m 为第6个以后的质量) 第12对13的作用力N 12对13=211212m F m F m m ++⇒F 212m m m N+=122F=(m +m )a N=m a212m F m m +211212m F m m m F ++20F =211221m m g)(m m g)(m m ++122112m (m )m (m gsin )m mg θ++A B B 12m (m )m Fm m g ++F Mm Fnm 12)m -(n m 2 m 1 Fm 1 m 2╰ α模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
(完整版)高考常用24个物理模型

Fm 高考常用24个物理模型物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个方面.主要模型归纳整理如下:模型一:超重和失重系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F =m (g +a ); 向下失重(加速向下或减速上升)F =m (g -a ) 难点:一个物体的运动导致系统重心的运动绳剪断后台称示数 铁木球的运动 系统重心向下加速 用同体积的水去补充斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?模型二:斜面搞清物体对斜面压力为零的临界条件斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ〈 tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)aθ模型三:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程.隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关. 平面、斜面、竖直都一样。
只要两物体保持相对静止记住:N= 211212m F m F m m ++ (N 为两物体间相互作用力),一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用⇒F 212m m m N+=讨论:①F 1≠0;F 2=0122F=(m +m )a N=m aN=212m F m m +② F 1≠0;F 2≠0 N= 211212m F m m m F ++(20F =是上面的情况)F=211221m m g)(m mg)(m m ++F=122112m (m )m (m gsin )m m g θ++F=A B B 12m (m )m F m mg ++F 1>F 2 m 1>m 2 N 1〈N 2例如:N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力N 12对13=F nm12)m-(nm 2 m 1 Fm 1m 2╰ α模型四:轻绳、轻杆绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
模型06摩擦角和自锁现象(解析版)-2025年高考物理热点模型突破

模型06摩擦角和自锁现象(解析版)学校:_________班级:___________姓名:_____________1. 自锁现象定义:一个物体受静摩擦力作用而静止,当用外力试图使这个物体运动时,外力越大,物体被挤压的越紧,越不容易运动即最大静摩擦力的“保护能力”越强,这种现象叫自锁现象2.摩擦角物体在粗糙平面(斜面)上滑动时,所受滑动摩擦力F f 和支持力F N 的合力F 合与F N 间的夹角为θ,如图(a)、(b)所示,由于tan θ=F f F N=μ为常量,所以θ被称为摩擦角.图(a) 图(b)3.摩擦角的应用(1)在水平面上,若给物体施加拉力F 使之在水平面上滑动,则力跟水平方向的夹角为θ(跟F 合垂直)时,拉力F 最小,如图(c).图(c) 图(d) 图(e)(2)当所加推力F 与支持力F N 反方向间的夹角β≤θ时,无论推力F 多大,都不能推动物体在平面(斜面)上运动,这种现象称为摩擦自锁,如图(d)、(e).(3)有摩擦力参与的四力平衡问题可通过合成支持力F N 和滑动摩擦力F f 转化为三力平衡问题,然后根据力的平衡知识求解.4.分析解题思路01模型概述1. 平面上的摩擦自锁【典型题1】如图所示,拖把是由拖杆和拖把头构成的擦地工具(如图).设拖把头的质量为m ,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为μ,重力加速度为g ,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ,则下列说法正确的是( )A .当拖把头在地板上匀速移动时推拖把的力F 的大小为μmg sin θ+μcos θB .当拖把头在地板上匀速移动时推拖把的力F 的大小为μmgsin θ-μcos θC .当μ≥tan θ时,无论用多大的力都能推动拖把头D .当μ<tan θ时,无论用多大的力都能推动拖把头【答案】 B【详解】 以拖把头为研究对象,对其进行受力分析.拖把头受重力mg 、地板的支持力F N 、拖杆对拖把头的推力F 和摩擦力F f .把拖把头看成质点,建立直角坐标系,如图所示.把推力F 沿x 轴方向和y 轴方向分解,根据平衡条件列方程:F sin θ-F f =0,F N -F cos θ-mg =0,又F f =μF N ,联立三式解得F =μmg sin θ-μcos θ,所以选项A 错误,B 正确;当μ≥tan θ时,μcosθ≥sin θ,F sin θ-F f =F sin θ-μF cos θ-μmg <0,所以无论用多大的力都不能推动拖把头,选项C 错误;当μ<tan θ时,μcos θ<sin θ,F sin θ-F f =F sin θ-μF cos θ-μmg =F (sin θ-μcos θ)-μmg ,如果F (sin θ-μcos θ)-μmg >0,能推动拖把头,否则不能推动拖把头,选项D错误.02典题攻破2. 斜面上的摩擦自锁【典型题2】如图所示,质量为m 的物体,放在一固定的斜面上,当斜面倾角θ=30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面向上滑行.设最大静摩擦力等于滑动摩擦力,现增大斜面倾角θ,当θ增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行.那么( )AB .θ0=45°C .θ0=60°D .θ0=30°【答案】 C 【详解】斜面倾角为30°时,物体恰能匀速下滑,对物体进行受力分析,如图所示,可知应满足mg sin 30°-μmg cos 30°=0,解得μA 错;物体与斜面间的摩擦角α=arctan μ=30°,因此当水平恒力F 与斜面支持力F N 成30°角,即斜面倾角为60°时,无论F 多大,都不能使物体沿斜面上滑,故θ0=60°,C 对,B 、D 错.1.(23-24高一下·全国·开学考试)小明同学在教室里做了一个小实验,如图所示,他将黑板擦金属一面贴着木板,缓慢抬起木板的一端,当木板与水平面夹角30a =°时,黑板擦恰好下滑。
24个物理模型总结归纳

24个物理模型总结归纳物理模型是指通过建立数学模型或者物理实验来描述和解释物理系统的方法。
在物理学的研究中,各种物理模型被广泛应用于解决各种问题,帮助我们理解和预测自然界中发生的现象和规律。
本文将对24个常见的物理模型进行总结和归纳,以帮助读者更好地理解物理学中的重要概念和原理。
一、质点模型(Particle Model)质点模型是物理学中最简单的模型之一,它将物体简化为一个质点,忽略了物体的大小和形状,仅考虑其位置和质量。
这种模型通常用于研究质点在空间中的运动规律,如自由落体、抛体运动等。
二、弹簧模型(Spring Model)弹簧模型用于描述弹性物体的行为。
它基于胡克定律,即弹簧的伸长或缩短与外力成正比,这种模型被广泛应用于弹簧振子、弹簧劲度系统等物理问题的研究。
三、电路模型(Circuit Model)电路模型用于描述电流和电压在电路中的传递和转换规律。
通过建立电路图和应用基尔霍夫定律、欧姆定律等规律,可以计算电流、电压和阻抗等电路参数,解决各种电路问题。
四、热传导模型(Heat Conduction Model)热传导模型用于描述热量在物体或介质中的传递和分布规律。
它基于热传导方程和傅里叶定律,可以计算热传导过程中的温度变化和热流量等参数,解决热传导问题。
五、光线模型(Ray Optics Model)光线模型用于描述光在直线传播时的规律。
通过光的反射、折射等现象,可以计算光线的传播路径和光的成像特性,解决光学问题,如镜子、透镜等光学器件的成像原理。
六、气体模型(Gas Model)气体模型用于描述气体的状态和行为。
它基于理想气体状态方程和玻意耳定律,可以计算气体的压力、体积和温度等参数,解决气体的扩散、压缩等问题。
七、电磁场模型(Electromagnetic Field Model)电磁场模型用于描述电荷和电流在空间中产生的电场和磁场的分布和相互作用规律。
它基于麦克斯韦方程组,可以计算电荷受力、电流感应等问题,解决电磁场中的电磁现象。