成都高新玉成九义校2019年七年级数学(上)期末交流题(含答案)
2019-2020学年成都市高新区七年级(上)期末数学试卷(含解析)
2019-2020学年成都市高新区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.﹣C.D.32.下面四个几何体的视图中,从上面看是三角形的是()A.B.C.D.3.庆祝中华人民共和国成立70周年阅兵式于2019年10月1日在天安门广场隆重举行,此次阅兵约9万人参与演练及现场保障工作,将数据9万用科学记数法表示为()A.9×103 B.9×104 C.9×105 D.9×1064.下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命5.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a6.若x=5是方程ax﹣8=12的解,则a的值为()A.3 B.4 C.5 D.67.下列各式的值一定为正数的是()A.(a+2)2B.|a﹣1| C.a+1000 D.a2+18.下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等9.如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,那么∠AOB的度数是()A.118°B.152°C.28°D.62°10.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x元,则根据题意列出方程正确的是()A.0.8×(1+40%)x=15 B.0.8×(1+40%)x﹣x=15C.0.8×40%x=15 D.0.8×40%x﹣x=15二、填空题(每小题4分,共16分)11.|﹣|的相反数是,|﹣|的倒数是.12.如图,点B在线段AC上,AB=4,BC=2,点M为线段AB中点,点N为线段BC中点,则线段MN的长度为.13.数轴上与表示﹣1的点距离2个单位长度的点所表示的数是.14.一根长80cm的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg可使弹簧增长2cm,正常情况下,当挂着xkg的物体时,弹簧的长度是cm.(用含x的代数式表示)三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(10分)计算题:(1)8+(﹣3)2×(﹣2)﹣(﹣3)(2)﹣12﹣24×(﹣+﹣)16.(10分)化简或化简求值:(1)化简:(2ab+a2b)+3(2a2b﹣5ab)(2)先化简,再求值:(﹣x2+3xy﹣2y)﹣2(﹣x2+4xy﹣y2),其中x=3,y=﹣217.(10分)解方程:(1)4x﹣3(20﹣x)=3 (2)=2﹣18.(6分)英才中学为了解中考体育科目训练情况从全校九年级学生中随机抽取了部分学生进行一次中考体育科目测试(把测试结果分为四个等级.A级:优秀;B级:良好;C级:合格;D级:不合格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数是人.(2)图2中条形统计图C级的人数是人;(3)该校九年级有学生500名,如果全部参加这次中考体育科目测试,请估计不及格的人数约有多少人?19.(8分)探索练习:某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票是每张8元,学生票是每张5元,筹得票款6950元.问成人票与学生票各售出多少张?20.(10分)已知:点O为直线AB上一点,过点O作射线OC,使∠AOC=70°,(1)如图1,若OD平分∠AOC,求∠DOB的度数;(2)射线OM从OA出发,绕点O以每秒6°的速度逆时针旋转,同时,射线ON从OC出发绕点O以每秒4°的速度逆时针旋转,OM与ON同时出发(当ON首次与OB重合时,两条射线都停止运动),设运动的时间为t秒.(i)如图2,在整个运动过程中,当∠BON=2∠COM时,求t的值;(ⅱ)如图3,OP平分∠AOM,OQ平分∠BON,是否存在合适的t,使OC平分∠POQ,若存在,求出t的值,若不存在,请说明理由.B卷(50分)一、填空题(每小题4分,共20分)21.若m2﹣2m+1=0,则代数式2m2﹣4m+2019的值为.22.如图,将一个边长为1的正方形纸片分割成7个部分,部分1是边长为1的正方形纸片面积的一半,部分2是部分D面积的一半,部分3是部分2面积的一半,依此类推.阴影部分的面积是;受此启发,则+++…+的值为.23.在学习了有理数的混合运算后,小明和小刚玩算“24点”游戏.游戏规则:从一副扑克牌(去掉大,小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌必须用一次且只能用一次,可以加括号),使得运算结果为24或﹣24.其中红色扑克牌代表负数,黑色扑克代表正数,J,Q,K分别代表11,12,13.小明抽到的四张牌分别是黑桃1,黑桃3,梅花4,梅花6(都是黑色扑克牌).小明凑成的等式为6÷(1﹣3÷4)=24,小亮抽到的四张牌分别是黑桃7、黑桃3、梅花7、梅花3(都是黑色扑克牌):请写出小亮凑成的“24点”等式.24.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有颗黑棋子,第n个图有颗棋子(用含n的代数式示).25.[知识背景]:三角形是数学中常见的基本图形,它的三个角之和为180°.等腰三角形是一种特殊的三角形,如果一个三角形有两边相等,那么这个三角形是等腰三角形,相等的两边所对的角也相等.如图1,在三角形ABC中,如果AB=AC,那么∠B=∠C.同样,如果∠B=∠C,则AB=AC,即这个三角形也是等腰三角形.[知识应用]:如图2,在三角形ABC中,∠ACB=90°,∠ABC=30°,将三角形ABC绕点C逆时针旋转α(0°<α<60°)度(即∠ECB=α度),得到对应的三角形DEC,CE交AB于点H,连接BE,若三角形BEH为等腰三角形,则α=°.二.解答题(共30分)26.(8分)(1)若关于a,b的多项式3(a2﹣2ab+b2)﹣(2a2﹣mab+2b2)中不含有ab项,求m的值.(2)已知两个有理数,y满足条件:|x|=7,|y|=4,x+y>0,xy<0,求x﹣y的值.27.(10分)成都市民打车出行常用交通工具为出租车和滴滴快车.该市两种车的收费标准如下:出租车:2千米以内9元;超过2千米的部分:2元/千米.滴滴快车:里程费:1.6元/千米;时长费:18元/小时;远途费:0.8元/千米.(注:滴滴快车的收费由里程费、时长费、远途费三部分组成,其中里程费按行车的实际里程计算;时长费按照行车的实际时间计算;远途费的收取方式为:行车不超过8千米,不收远途费,超过8千米的,超过部分每千米加收0.8元).假设打车的平均速度为30千米/小时.(1)小明家到学校4千米,乘坐出租车需要多少元?(2)设乘车路程为x(x>2)千米,分别写出出租车和滴滴快车的应收费用(用含x的代数式表示)(3)小方和爸爸从家去环球中心(家到环球中心的距离大于2千米),乘坐滴滴快车比乘坐出租车节约2.4元,求小方家到环球中心的距离.28.(12分)已知:数轴上点A、B、C表示的数分别为a、b、c,点O为原点,且a、b、c满足(a﹣6)2+|b ﹣2|+|c﹣1|=0.(1)直接写出a、b、c的值;(2)如图1,若点M从点A出发以每秒1个单位的速度向右运动,点N从点B出发以每秒3个单位的速度向右运动,点R从点C出发以每秒2个单位的速度向右运动,点M、N、R同时出发,设运动的时间为t秒,t为何值时,点N到点M、R的距离相等;(3)如图2,若点P从点A出发以每秒1个单位的速度向左运动,点Q从点B出发以每秒3个单位的速度向左运动,点P,Q同时出发开始运动,点K为数轴上的一个动点,且点C始终为线段PK的中点,设运动时间为t秒,若点K到线段PC的中点D的距离为3时,求t的值.参考答案与试题解析一、选择题1.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选:D.2.【解答】解:圆柱的俯视图为圆,故选项A不合题意;三棱锥的俯视图为三角形,故选项B符合题意;球的俯视图为圆,故选项C不合题意;正方体的俯视图为正方形,故选项D不合题意.故选:B.3.【解答】解:9万用科学记数法表示为9×104,故选:B.4.【解答】解:A、对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B、对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C、旅客上飞机前的安全检查,适合普查,故C正确;D、了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误;故选:C.5.【解答】解:A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.6.【解答】解:把x=5代入方程ax﹣8=12得:5a﹣8=12,解得:a=4,故选:B.7.【解答】解:A、(a+2)2≥0,不合题意;B、|a﹣1|≥0,不合题意;C、a+1000,无法确定符号,不合题意;D、a2+1一定为正数,符合题意.故选:D.8.【解答】解:A、有理数的绝对值一定大于等于0,故此选项错误;B、正有理数的相反数一定比0小,故原说法错误;C、如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D、互为相反数的两个数的绝对值相等,正确.故选:D.9.【解答】解:∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.10.【解答】解:设这种服装每件的成本价是x元,由题意得:0.8×(1+40%)x﹣x=15故选:B.二、填空题11.【解答】解:|﹣|=的相反数是:﹣,|﹣|=的倒数是:.故答案为:﹣,.12.【解答】解:∵点M为线段AB中点,∴BM=AB,∵点N为线段BC中点,∴BN=BC,∵AB=4,BC=2,∴MN=MB+BN=AB+BC=2+1=3,故答案为3.13.【解答】解:由题意得:当所求点在﹣1的左侧时,则距离2个单位长度的点表示的数是﹣1﹣2=﹣3;当所求点在﹣1的右侧时,则距离2个单位长度的点表示的数是﹣1+2=1.故答案为:﹣3或1.14.【解答】解:根据题意知,弹簧的长度是(80+2x)cm.故答案是:(80+2x).三、解答题15.【解答】解:(1)原式=8+9×(﹣2)+3=8﹣18+3=﹣10+3=﹣7;(2)原式=﹣1﹣24×(﹣)﹣24×﹣24×(﹣)=﹣1+4﹣16+18=3﹣16+18=﹣13+18=5.16.【解答】解:(1)原式=2ab+a2b+6a2b﹣15ab=7a2b﹣13ab;(2)原式=﹣x2+3xy﹣2y+x2﹣8xy+3y2=﹣5xy﹣2y+3y2,当x=3,y=﹣2时,原式=﹣5×3×(﹣2)﹣2×(﹣2)+3×(﹣2)2=30+4+12=46.17.【解答】解:(1)去括号得:4x﹣60+3x=3,移项合并得:7x=63,解得:x=9;(2)去分母得:5(y﹣1)=20﹣2(y+2),去括号得:5y﹣5=20﹣2y﹣4,移项合并得:7y=21,解得:y=3.18.【解答】解:(1)本次抽样测试的学生人数是12÷30%=40(人);故答案为:40;(2)C级的人数为40×35%=14(人),故答案为:14;(3)根据题意得:500×=100(人)答:估计不及格的人数约有100人.19.【解答】解:设成人票售出x张,学生票各售出(1000﹣x)张,根据题意列方程得,8x+5(1000﹣x)=6950,解得x=650,1000﹣x=350(张).答:成人票售出650张,学生票各售出350张.20.【解答】解:(1)∵∠AOC=70°,OD平分∠AOC,∴∠AOD=35°,∴∠DOB=180°﹣∠AOD=145°;(2)∵∠AOC=70°,∴∠B0C=180°﹣70°=110°,(i)∵70°÷6=(秒),110°÷4=(秒)当0<t时,如图1,则∠BON=180°﹣70°﹣4t=110°﹣4t,∠COM=70°﹣6t,∵∠BON=2∠COM,∴110°﹣4t=2(70°﹣6t),∴t=(秒);当时,如图2,则∠BON=180°﹣70°﹣4t=110°﹣4t,∠COM=6t﹣70°,∵∠BON=2∠COM,∴110°﹣4t=2(6t﹣70°),∴t=(秒)综上,t=或;(ⅱ)如图3,∠AOM=6t,∠BON=110°﹣4t,∵OP平分∠AOM,OQ平分∠BON,∴∠AOP=3t,∠NOQ=55°﹣2t,∴∠COP=70°﹣3t,∠COQ=4t+(110°﹣4t)=55°+2t,∵OC平分∠POQ,∴70°﹣3t=55°+2t,∴t=3(秒)∴当t=3秒时,OC平分∠POQ.一、填空题21.【解答】解:∵m2﹣2m+1=0,∴m2﹣2m=﹣1,则原式=2(m2﹣2m)+2019=﹣2+2019=2017.故答案为:201722.【解答】解:∵部分1是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,∴阴影部分的面积是()6=,+++…+=1﹣()6=1﹣=,故答案为:,.23.【解答】解:根据题意得:7×(3+3÷7)=24,故答案为:7×(3+3÷7)=2424.【解答】解:观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×5﹣1=14个黑棋子;第4图有4×6﹣1=23个黑棋子;第5图有5×7﹣1=34个黑棋子…图n有n(n+2)﹣1个黑棋子,故答案为34;[n(n+2)﹣1].25.【解答】解:∵将三角形ABC绕点C逆时针旋转α(0°<x<60°)度,∴CE=CB,∠ECB=α,∴∠CEB=∠CBE=90°﹣,∵∠ABC=30°,∴∠BHE=30°+α,∠EBH=60°﹣,若BE=BH,则30°+α=90°﹣,∴α=40°,若EH=BH,则90°﹣=60°﹣,∴无解若EH=BE,则30°+α=60°﹣,∴α=20°综上所述:α=40或20.二.解答题26.【解答】解:(1)原式=3a2﹣6ab+3b2﹣2a2+mab﹣2b2=a2+(m﹣6)ab+b2,由结果不含ab项,得到m﹣6=0,解得:m=6;(2)∵|x|=7,|y|=4,x+y>0,xy<0,∴x=7,y=﹣4,则x﹣y=11.27.【解答】解:(1)9+(4﹣2)×2=13(元),答:小明家到学校4千米,乘坐出租车需要13元.(2)设乘车路程为x(x>2)千米,乘车的费用y元,则,y出租车=9+2(x﹣2)=2x+5 (x>2),①当2<x≤8时,y滴滴快车=1.6x+18×=2.2x,②当x>8时,y滴滴快车=1.6x+18×+0.8(x﹣8)=3x﹣6.4,∴y滴滴快车=,答:乘车路程为x(x>2)千米,乘车费用为:y出租车=2x+5 (x>2),y滴滴快车=;(3)若2<x≤8时,则2x+5﹣2.2x=2.4,解得,x=13(不合题意舍去),若x>8时,则,2x+5﹣(3x﹣6.4)=2.4,解得,x=9,答:小方家到环球中心的距离为9千米.28.【解答】解:(1)∵(a﹣6)2+|b﹣2|+|c﹣1|=0.∴a﹣6=0,b﹣2=0,c﹣1=0,∴a=6,b=2,c=1;(2)由题意得,(6+t)﹣(2+3t)=(2+3t)﹣(1+2t),或,(2+3t)﹣(6+t)=(2+3t)﹣(1+2t),解得,t=1,或t=5,∴t为1s或5s时,点N到点M、R的距离相等;(3)由题意知,P点表示的数为:6﹣t,∵D是PC的中点,∴D表示的数为:,∵C是PK的中点,∴点K表示的数为:2×1﹣(6﹣t)=t﹣4,∵KD=3,∴|(t﹣4)﹣|=3,∴t=3或7。
成都高新海螺九义校2019年七年级数学(上)期末交流题(含答案)
统计表中的 ________, ________,并补全条形统计图;
求出扇形统计图中“ 组”所对应的圆心角的度数;
已知该校共有 名学生,如果听写正确的字的个数不少于 个定为合格,请你估计该校本次听写比赛合格的学生人数.
19.(10分) 某工厂计划在规定时间内生产 个零件.若每天比原计划多生产 个零件,则在规定时间内可以多生产 个零件.
【考点】
分式方程的应用
一元一次方程的应用——工程进度问题
【解析】
(1)可设原计划每天生产的零件 个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间 工作总量 工作效率,即可求得规定的天数;
(2)可设原计划安排的工人人数为 人,根据等量关系:恰好提前两天完成 个零件的生产任务,列出方程求解即可.
= ,
3.
【答案】
B
【考点】
多边形内角与外角
多边形的对角线
【解析】
根据从多边形的一个顶点可以作对角线的条数公式 求出边数,然后根据多边形的内角和公式 列式进行计算即可得解.
【解答】
∵多边形从一个顶点出发可引出 条对角线,
∴ = ,
解得 = ,
∴内角和= = .
4.
【答案】
C
【考点】
等式的性质
【解析】
24. 某校七年级学生乘车去郊外秋游,如果每辆汽车坐 人,那么有 人坐不上汽车;如果每辆汽车坐 人,那么有一辆汽车空出 个座位,有 辆汽车,则根据题意可列出方程为________.
25. 已知 = ,则 的值是________
2、解答题(共30分)
26. (10分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多 元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过 套,则购买足球打八折.
成都高新玉林中学2019年七年级数学(上)期末交流题(含答案)
高新区2019-2020学年上期七年级期末复习题(时间:120分钟,总分:150分)A 卷(共100分)-、选择题(每题3分,共30分)1. I-A 的相反数是( )5 4 4 5 A. — B. — C. 一二5 5 42.如图是由6个完全相同的小正方体组成的几何体,其俯视图为(AM B%C 出D.3. 2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入若X + 3 = 5-3X ,则X + 3X = 5 + 3 6.下列说法正确的是( ) A.两点之间直线最短B.将一根木条固定在墙上需要两枚钉子,C.射线4?和射线84是同一条射线D.线段MN 就是M 、N 两点间的距离7 .如图,OC 是 NAQ5 的平分线,Z.BOD = -ZCOD > 4。
=15。
,贝叱4。
=( 3A. 45°B. 55°C. 65°D. 75°8 .某件商品,按成本价提高40%后标价,又以8折优惠卖出,结果仍然获利15元,则这件 商品的成本价是()A. 125 元B. 120 元C. 115 元D. 150 元11L7亿元.其中920.7万用科学记数法表示为( A. 920.7xlO 4B. 92.07xlO 5 )C. 9.207xlO 5D. 9.207xlO 64.下列计算,结果正确的是( ) A. 2x + 3y = 51y B. 5a 2 +3a 2 = & J C. 3xy r -5yx = -2xy^D ・ 4a 2b - 5ab 2= -a 2b5. 下列变形中正确的是( )C. 若“=〃,贝lj“ + c = 〃-c A. y\ + m 1 +B.若x = y,则9.已知方程2-四=七三-3与方程小二=3k的解相同,则上的值为()2 3 35 1 5 7A. -B. -C. -D.-7 8 9 910.已知线段= 。
四川省成都市2019-2020学年七年级上学期期末数学试题
2019~2020学年四川成都初一上学期期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. -3的相反数是( ).A. -3B. 13C. 3D. 13- 2. 从正面、上面、左面三个方向看某一物体得到的图形如图所示,则这个物体是( ).A. 三棱锥B. 三棱柱C. 圆锥D. 圆柱3. 2019年在成都举办的世警会,有70余个国家和地区大约12000名警察和消防员参加,12000用科学记数法表示为( ).A. 31210⨯B. 41210⨯C. 41.210⨯D. 50.1210⨯4. 下列运算正确的是( ).A. 2yx xy xy -=-B. 43m m -=C. 220a b ab -=D. 3323a a a -=- 5. 已知2x y -=,则代数式()22x y y x --+的值为( ).A. 8B. 10C. -8D. -106. 下列调查中,最适宜采用普查方式的是( ).A. 对成都市中学生每天学习所用时间的调查B. 对四川省中学生心理健康现状的调查C. 对某班学生进行“父亲节”是6月的第3个星期日知晓情况的调查D. 对成都市中学生课外阅读量的调查7. 下列运用等式的性质变形错误的是( ).A. 若a b =,则66a b +=+B. 若33x y -=-,则x y =C. 若33n m +=+,则m n =D. 若x y =,则23x y = 8. 如图,在A ,B 两处观测到C 处的方位角分别是( ).A. 北偏东65︒,北偏西40︒B. 北偏东65︒,北偏西50︒C. 北偏东25︒,北偏西40︒D. 北偏东35︒,北偏西50︒9. 中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空:二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ).A. ()4128x x -=+B. ()4128x x +=-C. 8142x x ++=D. 8142x x --= 10. 在直线l 上有四个点A ,B ,C ,D ,已知10AB =,6AC =,点D 是BC 的中点,则线段AD 的长是( ).A. 2B. 8C. 4或8D. 2或8二、填空题(本大题共4小题,每小题4分,共16分)11. 若单项式212m x y --的次数是5,则m 的值是_________.12. 已知方程()1230k k x ---=是关于x 的一元一次方程,则k 的值为_________.13. 如果2x =是方程517ax a -=+的解,则a =________.14. 如图,过直线AB 上一点O 作射线OC ,2918'BOC ∠=︒,则AOC ∠的度数为________.三、解答题(本大题共6小题,共54分)15. 计算.(1)185(0.25)4⎛⎫+---- ⎪⎝⎭. (2)202021(1)23(2)2--÷⨯+-.(3)()51223x x -=--.(4)321125x x +--=. 16. 化简求值2222332232x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中3x =,13y =-. 17. 列方程解应用题.甲、乙两站相距505公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.慢车先开出30分钟后,快车再开.两车相向而行,慢车开出多少小时后两车相遇?18. 章太炎先生有一句话:“夫国学者,国家所以成立之源泉也,”“为了激发学生学习国学经典的热情,弘扬文明风尚,武侯区某学校以“书香飘溢校园.国学浸润心灵”为主题,开展国学经典系列比赛项目:A 读经典,B 写经典,C 唱经典,D 演经典,为了解学生对这四个项目的报名参赛情况(每名学生选报一个项目),学校随机抽取了部分学生进行“你选择参加哪一项经典比赛活动”的调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据图中的信息解答下列问题.(1)填空:在条形统计图中,m =________,n =________.(2)求在扇形统计图中,“C ”项目所在扇形的圆心角的度数.(3)若该学校共有学生200名,请根据抽样调查的结果,估计学校将有多少人参加“D ”项目比赛活动?19. 如图所示,已知线段AB 上有两点C 、D ,且AC BD =,M 、N 分别是线段AC 和AD 的中点,若线段cm AB a =,cm AC BD b ==,且a 、b 满足()210402b a -+-=.(1)求AB 、AC 的长度.(2)求线段MN 的长度.20. 如图所示:点P 是直线AB 上一点,CPD ∠是直角,PE 平分BPC ∠.(1)如图①,若40APC ∠=︒,求DPE ∠的度数.(2)如图①,若APC α∠=,直接写出DPE ∠的度数(用含α的代数式表示).(3)保持题目条件不变,将图①中的CPD ∠按顺时针方向旋转至图②所示的位置,探究APC ∠和DPE ∠的度数之间的关系,写出你的结论,并说明理由.四、填空题(本大题共5小题,每小题4分,共20分)21. 若代数式45a b -=-时,则当1x =-时,代数式341ax bx --的值等于________.22. 已知a 、b 为相反数,c 、d 为倒数,m 的绝对值为3,那么()352001a b m m cd +++=________. 23. 将两块直角三角尺的直角顶点重合为如图所示的位置,COD △为等腰直角三角形,当COD △绕点O 顺时针旋转α度(090α<<),:3:2COB BOD ∠∠=时,则BOC ∠=________.24. 用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++.如果5213⊕=,那么34⊕=________.25. 下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律,请你观察,并根据此规律写出:()51a -=________.1()a b a b +=+222()2a b a ab b +=++33223()33a b a a b ab b +=+++4432234()464a b a a b a b ab b +=++++五、解答题(本大题共3小题,每小题10分,共30分)26. 解答下列各题.(1)方程3511232a x ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦和方程式1.720.810.30.6x x -+-=的解相同,求a 的值. (2)已知实数1a ,2a ,…,n a (其中n 是正整数)满足:11212312112112362342434560(1)(1)(1)(2)n n n a a a a a a a a a n n n a a a a n n n --=⨯⨯=⎧⎪+=⨯⨯=⎪⎪++=⨯⨯=⎪⎨⋯⎪⎪+++=-+⎪++++=++⎪⎩ ①3a =________.②n a =________.(用含n 的代数式表示) ③1232019202033333a a a a a +++++的值.27. 某超市在“元旦”促销期间规定:超市内所有商品按标价的八折出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣+相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:44080%352⨯=元,获得的优惠额为:()440180%40128⨯-+=元.(1)若购买一件标价为800元的商品,则消费金额为___________元,获得的优惠额是________元.(2)若购买一件商品的消费金额a 在100800a ≤≤之间,请用含a 的代数式表示优惠额.(3)某顾客购买一件商品的消费金额在100元与800元之间(含100元,不含800元),她能否获得230元的优惠额?若能,求出该商品的标价;若不能请说明理由.28. 如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且20AB =,动点P 以A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)写出数轴上点B 表示的数_________;点P 表示的数_________(用含t 的代数式表示).(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.2019~2020学年四川成都初一上学期期末数学试卷(详解)一、选择题(本大题共10小题,每题3分,共30分)1.【答案】C【解析】只有符号不同的两个数互为相反数,所以-3的相反数为3.故选C.2.【答案】A【解析】三棱锥的三视图如图所示.3.【答案】C【解析】根据“科学记数法对数的形式要求为10n a ⨯(110a ≤<,n 为整数)”可知412000 1.210=⨯. 故选C.4.【答案】A【解析】A 选项:2yx xy xy -=-,故A 正确;B 选项:43m m m -=,故B 错误;C 选项:2222a b ab a b ab -=-,故C 错误;D 选项:33323a a a -=-,故D 错误.故选A.5.【答案】B【解析】∵2x y -=,∴2222()2()()22210x y y x x y x y --+=-+-=⨯+=,故选B.6.【答案】C【解析】普查与抽样调查最大的区别就是调查对象的范围不一样,调查对象为整个群体的是普查,调查对象为整个群体中的一部分的是抽样调查;通常整个群体样本容量较大适合抽样调查,样本容量较小适合普查.故可知A 、B 、D 适合抽样调查,C 适合普查.7.【答案】D【解析】A 选项:根据等式的性质1可知:故A 正确;B 选项:根据等式的性质可知:故B 正确;C 选项:根据等式的性质1可知:故C 正确;D 选项:根据等式的性质2可知:故D 错误;故选D.8.【答案】B【解析】A 处观测到的C 处的方位角是:北偏东65︒. B 处观测到的C 处的方位角是:北偏西50︒.故选B.9.【答案】A【解析】∵设有x 辆车,∵()4128x x -=+,故选A.10.【答案】D【解析】①C 在线段AB 上:∵10AB =,6AC =,∴4CB =,又∵D 为BC 的中点,∴2CD =,∴268AD =+=.②C 在线段AB 外:∵10AB =,6AC =,∴16BC =,又∵D 为BC 的中点,∴8CD BD ==,∴1082AD =-=,故选D.二、填空题(本大题共4小题,每小题4分,共16分)11.【答案】2【解析】∵单项式212m x y --的次数是5,∴2125m -+=,解得,2m =.∴m 的值是2.12.【答案】-2【解析】若()1230k k x---=是关于x 的一元一次方程, 则2011k k -≠⎧⎪⎨-=⎪⎩,解得2k =-, 故k 的值为-2.13.【答案】22【解析】若2x =是方程517ax a -=+的解,则有2517a a -=+,解得22a =.14.【答案】15042'︒【解析】∵2918'BOC ∠=︒,∴AOC ∠的度数为:1802918'15042'︒-︒=︒.故答案为:15042'︒.三、解答题(本大题共6小题,共54分)15.【答案】(1)3.(2)-7.(3)2x =.(4)13x =-.【解析】(1)185(0.25)4⎛⎫+---- ⎪⎝⎭ 118544=--+ 11(85)44⎛⎫=-+- ⎪⎝⎭3=.(2)202021(1)23(2)2--÷⨯+- 21223(2)=-⨯⨯+-1124=-+7=-.(3)去括号得:51262x x -=-+,移项得:36x =,系数化“1”得:2x =,所以方程的解为2x =.(4)去分母得:()()1053221x x -+=-,去括号得:1051542x x --=-,移项得:93x -=,系数化“1”得:13x =-, 所以方程的解为13x =-. 16.【答案】23-. 【解析】原式2222333222x y xy xy xy x y xy ⎛⎫=+-+-- ⎪⎝⎭222233223x y xy xy xy x y xy =+-+--222233322x y x y xy xy xy xy =-+-+-2xy xy =+,当3x =,13y =-时, 原式2113333⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭ 113=- 23=-. 17.【答案】2.5小时【解析】设慢车开出x 小时后两车相遇,则相遇时, 快车开了3060x ⎛⎫- ⎪⎝⎭小时, 由题意可得:305059014060x x ⎛⎫=+-⎪⎝⎭,解得 2.5x =. 答:慢车开出2.5小时后两车相遇.18.【答案】(1)40;60(2)108︒(3)360人.【解析】(1)总人数:7035%200÷=(人),∴20030%60n =⨯=(人),∴20060703040m =---=(人).(2)“C ”项且所在扇形的圆心角度数:30%360108⨯︒=︒.(3)“D ”项且所占百比为:3015%200=, ∴学校参加“D ”项且人数为:15%2400360⨯=(人).19.【答案】(1)10cm AB =,8cm AC =.(2)3cm .【解析】(1)由题意可知:()2100a -=,402b -=, ∴10a =,8b =,∴10cm AB =,8cm AC =.(2)∵8cm BD AC ==,∴2cm AD AB BD =-=,又∵M 、N 是AC 、AD 的中点,∴4cm AM =,1cm AN =.∴3cm MN AM AN =-=.20.【答案】(1)20︒.(2)2DPE α∠=.(3)12DPE APC ∠=∠;证明见解析. 【解析】(1)∵90CPD ∠=︒,40APC ∠=︒,∴18040140BPC ∠=︒-︒=︒, 180409050BPD ∠=︒-︒-︒=︒,又∵PE 平分BPC ∠, ∴111407022BPE BPC ∠=∠=⨯︒=︒, ∴705020DPE BPE BPD ∠=∠-∠=︒-︒=︒.(2)∵90CPD ∠=︒,APC α∠=,∴180BPC α∠=︒-,1809090BPD αα∠=︒-︒-=︒-,又∵PE 平分BPC ∠, ∴118022BPE BPC α︒-∠=∠=, ∴()1809022DPE BPE BPD ααα︒-∠=∠-∠=-︒-=. (3)结论:12DPE APC ∠=∠.理由如下: 设APC β∠=,则180BPC β∠=︒-,∵90CPD ∠=︒,∴9090BPD BPC β∠=︒-∠=-︒,又∵PE 平分BPC ∠, ∴19022BPE BPC β∠=∠=︒-,∴909022DPE DPB BPE βββ∠=∠+∠=-︒+︒-=, ∴12DPE APC ∠=∠. 四、填空题(本大题共5小题,每小题4分,共20分)21.【答案】4【解析】∵45a b -=-,∴把1x =-代入得:原式()414a b =---=.22.【答案】2016,1986【解析】由题意得:0a b +=,1cd =,3m =或3m =-,分别代入计算得2016和1986.23.【答案】54︒【解析】∵:3:2COB BOD ∠∠=,90COB BOD ∠+∠=︒, ∴390545BOC ∠=⨯︒=︒. 24.【答案】1935 【解析】方法一:根据题中的新定义得:152121323x ⊕=+=+⨯, 去分母得:210x +=,即8x =, 则112193434457535x ⊕=+=+=+⨯. 故答案为:1935. 方法二:∵112121(21)(11)36x x ⊕=+=++++, 又∵5213⊕=, ∴15363x +=, ∴8x =, ∴18(1)(1)A B A B A B ⊕=++++, ∴183434(31)(41)⊕=++++ 18720=+1935=. 25.【答案】54325101051a a a a a -+-+-【解析】观察题中的规律可得()5a b +的各项系数依次为1,5,10,10,5,1. a 按5至0降幂排列,b 按0至5升幂排列,故有:554322345()510105a b a a b a b a b ab b +=+++++,∴()51a - 543223455(1)10(1)10(1)5(1)(1)a a a a a =+⋅-+⋅-+-+⋅-+-54325101051a a a a a =-+-+-.故答案为:54325101051a a a a a -+-+-.五、解答题(本大题共3小题,每小题10分,共30分)26.【答案】(1)2512. (2)①36②233n n + ③20202021【解析】(1)化简方程3511232a x ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦,可得5136a x ⎛⎫-= ⎪⎝⎭, 方程1.720.810.30.6x x -+-=,化简可得 172014208101336x x x --+-==, 去分母得:()21420810x x -=+,去括号得:2840810x x -=+,移项合并同类项得:5020x -=-, 解得25x =, ∵两方程同解, ∴521356a ⎛⎫-⨯= ⎪⎝⎭,解得2512a =. (2)①()31260602436a a a =-+=-=.②()1231(1)(2)n n a n n n a a a a -=++-++++()3232(1)(1)n n n n n n =++--+()32332n n n n n =++--33232n n n n n =-+++233n n =+.③∵2333(1)n a n n n n =+=+, ∴111113(1)31n a n n n n ⎛⎫==- ⎪++⎝⎭, ∴3111n a n n =-+, ∴1232019202033333a a a a a +++++ 1111111111223342019202020202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭112021=-20202021=. 27【答案】(1)640;290(2)优惠额0.2540,1004000.25100,4006000.25130,600800a a a a a a +≤≤⎧⎪=+≤≤⎨⎪+≤≤⎩.(3)能获得;650元.【解析】(1)消费金额=商品标价80%80080%640⨯=⨯=元,获得优惠额()800180%130290=⨯-+=元.(2)①当100400a ≤≤时,优惠额20%400.254080%a a =⨯+=+.②当400600a ≤≤时, 优惠额20%1000.2510080%a a =⨯+=+. ③当600800a ≤≤时, 优惠额20%1300.2513080%a a =⨯+=+. 综上可得:优惠额0.2540,1004000.25100,4006000.25130,600800a a a a a a +≤≤⎧⎪=+≤≤⎨⎪+≤≤⎩.(3)令优惠额230=.①当100400a ≤≤时,即0.2540230a +=,解得760a =.此时760a =不在100400a ≤≤范围内,故不合题意.②当400600a ≤≤时,即0.25100230a +=,解得520a =.此时,520a =在400600a ≤≤范围内,故合题意.③当600800a ≤≤时,即0.25130230a +=,解得400a =.此时400a =不在600800a ≤≤范围内,故不合题意.综上,可知当520a =时,她能获得230的优惠额, 此时商品标价52065080%==元. 28.【答案】(1)-12;85t -(2)2.25秒或2.75秒(3)MN 长度不变,画图见解析,10MN =【解析】(1)数轴上点B 表示的数为:82012-=-,点P 表示的数为:85t -.故答案为:-12;85t -.(2)设t 秒后P ,Q 之间的距离恰好等于2,①点P ,Q 相遇前,由题意可得:32520t t ++=,解得 2.25t =,②点P ,Q 相遇之后,由题意可得:32520t t -+=,解得 2.75t =.答:若点P ,Q 同时出发,2.25秒或2.75秒时,P ,Q 之间的距离恰好等于2. 故答案为:2.25秒或2.75秒.(3)线段MN 的长度不发生变化,都等于10, ①当点P 在A ,B 两点之间运动时,MN MP NP =+1122AP BP =+ ()12AP BP =+ 12AB = 120102=⨯=, ②当点P 在点B 的左侧时,MN MP NP =-1122AP BP =- 11()22AP BP AB =-= 1202=⨯ 10=,综上可得MN 长度不变,且10MN =.。
2019年七年级数学上期末试卷(含答案) (2)
2019年七年级数学上期末试卷(含答案) (2)一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070D .(1)2x x -=2070 2.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .3.8×(1+40%)x ﹣x =15 故选:B . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.4.下列去括号正确的是( ) A .()2525x x -+=-+ B .()142222x x --=-+ C .()122333m n m n -=+ D .222233m x m x ⎛⎫--=-+⎪⎝⎭5.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .5 6.-4的绝对值是( ) A .4B .C .-4D .7.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个8.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( ) A .﹣1007B .﹣1008C .﹣1009D .﹣20189.用一个平面去截一个正方体,截面不可能是( ) A .梯形B .五边形C .六边形D .七边形10.4h =2小时24分. 答:停电的时间为2小时24分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.11.下列比较两个有理数的大小正确的是( ) A .﹣3>﹣1B .1143> C .510611-<-D .7697->- 12.如图所示,C 、D 是线段AB 上两点,若AC=3cm ,C 为AD 中点且AB=10cm ,则DB=( )A .4cmB .5cmC .6cmD .7cm二、填空题13.某物体质量为325000克,用科学记数法表示为_____克. 14.若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是______. 15.将4个数a ,b ,c ,d 排成2行2列,两边各加一条竖直线记作 a b c d ⎧⎫⎨⎬⎩⎭,定义 a b ad bc c d ⎧⎫=-⎨⎬⎩⎭,若 1 161 2x x +-⎧⎫=⎨⎬-⎩⎭,则x =__________. 16.计算7a 2b ﹣5ba 2=_____.17.用科学记数法表示24万____________.18.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n19.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论: ①可能是锐角三角形;②可能是钝角三角形; ③可能是长方形;④可能是梯形. 其中正确结论的是______(填序号).20.如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n ∠BOC ,∠BOD =1n∠AOB ,则∠DOE =_____°.(用含n 的代数式表示)三、解答题21.计算:32112(3)4⎡⎤--⨯--⎣⎦ 22.已知∠a =42°,求∠a 的余角和补角.23.先化简,再求值:x 2﹣(5x 2﹣4y )+3(x 2﹣y ),其中x=﹣1,y=2. 24.解方程:32x -﹣415x +=1. 25.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】解:根据题意得:每人要赠送(x ﹣1)张相片,有x 个人, ∴全班共送:(x ﹣1)x=2070,故选A . 【点睛】本题考查由实际问题抽象出一元二次方程.2.B解析:B 【解析】 【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示. 【详解】A 、因为顶点B 处有2个角,所以这2个角均不能用∠B 表示,故本选项错误;B 、因为顶点B 处只有1个角,所以这个角能用∠ABC ,∠B ,α∠表示,故本选项正确; C 、因为顶点B 处有3个角,所以这3个角均不能用∠B 表示,故本选项错误;D 、因为顶点B 处有4个角,所以这4个角均不能用∠B 表示,故本选项错误. 故选:B . 【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.3.无 4.D解析:D 【解析】试题分析:去括号时括号前是正号,括号里的每一项都不变号;括号前是负号,括号里的每一项都变号.A 项()2525,x x -+=--故不正确;B 项()14221,2x x --=-+故不正确;C 项()1223,33m n m n -=-故不正确;D 项222233m x m x ⎛⎫--=-+ ⎪⎝⎭,故正确.故选D .考点:去括号法则.5.C解析:C 【解析】 【分析】根据合并同类项法则得出n=3,2m=2,求出即可. 【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.6.A解析:A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆. 7.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.8.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.9.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。
2019-2020学年七年级(上)期末数学试卷(含答案)
2019-2020学年七年级(上)期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣13.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×1077.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是38.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.14010.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是.14.如果2a﹣b=1,则4a﹣2b﹣1=.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)18.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.20.如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以=∠BOC.所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°.(2)由(1)可知∠BOE=∠COE=﹣∠COD=°.所以∠AOE=﹣∠BOE=°.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.一、选择题(本题共12个小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.故选:B.2.下列四个数中,在﹣2到0之间的数是()A.3 B.1 C.﹣3 D.﹣1【解答】解:∵3>0,1>0,﹣3<﹣2,﹣2<﹣1<0,∴在﹣2到0之间的数是﹣1.故选:D.3.下列计算正确的是()A.3a+4b=7ab B.7a﹣3a=4C.3a+a=3a2D.3a2b﹣4a2b=﹣a2b【解答】解:A、3a和4b不是同类项,不能合并,故本选项错误;B、字母不应去掉.故本选项错误;C、字母的指数不应该变,故本选项错误;D、符合合并同类项的法则,故本选项正确.故选D.4.下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列如图是以下四个图中的哪一个绕着直线旋转一周得到的()A.B.C.D.【解答】解:A、可以通过旋转得到两个圆柱,故本选项正确;B、可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C、可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D、可以通过旋转得到三个圆柱,故本选项错误.故选:A.6.地球半径约为6 400 000米,这个数用科学记数法表示为()A.640×104B.64×105 C.6.4×106D.0.64×107【解答】解:将6 400 000用科学记数法表示为6.4×106.故选C.7.下列关于单项式的说法中,正确的是()A.系数、次数都是3 B.系数是,次数是3C.系数是,次数是2 D.系数是,次数是3【解答】解:根据单项式系数、次数的定义可知:单项式的系数是﹣,次数是2+1=3,只有D正确,故选:D.8.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为5人【解答】解:A、正确.从扇形统计图中看出:该班喜欢乒乓球的学生占30%,是最多的,故正确.B、正确.喜欢排球与篮球的学生均占20%,一样多,故正确.C、正确.因为25%÷20%=1.25,喜欢足球的人数是喜欢排球人数的1.25倍,故正确.D、错误.班喜欢其他球类活动的占5%,故错误.故选D.9.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110 B.120 C.130 D.140【解答】解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选B.10.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定【解答】解:从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为两点之间,线段最短.故选:B.11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110° D.145°【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.12.若a、b两数在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.>0【解答】解:∵a<0<b,﹣a>b,∴a+b<0,∴选项A不正确,选项B正确;∵a<0<b,∴ab<0,∴选项C不正确;∵a<0<b,∴<0,∴选项D不正确.故选:B.二、填空题(本小题共4小题,每小题3分,共12分)13.﹣的倒数是﹣.【解答】解:(﹣)×(﹣)=1,所以﹣的倒数是﹣.故答案为:﹣.14.如果2a﹣b=1,则4a﹣2b﹣1=1.【解答】解:∵2a﹣b=1,∴4a﹣2b=2,∴4a﹣2b﹣1=2﹣1=1.故答案为:1.15.一副三角板按如图所示方式重叠,若图中∠DCE=35°,则∠ACB=145°.【解答】解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°﹣35°=145°,故答案为145°.16.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.三、解答题(本大题共8小题,共52分)17.计算:(1)﹣7+13﹣6+20(2)(﹣+﹣)×(﹣24)【解答】解:(1)﹣7+13﹣6+20=6﹣6+20=20(2)(﹣+﹣)×(﹣24)=(﹣)×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣4+9=2318.先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣),其中m=﹣1.【解答】解:2m2﹣4m+1﹣2(m2+2m﹣)=2m2﹣4m+1﹣2m2﹣4m+1=﹣8m+2,当m=﹣1时,原式=8+2=10.19.解方程:(1)4﹣3x=6﹣5x;(2)﹣1=.(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)4﹣3x=6﹣5x,移项,得5x﹣3x=6﹣4,合并同类项,得2x=2,系数化为1,得x=1;(2)去分母,得3(x+1)﹣6=2(2﹣x),去括号,得3x+3﹣6=4﹣2x,移项、合并同类项,得5x=7,系数化为1,得x=.2如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.【解答】解:如图所示:21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).22.李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.23.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+ ∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°.所以∠AOE=∠AOB﹣∠BOE=155°.【解答】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=∠BOC.所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.(2)由(1)可知∠BOE=∠COE=∠DOE﹣∠COD=25°,所以∠AOE=∠AOB﹣∠BOE=155°.故答案为(1)∠COE;∠COE;90;(2)∠DOE(或者90°);25;∠AOB(或者180°);155.24.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为4.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数为6或2.②设点A的移动距离AA′=x.ⅰ.当S=4时,x=;ⅱ.D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为:4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4﹣2=6,∴A′表示的数为6,故答案为:6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=,∴x=4﹣=,故答案为:;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为,点E表示的数为,由题意可得方程:4﹣x﹣x=0,解得:x=,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.。
成都高新顺江学校七年级上册数学期末试卷(含答案)
成都高新顺江学校七年级上册数学期末试卷(含答案)一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109 D .1289×107 2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1393.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或54.下列因式分解正确的是()A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③ D .④ 6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1 B .﹣1 C .3 D .﹣3 7.计算:2.5°=( )A .15′B .25′C .150′D .250′8.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m =,则x y = D .若x y =,则x y m m= 10.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④11.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-112.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题13.从一个n边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n的值是___________.14.如果实数a,b满足(a-3)2+|b+1|=0,那么a b=__________.15.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.16.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.17.如图,点B在线段AC上,且AB=5,BC=3,点D,E分别是AC,AB的中点,则线段ED的长度为_____.18.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___19.15030'的补角是______.20.|﹣12|=_____.21.计算7a2b﹣5ba2=_____.22.当x= 时,多项式3(2-x)和2(3+x)的值相等.23.钟表显示10点30分时,时针与分针的夹角为________.24.单项式()26a bc-的系数为______,次数为______.三、压轴题25.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.26.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.27.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.29.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)30.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.31.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.3.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.D【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.5.A解析:A 【解析】 【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案. 【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确; ②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误; ③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误; ④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确. 故选A . 【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.6.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.解析:C 【解析】 【分析】根据“1度=60分,即1°=60′”解答. 【详解】解:2.5°=2.5×60′=150′. 故选:C . 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.8.B解析:B 【解析】 【分析】根据不等式的基本性质逐一进行分析判断即可. 【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a bc c>,故D 选项错误, 故选B. 【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.9.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x ym m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误;故选:D.【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.10.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.11.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.17.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.18.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.19.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.20.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.22.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.24.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此解析:16【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc-的系数为16-;次数为2+1+1=4;故答案为16 -;4.【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.三、压轴题25.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=12⨯90°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON =12∠BOD =12(90°﹣x °)=45°﹣12x °, ∴∠MON =∠MOC +∠BOC +∠BON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.26.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1……∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.27.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n 节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.28.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,综上所述:当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.29.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P 所在的位置表示的数为5 .(4)由(3)得:点P 运动了6个来回后,又运动了30个单位长度,∴点P 和点Q 一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】。
2019年成都高新七初锦城七年级(上)数学期末交流题(含答案)
高新区2019-2020学年上期七年级期末复习题数 学(时间:120分钟,总分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1.下列四个数中,最大的数是 ( ) A .0 B .2 C .3- D .42.31-的相反数是 ( )A .13B .13-C .3D .-33.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是( ) A. 记 B .观 C .心 D .间4.用一个平面去截一个几何体,得到的 截 面 是四 边 形,这个几何体 可能是 ( )A .圆锥B .圆柱C .球体D .以上都有可能 5.实数a 在数轴上的位置如图所示,则下列说法不正确的是 ( )A .a 的相反数大于2B .a 的相反数是2C .|a |>2D .2a <06.某服装店新开张,第一天销售服装a 件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了 ( )A .(2a +2)件B .(2a +24)件C .(2a +10)件D .(2a +14)件7.下列结论中,正确的是 ( )A .单项式237xy 的系数是3,次数是2B .单项式m 的次数是1,没有系数C .单项式﹣xy 2z 的系数是﹣1,次数是4D .多项式2x 2+xy +3是三次三项式8.下列说法中,正确的是 ( )A .一周角的度数等于两个直角的度数B .顶点在圆上的角叫做圆心角C .各边相等,各角也相等的多边形叫做正多边形D .有公共顶点的两条射线组成的图形叫做角9.某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是( )A .在公园调查了1000名老年人的健康状况B .调查了10名老年人的健康状况C .在医院调查了1000名老年人的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人健康状况10.包装厂有42名工人,每人平均每天可以生产圆形铁片120片或长方形铁片80片.为了每天生产的产品刚好制成一个个密封的圆桶,应该分配多少名工人生产圆形铁片,多少名工人生产长方形铁片?设应分配x 名工人生产长方形铁片,(42-x )名工人生产圆形铁片,则下列所列方程正确的是( )A .120x =2×80(42-x )B .80x =120(42-x )C .2×80x =120(42-x )D .2180)42(120=-x x 二 填空题(16分)11.今年某市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 克.12.已知线段AB =2cm ,延长AB 到点C ,使BC =4cm ,D 为AB 的中点,则线段DC = .13.如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC =80°,则∠BOD= . 14.已知x ﹣3y=2,则代数式5﹣3x+9y 的值为 . 三 解答题(54分) 15. 计算(8分)(1)21114()(60)31215--⨯- (2)4251(5)()0.813-÷-⨯-+-16. 解方程(10分)(1))2(34x x -=- (2)2123134x x ---= 17.(8分)先化简,再求值:])2(32[3222xy y x xy y x y x ----,其中1-=x ,2-=y18.(8分)已知:直线AB 与直线CD 相交于点O ,∠BOC =45°.(1)如图1,若EO ⊥AB ,求∠DOE 的度数; (2)如图2,若FO 平分∠AOC ,求∠DOF 的度数. 19.(10分)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市七年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题: (1)本次共抽查了多少名学生? (2)请补全频数分布直方图空缺部分,其中扇形统计图中表示跳绳次数范围135≤x <155的扇形的圆心角度数为 度. (3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市28000名七年级学生中有多少名学生的成绩为优秀?第1个图形第 2 个图第3个图第 4 个图第25题图 20.(10分)某加工厂生产A 、B 两种饮料均需加入同种甜味剂,其中生产1万瓶A 饮料需加入甜味剂20千克,生产1万瓶B 饮料需加入甜味剂30千克,已知该加工厂每月生产A 、B 两种饮料共100万瓶,且刚好需加入2700千克甜味剂.(1)若设每月生产A 饮料x 万瓶.①用含x 的代数式可表示每月生产B 饮料 万瓶; ②求每月生产A 、B 两种饮料各多少万瓶? (2)已知A 饮料的成本价为每瓶3元,由于冬季天冷影响了A 饮料的销售,该加工厂觉得按照原价的8折出售,此时A 饮料的利润率为20%,那么A 饮料的原价是每瓶多少元?该加工厂调价后每月销售A 饮料所获得的利润是多少?【利润率=】B 卷(50分)一 填空题(20分)21. 已知非零有理数a 、b 满足a b a b +=﹣2.则ab ab的值为 . 22.定义:f (a ,b )=(b ,a ),g (m ,n )=(-m ,-n ).例如f (2,3)=(3,2 ),g (-1,-4)=(1,4),则g (f (-5,6)) =__________.23. 当代数式1-(m -5)2取最大值时,方程5m -4=3x +2的解是 . 24. 如图,∠AOD =90°,∠AOB :∠BOC =1:3,OD 平分∠BOC ,则∠AOC = 度.25. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有 个小圆.(用含 n 的代数式表示) 二 解答题(30分)26.(8分)观察下列各式,再回答问题: 1-,,,…… (1)根据上述规律填空:=______________;2112016-=_____________. (2)用你的发现计算:()()…(2112016-)(2112017-).27、(10分)2017年元旦来临之前,为了迎新年,甲、乙两校联合准备文艺汇演,甲、乙两校共92人参加演出(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买演出服装(一人买一套),下面是某服装厂给出的演出服装的价格表:如果两校分别单独购买服装,一共应付5000元. (1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱? (2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有9名准备参加演出的同学抽调去参加科技创新比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?28. (12分)已知数轴上的点A ,B 对应的数分别是x ,y ,且|x +100|+(y ﹣200)2=0,点P 为数轴上从原点出发的一个动点,速度为30个单位长度/秒. (1)求点A ,B 两点之间的距离;(2)若点A 向右运动,速度为10个单位长度/秒,点B 向左运动,速度为20个单位长度/秒,点A ,B 和P三点同时开始运动,点P 先向右运动,遇到点B 后立即掉头向左运动,遇到点A 再立即掉头向右运动,如此往返,当A ,B 两点相距30个单位长度时,点P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点A ,B ,P 三个点都向右运动,点A ,B 的速度分别为10个单位长度/秒,20个单位长度/秒,点M 、N 分别是AP 、OB 的中点,设运动的时间为t (0<t <10),在运动过程中:①OA PBMN -的值不变;②OA PBMN+的值不变;可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2113222=⨯21241333-=⨯21351444-=⨯211100-2112-2113-购买服装的套数 1套至45套 46套至90套91套及以上 每套服装的价格60元50元40元高新区2019-2020学年上期七年级期末复习题数学答案A 卷一 选择题 1-10.DBABB DCCDC 二 填空题11.3.25×1011.12.5cm .13.40°.14.-1.三 解答题(第15题每题8分,第16题10分,共18分)15.(1)71.(2) 16.(1)x=1 (2)x=7217. (6分) 其中,,代入原式=18 (8分)19.解:(1)抽查的总人数:(8+16)÷12%=200(人) (2分)(2)范围是135≤x <145的人数是:200﹣8﹣16﹣71﹣60﹣16=29(人),补全频数分布直方图如下:扇形统计图中跳绳次数范围135≤x ≤155所在扇形的圆心角度数为360°×=81°(4分) (3)优秀的比例是:×100%=52.5%,∴估计全市28000名八年级学生中有多少名学生的成绩为优秀人数是:28000×52.5%=14700(人)。
成都高新新科学校2019年七年级数学(上)期末交流题(含答案)
高新区2019-2020学年上期七年级期末复习题数 学(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分)1. -5的绝对值是( )(七上教材31页做一做)A .5B .-5 C.15 D .-152. 下列图形是正方体侧面展开图的是( )(七上教材9页第1题改编)A .B .C .D . 3. 把27430用科学记数法表示应是( )(七上教材64页第1题改编) A .0.2743×103 B .27.43×103 C .274.3×10 D .2.743×1044. 下列各组中,是同类项的是() (七上教材90页议一议改编) A .-x 2y 与3yx 2 B .m 3与3m C .a 2与b 2 D .x 与25. 以下问题,适合抽样调查的是()(七上教材162页随堂练习改编)A .了解一批导弹的杀伤半径B .游泳馆招聘救生员,对应聘人员的面试C .了解某小组学生每周体育锻炼时间D .上飞机前对旅客的安检6. 若x =4是关于x 的方程2x-a =4的解,则a 的值为() (七上教材153页第13题改编)A .-6B .2C .16D .-27. 如图,已知O 是直线AB 上一点,∠1=20°,OD 平分∠BOC ,则∠2的度数是()A .20°B .60°C .80°D .160°8. 已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是()A .-5x -1B .5x +1C .-13x -1D .13x +19. 某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场( )(七上教材153页第10题改编) A .不赚不赔 B .赚160元 C .赚80元 D .赔80元 、10. 钟表上12时15分钟时,时针与分针的夹角为() (七上教材117页第3题改编)A .90°B .82.5°C .67.5°D .60° 二、填空题(每空4分,共16分) 11. 比较大小:-3.14____(填“<”“>”或“=”)-π. (七上教材31页例2改编)12. 已知一个数的绝对值是3,则这个数是____.(七上教材32页随堂练习1改编) 13. 1.45°=__ _′=__ __″.(七上教材115页例题改编) 14. 点P 为线段AB 上一点,且AP =32PB ,若AB =10cm,则PB 的长为_ _cm.三、解答题(共54分)15.(8分)(1)(1)-15+(-8)-(-11)-12;(七上教材46页随堂练习改编)(2)(七上教材46页随堂练习改编)16. (9分)化简求值:(1)化简:;(2)若(x -2)2+|y +1|=0,求5xy 2-[2x 2y -(2x 2y -3xy 2)]的值. 17.(9分)解方程:(1)2(3x -1)=16;(七上教材138页随堂练习改编)(2) (七上教材140页随堂练习改编)18.(8分)在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:(七上教材175页引例改编)频数分布表阅读时间(小时) 频数(人) 频率1≤x <218 0.12 2≤x <3a m 3≤x <4 45 0.34≤x <536 n 5≤x <621 0.14 合计 b 1(1)填空:a =__ __,b __ ____ ____ __(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校有3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足3小时的人数.频数分布直方图,),第18题图)19. (10分)如图,已知线段AB=6cm,延长线段AB到C,使BC=2AB,若点D是AC 上一点,且AD比DC短4cm,点E是BC的中点,求线段DE的长.(七上教材113页习题第3题改编)20.(10分)A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨.已知从A,B到C,D的运价如表:(七上教材145页引例改编)到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1)若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为__ __吨,从A果园将橘子运往D地的运输费用为__ __元;(2)用含x的式子表示出总运输费;(3)总运输费用可能是1170元吗?如果能,请算出x的值;如果不能,请说明理由.B卷(共50分)一、填空题。
2019年初一数学上期末试题(及答案)
2019年初一数学上期末试题(及答案)一、选择题1.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A.一个B.两个C.三个D.四个2.下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等3.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.54.点C是线段AB上的三等分点,D是线段AC的中点,E是线段BC的中点,若6CE ,则AB的长为()A.18B.36C.16或24D.18或365.观察如图所示图形,则第n个图形中三角形的个数是( )A.2n+2B.4n+4C.4n D.4n-46.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm7.中国海洋面积是2897000平方公里,2897000用科学记数法表示为()A.2.897×106B.28.94×105C.2.897×108D.0.2897×1078.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)9.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时 B .2小时20分 C .2小时24分 D .2小时40分 10.4h =2小时24分.答:停电的时间为2小时24分.故选:C .【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.11.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+612.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.14.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元.15.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块;(2)第n 个图案有白色地面砖______块.16.在时刻10:10时,时钟上的时针与分针间的夹角是 .17.若关于x 的方程(a ﹣3)x |a |﹣2+8=0是一元一次方程,则a =_____18.计算7a 2b ﹣5ba 2=_____.19.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.22.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.23.如图,数轴的单位长度为1.(1)如果点A ,D 表示的数互为相反数,那么点B 表示的数是多少?(2)如果点B ,D 表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是____.24.解方程:(1)()43203x x --= (2)23211510x x -+-= 25.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)﹣2+(﹣65)×(﹣23)+(﹣65)×173【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.3.B解析:B【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.4.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.5.C解析:C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.6.B解析:B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm,宽为ycm,根据题意得:7-x=3y,即7=x+3y,则图②中两块阴影部分周长和是:2×7+2(6-3y)+2(6-x)=14+12-6y+12-2x=14+12+12-2(x+3y)=38-2×7=24(cm).故选B.【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.7.A解析:A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2897000用科学记数法表示为:2.897×106.故选A.考点:科学记数法—表示较大的数.8.D解析:D【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律.9.C解析:C【解析】【分析】设停电x小时.等量关系为:1-粗蜡烛x小时的工作量=2×(1-细蜡烛x小时的工作量),把相关数值代入即可求解.【详解】解:设停电x小时.由题意得:1﹣14x=2×(1﹣13x),解得:x=2.4.10.无11.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C .由,得:5y ﹣15=3y ,此选项错误; D .由,得:3( y +1)=2y +6,此选项正确.故选D .【点睛】 本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.B解析:B【解析】【分析】根据数轴上的两数位置得到a>0、b<0,b 距离远点距离比a 远,所以|b|>|a|,再挨个选项判断即可求出答案.【详解】A. a+b<0 故此项错误;B. ab <0 故此项正确;C. |a|<|b| 故此项错误;D. a+b<0, a ﹣b >0,所以a+b<a ﹣b, 故此项错误.故选B .【点睛】本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.二、填空题13.【解析】【分析】根据条件求出前几个数的值再分n 是奇数时结果等于-n 是偶数时结果等于-然后把n=2019代入进行计算即可得解【详解】a1=0a2=-|a1+1|=-|0+1|=-1a3=-|a2+2|解析:1009-【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12n -,n 是偶数时,结果等于-2n ,然后把n=2019代入进行计算即可得解. 【详解】a 1=0,a 2=-|a 1+1|=-|0+1|=-1,a 3=-|a 2+2|=-|-1+2|=-1,a 4=-|a 3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,…,所以,n是奇数时,a n=-12n-,n是偶数时,a n=-2n,a2019=-201912-=-1009.故答案为:-1009.【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键.14.100【解析】【分析】设这件童装的进价为x元根据利润=售价﹣进价即可得出关于x的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x元依题意得:120﹣x=20x解得:x=100故答案为:1解析:100【解析】【分析】设这件童装的进价为x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设这件童装的进价为x元,依题意,得:120﹣x=20%x,解得:x=100.故答案为:100.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.18块(4n+2)块【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:61014所以可以发现每一个图形都比它前一个图形多4个白色地砖所以可以得到第n个图案有白色地面砖(4n+2)解析:18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.16.115°【解析】试题分析:因为钟表上的刻度是把一个圆平均分成了12等份每一份是30°借助图形找出时针和分针之间相差的大格数用大格数乘30°即可解:∵10至2的夹角为30°×4=120°时针偏离10的解析:115°.【解析】试题分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解:∵“10”至“2”的夹角为30°×4=120°,时针偏离“10”的度数为30°×=5°,∴时针与分针的夹角应为120°﹣5°=115°;故答案为115°.考点:钟面角.17.-3【解析】【分析】根据一元一次方程的定义得出a﹣3≠0且|a|﹣2=1求出即可【详解】∵关于x的方程(a﹣3)x|a|﹣2+8=0是一元一次方程∴a﹣3≠0且|a|﹣2=1解得:a=﹣3故答案为:解析:-3【解析】【分析】根据一元一次方程的定义得出a﹣3≠0且|a|﹣2=1,求出即可.【详解】∵关于x的方程(a﹣3)x|a|﹣2+8=0是一元一次方程,∴a﹣3≠0且|a|﹣2=1,解得:a=﹣3,故答案为:﹣3.【点睛】考查了一元一次方程的概念,解题关键是理解一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0.18.2a2b【解析】【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.19.【解析】试题解析:∵由折线统计图可知周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差解析:【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.20.12【解析】【分析】通过观察图形即可得到答案【详解】如图把正方体截去一个角后得到的几何体有12条棱故答案为:12【点睛】此题主要考查了认识正方体关键是看正方体切的位置解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.三、解答题21.12 ab=⎧⎨=-⎩.【解析】试题分析:将x+y=5与2x-y=1组成方程组,解之可得到x、y的值,然后把x、y的值代入另外两个方程,解答即可得到结论.试题解析:解:由题意可将x+y=5与2x-y=1组成方程组521x yx y+=⎧⎨-=⎩,解得:23x y =⎧⎨=⎩. 把23x y =⎧⎨=⎩代入4ax +5by =-22,得:8a +15b =-22.① 把23x y =⎧⎨=⎩代入ax -by -8=0,得:2a -3b -8=0.② ①与②组成方程组,得:815222380a b a b +=-⎧⎨--=⎩,解得:12a b =⎧⎨=-⎩. 22.有39人,15辆车【解析】【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,则有3(x ﹣2)人,根据题意得:2x +9=3(x ﹣2)解的:x =153(x ﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.23.(1)-1;(2)点A 表示的数的绝对值最大.理由是点A 的绝对值是4最大;(3)2或10;【解析】【分析】(1)先确定原点,再求点B 表示的数,(2)先确定原点,再求四点表示的数,(3)分两种情况①点M 在AD 之间时,②点M 在D 点右边时分别求解即可.【详解】(1)根据题意得到原点O ,如图,则点B 表示的数是-1;(2)当B ,D 表示的数互为相反数时,A 表示-4,B 表示-2,C 表示1,D 表示2, 所以点A 表示的数的绝对值最大.点A 的绝对值是4最大.(3)2或10.设M 的坐标为x .当M 在A 的左侧时,-2-x=2(4-x ),解得x=10(舍去)当M 在AD 之间时,x+2=2(4-x ),解得x=2当M 在点D 右侧时,x+2=2(x-4),解得x=10故答案为:①点M 在AD 之间时,点M 的数是2②点M 在D 点右边时点M 表示数为10.【点睛】本题主要考查了数轴,解题的关键是熟记数轴的特点.24.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110x x ---=,217x =,8.5x =.25.(1)34;(2)-8【解析】【分析】(1)有理数的混合运算,先做乘方,然后做乘除,最后做加减,有小括号先做小括号里面的;(2)有理数的混合运算,先做乘法,然后做加减法.【详解】解:(1)原式=﹣1﹣5×(﹣7)=﹣1+35=34;(2)原式=﹣2+45﹣345=﹣2﹣6=﹣8. 【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.。
成都高新新城学校2019年七年级数学(上)期末交流题(含答案)
∠DOE=∠COD+∠COE= ∠AOC+ ∠COB= (∠AOC+∠COB)= ∠AOB=45°;.......................................................................................................................................6
A户型
75
0.8
B户型
100
1
(1)该楼盘两种户型房各有多少套?
(2)由于限购政策的实施,2011年以来房地产市场萎靡不振,开发商又急于在
两年贷款期限到之前把房卖完,2012年1月实际开盘时将A户型房按原定销 售价打9折,B户型房按原定销售价打8.3折出售,结果2012年6月前将两 种户型的房全部卖完,开发商在还完贷款及贷款利息之后,还获利多少万元? 实际销售额比原定销售额下降了百分之几?
三、解答题(共54分)
15.计算(每小题4分,共8分)
(1)(教材65页例2)
(2)(教材73页6题(18)改编)
16.(每小题5分,共10分)
(1)(教材102页5(5))化简:
(2)(教材102页6(4)改编)先化简,再求值:已知 ,求 的值
17.解下列方程(每小题5分,共10分)
(1)(教材152页1(5))
(2)如果他们站在百米跑到的两端同时相向起跑,那么几秒后两人相距20m?
20.(10分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.
(1)如图①,当∠BOC=40°时,求∠DOE;
(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;
四川省成都市高新区2019-2020学年七年级上学期期末数学试卷 (含解析)
四川省成都市高新区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是( )A. 2B. 12C. −12D. −22.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A. B. C. D.3.为庆祝中华人民中国成立70周年,我国于2019年10月1日在北京天安门广场举行大型阅兵仪式,在此次活动中,共有15个徒步方队,32个装备方队,空中梯队12个,约15000名官兵通过天安门广场接受党和人民的检阅.将数字15000用科学计数法表示为()A. 15×103B. 1.5×104C. 1.5×105D. 0.15×1064.下列调查中,最适宜采用全面调查方式(普查)的是()A. 对益阳市小学生每天学习所用时间的调查B. 对全国中学生心理健康现状的调查C. 对某班学生进行6月5日是“世界环境日”知晓情况的调查D. 对益阳市初中学生课外阅读量的调查5.下列计算正确的是()A. 2a+3a=5a2B. 5a2b−3ab2=2abC. 3x2−2x2=x2D. 6m2−5m2=16.若x=5是关于x的方程2x+3m−1=0的解,则m的值为()A. 0B. −1C. −2D. −37.下列各式中结果为负数的是()A. −(−3)B. |−3|C. (−3)2D. −328.如果a表示一个任意有理数,那么下面说法正确的是()A. −a 是负数B. |a|一定是正数C. |a|一定不是负数D. |−a|一定是负数9. 将两块直角三角板的直角顶点重合,如图所示,若∠AOD =128°,则∠BOC 的度数是( )A. 45°B. 52°C. 60°D. 50°10. 某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A. x =150×25%B. 25%·x =150C. 150−x x =25%D. 150−x =25% 二、填空题(本大题共9小题,共36.0分) 11. −212的倒数______,−(−5)的绝对值______,−|−3|的相反数______.12. 如图,AB =12,C 为AB 的中点,点D 在线段AC 上,且AD :DC =1:2,则AD =________.13. 已知:A 和B 都在同一条数轴上,点A 表示−3,又知点B 和点A 相距5个单位长度,则点B 表示的数是__________.14. m 的倒数与(−5)的差,用代数式表示为____________.15. 已知x 2−3x +1的值为5,则代数式−2x 2+6x −2的值为______.16. 如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把一个面积为12的长方形等分成两个面积为14的正方形,再把一个面积为14的正方形等分成两个面积为18的长方形……依此类推,请运用图形中提示的规律计算:12+14+18+116+132+164=__________.17.有一种“二十四点”的游戏(即算24游戏),其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24.在我们学过负数以后这个游戏仍可以玩.现给出3,−5,6,−8四个数,请你写出一个算式使其结果为24,这个算式为______(只写一个算式即可)18.观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形中的五角星的个数为______,第n个图形中的五角星(n为正整数)个数为______(用含n的代数式表示).19.如图,三角形ABC绕点A逆时针旋转90°到三角形AB′C′的位置.已知∠BAC=36°,则∠B′AC=________度.三、计算题(本大题共1小题,共8.0分)20.甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?四、解答题(本大题共8小题,共76.0分)21. 计算:(1)−(−8)÷4+(−12+34)×(−8) (2)−12018−13×[(−5)×(−35)2+0.8]22. 先化简,再求值:(3x 2y −xy 2)−3(−2xy 2+x 2y),其中x =12,y =−13.23. 解下列方程:(1)5x −3=3x −9(2)x +13=1−2x +1424.某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了______名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?25.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“定分线”.(1)一个角的平分线______这个角的“定分线”;(填“是”或“不是”)(2)如图2,若∠MPN=a,且射线PQ是∠MPN的“定分线”,则∠MPQ=______(用含a的代数式表示出所有可能的结果);(3)如图2,若∠MPN=45°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成90°时停止旋转,旋转的时间为t秒.同时射线PM绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止.当PQ是∠MPN的“定分线”时,求t的值.26.已知|a|=3,|b|=2,且ab<0,求a+b−2ab的值.27.某市出租车的收费标准为:起步价为10元,3千米后每千米1.2元,某人乘坐该市出租车走了x(x>3)千米.试用代数式表示他应付的费用,并求当x=8时这一代数式的值.28.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a−6|+(b+12)2=0.点O是数轴原点.(1)求线段AB的长.(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间.(3)直接写出经过多少秒后,点A、B两点间的距离为20个单位.-------- 答案与解析 --------1.答案:A解析:本题考查了一个数的绝对值,熟记绝对值的定义是解题关键.根据数轴上某个数与原点的距离叫做这个数的绝对值的定义解答即可.因为|−2|=2,所以选A.2.答案:D解析:解:从左面可看到一个长方形和上面的中间有一个小长方形.故选D.找到从左面看所得到的图形即可.本题主要考查了三视图的知识,左视图是从物体的左面看得到的视图.3.答案:B解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是非负数;当原数的绝对值<1时,n是负数.解:将15000用科学记数法表示为1.5×104.故选B.4.答案:C解析:解:A、对益阳市小学生每天学习所用时间的调查,调查范围广适合抽样调查,故A不符合题意;B、对全国中学生心理健康现状的调查,调查范围广适合抽样调查,故B不符合题意;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查适合普查,故C符合题意;D、对益阳市初中学生课外阅读量的调查,调查范围广适合抽样调查,故D不符合题意;故选:C.根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.答案:C解析:解:A、2a+3a=5a,故本选项错误;B、5a2b−3ab2不能合并同类项,故本选项错误;C、正确;D、6m2−5m2=m2,故本选项错误;故选:C.根据合并同类项是把同类项系数相加减而字母和字母的指数不变,由此计算即可.本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.6.答案:D解析:[分析]把x=5代入方程,即可得出关于m的方程,求出方程的解即可.[详解]解:把x=5代入方程2x+3m−1=0得:10+3m−1=0,解得:m=−3,故选D.[点睛]本题考查了解一元一次方程和一元一次方程的解,能得出关于m的方程是解此题的关键.7.答案:D解析:本题主要利用了绝对值,相反数,有理数的乘方,熟记概念准确计算是解题的关键.根据相反数的定义,绝对值的性质,平方数的定义分别计算,然后根据小于0的数叫作负数判断.解:A、−(−3)=3,是正数,故本选项不符合题意;B、|−3|=3是正数,故本选项不符合题意;C、(−3)2=9是正数,故本选项不符合题意;D、−32=−9是负数,故本选项符合题意.故选:D.8.答案:C解析:此题主要考查绝对值性质和相反数的定义.根据正数和负数的定义对A、B、C、D四个选项进行一一判断,从而进行求解.解:A.∵a表示一个任意有理数,若a=0,则−a=0不是负数,故A错误;B.若a=0,则|a|=0,0不是正数,故B错误;C.∵a表示一个任意有理数,∴|a|≥0,∴|a|一定不是负数,故C正确;D.若a=0,则|−a|=0,0不是负数,故D错误.故选C.9.答案:B解析:本题考查了角度的计算,理解∠BOC=∠AOB+∠COD−∠AOD是关键.根据∠BOC=∠AOB+∠COD−∠AOD,即可求解.解:∠BOC=∠AOB+∠COD−∠AOD=90°+90°−128°=52°.故选:B.10.答案:C解析:本题主要考查由实际问题抽象出分式方程,解此类型的题的关键是弄清题中存在的等量关系,且应该理解获利25%的含义.要列方程,首先要根据题意找出等量关系,此题的等量关系为利润=售价−成本价,获利百分比=利润÷成本价;由等量关系再列方程就不难了.解:设这种服装的成本价为x元,那么根据利润=售价−成本价,获利百分比=利润÷成本价;可得出方程:150−xx=25%.故选C.11.答案:−25,5,3解析:直接利用绝对值以及相反数和倒数的定义化简得出答案.此题主要考查了绝对值以及相反数和倒数的定义,正确把握相关定义是解题关键.解:−212的倒数为:−25,−(−5)=5的绝对值为:5;−|−3|=−3的相反数为:3:故答案为:−25,5,3.12.答案:2解析:此题考查了线段中点的定义及两点间的距离的求解.根据线段中点的定义可得AC的长,再由AD:DC=1:2可得AD=13AC,从而可得出答案.解:∵AB=12,C为AB的中点,∴AC=12AB=6,∵AD:DC=1:2,∴AD=13AC=13×6=2.故答案为2.13.答案:−8或2解析:这是一道考查数轴的题目,解题关键在于分情况讨论,有可能在−3的左侧,也有可能在−3的右侧.解:当点B在−3的左侧时,表示的数为−8,当点B在−3的右侧时,表示的数为2.故答案为−8或2.14.答案:1m−(−5)解析:本题考查的是列代数式有关知识,根据数量关系,列出代数式即可.解:由题意,m的倒数与(−5)的差表示为:1m−(−5).故答案为1m−(−5).15.答案:−10解析:解:由题意得:x2−3x+1=5,即x2−3x=4,则原式=−2(x2−3x)−2=−10,故答案为:−10.原式变形后,将已知代数式的值代入计算即可求出值.此题考查了代数式求值,利用了整体代换的思想,熟练掌握运算法则是解本题的关键.16.答案:6364解析:此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.解:结合图形发现计算方法:其中的面积和等于总面积减去剩下的面积,如:12=1−12;12+14=1−14;即计算其面积和的时候,只需让总面积减去剩下的面积.所以根据题意可得:原式=12+14+18+116+132+164=1−164=6364.故答案为6364.17.答案:(−5+6÷3)×(−8)=24,解析:解:根据题意得:(−5+6÷3)×(−8)=24,故答案为:(−5+6÷3)×(−8)=24利用“二十四点”的游戏规则计算即可.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.答案:22;1+n+2n−1(n为正整数)解析:本题考查了图形变化规律的问题.把五角星分成三部分进行考虑,根据规律即可求出答案.解:∵第1个图形中五角星的个数3=1+1+1,第2个图形中五角星的个数5=1+2+2,第3个图形中五角星的个数8=1+3+22,第4个图形中五角星的个数13=1+4+23,∴第5个图形中五角星的个数为1+5+24=22,则第n个图形中的五角星(n为正整数)个数为1+n+2n−1(n为正整数).故答案为22;1+n+2n−1(n为正整数).19.答案:54解析:本题考查了旋转的性质,灵活运用旋转的性质是本题的关键.由旋转的性质可得∠BAB′=90°,即可求解.解:∵三角形ABC绕点A逆时针旋转90°到三角形AB′C′的位置.∴∠BAB′=90°∵∠B′AC=∠BAB′−∠BAC=90°−36°=54°.故答案为:54.20.答案:解:(1)设甲旅行团的人数为x 人,那么乙旅行团的人为x +4人,由题意得:x +x +4=4×18解得:x =34,∴x +4=38答:甲、乙两个旅行团的人数各是34人,38人.(2)设甲团儿童人数为m 人,则可知乙团儿童人数为(3m −2)人,所以甲团成人有(34−m)人,乙团成人有(38−3m +2)人.根据题意列方程得:100(34−m)+m ×100×60%=100(38−3m +2)+(3m −2)×100×60%,解得:m =6.∴3m −2=16.答:甲团儿童人数为6人,乙团儿童人数为16人.解析:本题考查了一元一次方程的运用,解决本类问题一般都是找到等量关系列方程求解即可.属于基本的题型.(1)设甲旅行团的人数为x 人,那么乙旅行团的人为(x +4)人,由于两团人数之和恰等于两团人数之差的18倍,即:两数之和为:4×18=72,以两数之和为等量关系列出方程求解;(2)设甲团儿童人数为m 人,则可知乙团儿童人数为(3m −2)人,根据等量关系:甲乙所花门票相等可以列出方程,求解即可.21.答案:解:(1)原式=2+4−6=0;(2)原式=−1−13×(−95+45)=−1−13×(−1)=−1+13=−23.解析:(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.答案:解:原式=3x 2y −xy 2+6xy 2−3x 2y=5xy 2,当x =12,y =−13时,原式=5×12×(−13)2=518.解析:此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.23.答案:解:(1)2x=−6,x=−3;(2)4(x+1)=12−3(2x+1)4x+4=12−6x−34x+6x=12−3−410x=5x=0.5解析:(1)移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.24.答案:(1)60;如图所示;(2)600×30+24+460×100%=580(人),答:测试成绩等级在合格以上(包括合格)的学生约有580人.解析:解:(1)本次测试随机抽取的学生总数:24÷40%=60,A 等级人数:60−24−4−2=30,图见答案;(2)见答案;(1)根据各等级频数=总数×各等级所占百分比即可算出总数;再利用总数减去各等级人数可得A 等级人数,再补图即可;(2)利用样本估计总体的方法,用总人数600乘以样本中测试成绩等级在合格以上(包括合格)的学生所占百分比即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.答案:解:(1)是;(2)12a 或23a 或13a ;(3)由题意可知,∠NPQ =(10t)°,∠MPN =45°+(5t)°,∠MPQ =45°+(5t)°−(10t)°=45°−(5t)°,①当∠MPN =2∠NPQ 时,有45°+(5t)°=2×(10t)°,解得,t =3;②当∠MPQ =2∠NPQ 时,有45°−(5t)°=2×(10t)°,解得,t =95;③当∠NPQ =2∠MPQ 时,有(10t)°=2[45°−(5t)°],解得,t =92.则t =3或95或92,经检验均符合题意.综上,t =3或95或92.解析:本题是一个新定义题,解答这类题关键是要仔细读题,读懂题意根据定义解题便可.涉及角平分线,一元一次方程的应用,角的和差计算,属于较难题.(1)根据新定义与角平分线的定义进行解答便可;(2)根据新定义考虑三个角两两之间的倍数关系便可;(3)根据新定义,结合旋转过程中角的倍数关系列出方程解答便可.解:(1)因角平分线分成两个角与被分原角满足原角是所分出的小角的两倍,根据新定义知,角平分线是这个角的“定分线”,故答案为:是;(2)当∠MPN=2∠MPQ时,∠MPQ=12a,当∠MPQ=2∠NPQ时,∠MPQ=23a,当∠NPQ=2∠MPQ时,∠MPQ=13a.故答案为12a或23a或13a;(3)见答案.26.答案:解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵ab<0,∴a,b异号,则a=3时,b=−2;a=−3时,b=2;当a=3,b=−2时,原式=3−2−2×3×(−2)=3−2+12=13;当a=−3,b=2时,原式=−3+2−2×(−3)×2=−3+2+12=11;综上,a+b−2ab的值为11或13.解析:本题考查了有理数的乘法,有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.根据题意,利用绝对值的意义及有理数乘法法则求出a与b的值,代入原式计算即可求出值.27.答案:解:由题意得此人应付的费用为10+1.2(x−3)(x>3),当x=8时,10+1.2×(8−3)=10+6=16(元).答:此人应付的费用可表示为[10+1.2(x −3)]元,当x =8时,他应付的费用为16元.解析:此题考查了列代数式和代数式求值.关键是读懂题意,找出题目中的数量关系,根据数量关系列出代数式,要注意本题的条件.先根据题目中的已知条件得出此人应付的费用的代数式,再把x =8代入计算即可.28.答案:解:(1)∵|a −6|+(b +12)2=0,∴a −6=0,b +12=0,∴a =6,b =−12,∴AB =6−(−12)=18;(2)设点A 、B 同时出发,运动时间为t 秒,点A 、B 能够重合时,可分两种情况:①若相向而行,则2t +t =18,解得t =6;②若同时向右而行,则2t −t =18,解得t =18.综上所述,经过6或18秒后,点A 、B 重合;(3)在(2)的条件下,即点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动,设点A 、B 同时出发,运动时间为t 秒,点A 、B 两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6−t)−(−12−2t)=20,解得t =2;②若两点均向右,则(−12+2t)−(6+t)=20,解得t =38;③若A 点向右,B 点向左,则(6+t)−(−12−2t)=20,解得t =23;④若A 点向左,B 点向右,(−12+2t)−(6−t)=20,t =383.综上,经过2,38,23,383秒时,A 、B 相距20个单位.解析:本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.(1)根据偶次方以及绝对值的非负性求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分四种情况:①两点均向左;②两点均向右;③A点向右,B点向左;④A点向左,B点向右.根据点A、B两点间的距离为20个单位分别列出方程即可求解.。
成都高新中和中学2019年七年级数学(上)期末交流题(含答案)
中和中学2019-2020学年上期七年级年级期末复习题数 学(时间:120分钟,总分:150分)A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.51-的倒数是( ) A .51 B .51- C .5D .-52、下面四个立体图形,从正面、左面、上面观察都不可能....看到长方形的是( )A B C D3. 近年来,党和国家高度重视精准扶贫,收效显著,据不完全统计约有65000000人脱贫,65000000用科学记数法表示为( )A .7105.6⨯ B. 8105.6⨯ C. 91050.6⨯ D.61056⨯ 4.下列调查中,适宜采用普查方式的是( )A. 了解一批圆珠笔的寿命B. 了解全国九年级学生身高的现状C. 考察人们保护海洋的意识D. 检查一枚用于发射卫星的运载火箭的各零部件 5.下列方程的解是X=2的是( )A. 084x =+B. 032x 31-=+C. 2x 32= D. 53x -1= 6、已知622x y 和313m nx y -是同类项,则2m n +的值是( ) A.6B.5C.4D.27、下列等式的变形正确的是( )A .由126x -=,得261x =-B .由22n m -=-,得0m n -=C .由182x =,得4x = D .由nx ny =,得x y =8、如图,OC 是AOB ∠的平分线,OD 平分AOC ∠,且25COD ∠=︒,则AOB ∠=( ) A. 50°B. 75°C. 100°D. 20°9、下列说法正确的个数为 ( )(1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离 (3)两点之间的所有连线中,线段最短 (4)直线AB 和直线BA 表示同一条直线 A .1 B .2 C .3 D .410、某商场把一个双肩背书包按进价提高30%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利10元.设每个双肩背书包的进价是x 元,根据题意列一元一次方程,正确的是 ( )A. ()10x -x 30%1=+B.()10x -x 30%1=-C.()10x x 30%1=++D. ()10x 30%1=+第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11、3yx -2π的系数是____________.12、若4x =是关于x 的方程2310x m +-=的解,则m 的值为13、钟面上8点25分时,时针与分针的夹角的度数是14.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x 的值是 .三、解答题(本大题共6个小题,共54分,答案写在答题卡上) 15. (本小题满分8分,每题4分)(1)计算:()()841-5-2-3-2-2-÷+⨯第20题图ABCDE (2)计算:()3211233-+-+-÷16.(本小题满分8分,每题4分) (1)化简:()()3ab -a2-3a 5ab 22+(2) 已知13x =-,y=2,求代数式()226213x y x x x y +-+-的值.17.(本小题满分8分,每题4分) (1)解方程:()()y -134-1-y =(2)解方程:161-5x 312=-+x18.(本小题满分10分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度; (2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B 种品牌的绿色鸡蛋的个数?19.(本小题满分10分) 据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,如果11片银杏树叶一年的平均滞尘量与20片国槐树叶一年的平均滞尘量相同..,那么一片国槐树叶一年的平均滞尘量是多少毫克? 20.(本小题满分10分)如图,数轴上有A 、B 两点,AB=12,原点O 是线段AB 上的一点,OA=2OB . (1)写出A ,B 两点所表示的实数;(2)若点C 是线段AB 上一点,且满足AC=CO +CB ,求C 点所表示的实数;(3)若动点P 、Q 分别从A 、B 同时出发,向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,设运动时间为t 秒,当点P 与点Q 重合时,P 、Q 两点停止运动,求当t 为何值时,2OP ﹣OQ=4。
2019年成都高新石室天府中学七年级数学(上)期末交流题
高新区2019-2020学年上期七年级期末复习题数 学(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分) 1. 19-的倒数是( )A .19B .19-C .9D .9-2.图中几何体从上边看到的是( )A .B .C .D .3. 中国国际大数据产业博览会以“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为( ) A .23.510⨯B .103.510⨯C .113.510⨯D .103510⨯4. 下列方程中,属于一元一次方程的是( )A .243x x -=B .12x x -=C .512xx =-D .21x y +=5. 某市今年共有6万名考生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,下列说法中正确的是( ) A .这种调查采用了抽样调查的方式 B .6万名考生是总体 C .1000名考生是总体的一个样本D .样本容量是1000名考6. 下列计算中,正确的是( ) A .422x x x -+=B .()23161y x y x +--=--C .()2222a a b a a b --=--D .222358a b ba a b += 7. 如图,点O 在直线DB 上,已知115∠=︒,90AOC ∠=︒,则2∠的度数为( )A .165︒B .105︒C .75︒D .15︒8.下列说法正确的是( )A .射线P A 和射线AP 是同一条射线B .若AP PB =,则P 为线段AB 的中点C .线段AB 的长度叫做A 、B 两点之间的距离D .两点之间,直线最短 9.有理数m 、n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .1m <-B .3n >C .m n <-D .m n >-10. 一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.小明在该摊位以198元的价格买了一件服装,对于商家来说,这次生意的盈亏情况为( )A .亏2元B .不亏不赚C .赚2元D .赚5元二、填空题(每空4分,共16分)11. 多项式2223237a ab b π-+的次数为__________,最高次项系数为____________12.如图是七年级(1)班学生参加课外活动人数的扇形统计图,参加“体育类”活动对应的扇形圆心角度数为________________13.如图,已知点C 在线段AB 上,线段4AC =,线段BC 的长是线段AC 的长的两倍,点D 是线段AB 的中点,则线段CD 的长是__________.14.用一平面去截下列几何体,其截面可能是长方形的有________个.三、解答题题(共54分)15.计算:(1)()3411110442⎛⎫-+÷-⨯-- ⎪⎝⎭; (2)()3532+1245864⎛⎫-⨯--- ⎪⎝⎭.16. (本小题满分10分,每题5分) (1)化简:()()2232246a ab a ab --++-;(2)化简求值:()22222112523x y xy xy x y x y ⎛⎫-+-- ⎪⎝⎭,其中()25150x y -++=.17.(本小题满分10分,每题5分) (1)解方程:()73326y y -+=;(2)解方程:11132x x x +-+=-. 18.(本小题满分7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表: 请根据以上图表,解答下列问题: 零花钱数额x /元 人数(频数) 频率030x ≤< 6 0.153060x ≤< 12 0.30 6090x ≤< 16 0.40 90120x ≤< b 0.10 120150x ≤<2a(1)这次被调查的人数共有_______人,a =________. (2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数19.(本小题满分7分)目前,成都市城市“一户一表”居民用电实行阶梯电价,具体收费标准如下:一户居民一个月用电量(单位:度) 电价(单位:元/度)第1档 不超过180度的部分 0.5 第2档超过180度但不超过280度的部分0.6第3档 超过280度的部分 0.8(1)若我市某户12月用电量为300度,求该户应交电费多少?(2若我市某户12月电费平均为每度0.615元,求该户12月用电量为多少?20.(本小题满分10分)已知:如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒2°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t (0秒≤t ≤45秒).(1)则∠MOA = ,∠NOB = .(用含t 的代数式表示)(2)在运动过程中,当∠AOB 达到60°时,求t 的值.(3)在旋转过程中是否存在这样的t ,使得射线OB 是由射线OM 、射线OA 、射线ON 中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,直接写出t 的值;如果不存在,请说明理由.61216 2B卷(共50分)一、填空题。
七年级 年级上册期末考试数学试题(含答案)
2019七年级上册期末考试数学试题(含答案) 查字典数学网为大家搜集整理了2019七年级上册期末考试数学试题,供大家参考,希望对大家有所帮助!一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合要求的,请将答案选项填在下表中。
题号12345678910答案1.下列四个图中的线段(或直线、射线)能相交的是()2.如图所示四个图形中,能用、AOB、O三种方法表示同一个角的图形是()3.下列各组运算中,结果为负数的是()A.﹣(﹣3)B.(﹣3)(﹣2)C.﹣|﹣3|D.(﹣3)24.对于代数式,下列说法不正确的是()A.它的一次项系数是﹣1B.它是单项式C.它的常数项是D.它是二次三项式5.把弯曲的河道改直,这样能缩短航程,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.线段有两个端点D.线段可以比较大小6.下列说法正确的是()A.近似数32与32.0的精确度相同B.近似数8.6万精确到十分位C.用科学记数法表示的数6.8105,原数为68000D.近似数7.3的准确值范围是大于或等于7.25而小于7.357.如图,是一个由3个相同的正方体组成的立体图形,则从正面看到的平面图形为()8.下列方程变形正确的是()A.将方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2B.将方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.将方程去分母,得2(x+1)﹣4=8+(2﹣x)D.将方程化系数为1,得x=﹣19.用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A.15B.75C.85D.10510.文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A.不赚不赔B.亏8元C.盈利3元D.亏损3元二、填空题(本大题共8个小题,每题3分,共24分,请将答案直接写在体中横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高新区2019-2020学年上期七年级期末复习题数学(时间:120分钟,总分:150分)A卷(共100分)一、选择题(每题3分,共30分)1.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()(教材11页习题第1题改编)A.①②③④B.②①③④C.③②①④D.④②①③2.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()(教材64页习题第1题改编)A.3.16×109 B.3.16×107 C.3.16×108 D.3.16×1063.单项式﹣x3y2的系数与次数分别是()(教材88页随堂练习改编)A.﹣2,5 B.2,5 C.D.4.过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.45.根据下图所示,对a、b、c三中物体的重量判断正确的是()(教材134页习题第2题改编)A.a<c B.a<b C.a>c D.b<c6.下列各项调查中,最适合用全面调查(普查)的是()(教材163页习题第1题改编)A.了解国内外观众对电影《流浪地球》的观影感受B.了解太原市九年级学生每日睡眠时长C.“长征﹣3B火箭”发射前,检查其各零部件的合格情况D.检测一批新出厂的手机的使用寿命7.下列代数式中,值一定是正数的是()(教材76页复习题24题改编)A.x2 B.|x﹣1| C.2﹣x2 D.x2+18.郑万铁路万州往郑州方向的首座隧道“天城隧道”于2018年11月30日贯通,早上品尝重庆小面,晚上享用北京烤鸭,以后这都不是梦,建造隧道的目的用下面哪个数学知识来解释最恰当()A.经过两点有且只有一条直线B.过一点可以画多条直线C.两点之间线段最短D.连接两点之间线段的长度是两点之间的距离9.下列各单项式中,与xy2是同类项的是()(教材92页第5题改编)A.x2y B.x2y2C.x2yz D.9xy210.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有()(教材18页习题第4题改编)A.12个 B.10个 C.8个D.6个二、填空题(每题4分,共16分)11.﹣的绝对值是;﹣6的倒数是;3.5的相反数是.(教材72页复习题2题改编)12.57.32°=°′″.(教材116页随堂练习第2题改编)13.甲、乙两家汽车销售公司根据近几年的销售量,分别制作了如下折线统计图,试判断:从2014年到2018年,这两家公司中销售量增长较快的是公司.(教材180页随堂练习2题改编)14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对道题,总分才不会低于65分.(教材131页随堂练习1题改编)三、解答题。
(共54分)15.计算:(14分)(教材73页复习题6题改编)(1)﹣8﹣(﹣3)+5 (2)﹣6÷(﹣2)×(3)(4)﹣14﹣(1﹣0.5)×16.解方程:(8分)(教材140页习题1题改编)(1)5x﹣4=2(2x﹣3)(2)﹣=117.(6分)化简求值3(a2﹣ab+2b2)﹣2(2a2﹣ab+b2),其中a=,b=﹣1.(教材91页随堂练习题3题改编)18.(8分)为了了解市民私家车出行的情况,某市交通管理部门对拥有私家车的市民进行随机抽样调查、其中一个问题是“你平均每天开车出行的时间是多少”共有4个选项:A、1小时以上(不含1小时);B:0.5﹣1小时(不含0.5小时);C:0﹣0.5小时(不含0小时);D,不开车.图1、2是根据调査结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(教材178页习题2题改编)(1)本次一共调查了名市民;(2)在图1中将选项B的部分补充完整,并求图2中,A类所对应扇形圆心角α的度数;(3)若该市共有200万私家车,你估计全市可能有多少私家车平均每天开车出行的时间在1小时以上?19.(8分)古代名著《算学启蒙》中有这样一个问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里.如果慢马先行12天,快马多少天能够追上慢马?(教材151页习题2题改编)20.(10分)(1)如图,已知点C在线段AB上,AC=6cm,且BC=4cm,M、N分别是AC、BC的中点,求线段MN的长度;(2)在(1)题中,如果AC=acm,BC=bcm,其他条件不变,你能猜出MN的长度吗?请你用一句简洁的话表达你发现的规律;(3)对于(1)题,当点C在BA的延长线上时,且AB=mcm,其他条件不变,求MN的长度.B卷(共50分)一、填空题。
(每题4分,共20分)21.已知整式2x+3y﹣1=0,则4x+6y+1的值为22.若单项式﹣x2y a与﹣2x b y5的和仍为单项式,则a b=.(教材91页随堂练习1)23.如图,有理数a、b、c在数轴上,则化简|a﹣c|﹣|2a+b|+|c﹣b|的结果是.(教材91页随堂练习1)24.将一个长4cm宽2cm的长方形绕它的一边所在的直线旋转一周,所得几何体的体积为.(教材21页复习题11题改编)25.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数“的证明上.如图为前几个“五边形数“的对应图形,请据此推断,第6个“五边形数”应该为,第22个“五边形数”应该为.(教材103页复习题15题改编)二、解答题。
(共30分)26.(8分)某市组织学术研讨会,需租用客车接送参会人员往返宾馆和观摩地点,客车租赁公司现有45座和60座两种型号的客车可供租用(教材149页习题3题改编)(1)已知60座的客车每辆每天的租金比45座的贵100元,会务组第一天在这家公司租了2辆60座和5辆45座的客车,一天的租金为1600元,求45座和60座的客车每辆每天的租金各是多少元?(2)由于第二天参会人员发生了变化,因此会务组需重新确定租车方案方案1:若只租用45座的客车,会有一辆客车空出30个座位;方案2:若只租用60座客车,正好坐满且比只租用45座的客车少用两辆①请计算方案1、2的费用;②从经济角度考虑,还有方案3吗?如果你是会务组负责人,应如何确定最终租车方案,并说明理由.27.(10分)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若∠COD=∠AOB,则∠COD是∠AOB的内半角.(1)如图1,已知∠AOB=70°,∠AOC=25°,∠COD是∠AOB的内半角,则∠BOD=;(2)如图2,已知∠AOB=60°,将∠AOB绕点O按顺时针方向旋转一个角度α(0<α<60°)至∠COD,当旋转的角度α为何值时,∠COB是∠AOD的内半角.(3)已知∠AOB=30°,把一块含有30°角的三角板如图3叠放,将三角板绕顶点O以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.28.(12分)对于数轴上不重合的两点A,B,给出如下定义:若数轴上存在一点M,通过比较线段AM和BM的长度,将较短线段的长度定义为点M到线段AB的“绝对距离”.若线段AM和BM的长度相等,将线段AM或BM的长度定义为点M到线段AB的“绝对距离”.(1)当数轴上原点为O,点A表示的数为﹣1,点B表示的数为5时①点O到线段AB的“绝对距离”为;②点M表示的数为m,若点M到线段AB的“绝对距离”为3,则m的值为;(2)在数轴上,点P表示的数为﹣6,点A表示的数为﹣3,点B表示的数为2.点P以每秒2个单位长度的速度向正半轴方向移动时,点B同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为t(t>0)秒,当点P到线段AB的“绝对距离”为2时,求t的值.数学答案及评分标准A卷(共100分)一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 B C D B C C D C D B二、填空题(每题4分,共16分)11、,,﹣3.512.57°19′1213.甲14.15三、解答题(共54分)15.(共14分,前2题3分一道,后2题4分一道)解:(1)﹣8﹣(﹣3)+5=﹣8+3+5...........................2分=0;..................................3分解:(2)﹣6÷(﹣2)×=3×............................2分=;.............................3分解:(3)=﹣24×(﹣)﹣24×(﹣)﹣24×.............................2分=18+20﹣21...................................3分=17;...........................................4分解:(4)﹣14﹣(1﹣0.5)×=﹣1﹣×+(2﹣9).....................................2分=﹣1﹣﹣7......................................3分=.....................................................4分16.(8分,第一题3分,第二题5分)解:(1)去括号,得:5x﹣4=4x﹣6,................................1分移项,得:5x-4x=4 - 6.................................................. 2分合并同类项,得x=﹣2;.....................................................3分(2)去分母,得:5(x﹣3)﹣2(4x+1)=10,..................1分去括号,得:5x﹣15﹣8x﹣2=10,....................................2分移项,得:5x-8x=15+2+10.................................................3分合并同类项,得:﹣3x=27,..............................................4分系数化为1,得:x=﹣9.....................................................5分17.(共6分)解:原式=3a2﹣3ab+6b2﹣4a2+2ab﹣2b2......................................2分=﹣a2﹣ab+4b2,................................................3分当a=,b=﹣1时,原式=-(21)2 -21×(-1)+4×(-1)2..........................................4分=﹣++4.....................................................5分=4.............................. ................6分18.(8分)(1)200…………….2分(2)如图................2分;A类所对应扇形圆心角α的度数为360°×30%=108°;. (2)分(3)估计全市平均每天开车出行的时间在1小时以上私家车数量约为200×30%=60(万)....................2分19.(8分)解:设快马x天可以追上慢马由题意,得240x-150x=150×12,.........................................5分解得:x=20................................................................7分答:快马20天可以追上慢马..........................................8分20.(10分)解:(1)∵AC=6cm,点M是AC的中点,∴CM=AC=3cm,......................................1分∵BC=4cm,点N是BC的中点,∴CN=BC=2cm,........................................2分∴MN=CM+CN=5cm,...................................3分(2)∵点M、N分别是AC、BC的中点,∴CM=,CN=,......................5分∴MN=(AC+BC)=;............................6分规律:直线上相邻两线段中点间的距离为两线段长度和的一半;..............................7分(3)当点C在BA的延长线上时,MN=(BC﹣AC)=....................9分∴线段MN的长度为5cm;.................................................10分B卷(共50分)一、填空题(每题4分,共20分)21.3 22.25 23.a+2c24.16π或32πcm325.51 , 715二、解答题(共30分)26.(8分)解:(1)设45座的客车每辆每天的租金为x元,则60座的客车每辆每天的租金为(x+100)元,则:2(x+100)+5x=1600,..........................................2分解得:x=200,∴x+100=300,答:设45座的客车每辆每天的租金为200元,则60座的客车每辆每天的租金为300元;........................3分(2)设参会人员为y人,由题意得:=+2,解得:y=240,.................................................................4分①方案1的费用:(240+30)÷45×200=1200(元),.........................................5分方案2的费用:240÷60×300=1200(元),.......................................................6分②有方案3:租用45座的客车4辆,60座的客车1辆,理由如下:共240人,租用45座的客车4辆,60座的客车1辆,.....................................7分费用:4×200+300=1100(元)<1200元,∴最终租车方案为:租用45座的客车4辆,60座的客车1辆.................................8分27.(10分)解:(1)∵∠COD是∠AOB的内半角,∠AOB=70°,∴∠COD=∠AOB=35°,.................................2分∵∠AOC=25°,∴∠BOD=70°﹣35°﹣25°=10°,.............................3分故答案为:10°,(2)∵∠AOC=∠BOD=α,∴∠AOD=60°+α,∵∠COB是∠AOD的内半角,∴∠BOC=(60°+α)=60°﹣α,∴α=20°,.......................................................................6分∴旋转的角度α为20°时,∠COB是∠AOD的内半角;(3)在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度α,旋转的时间为t,如图1,∵∠BOC是∠AOD的内半角,∠AOC=∠BOD =α,∴∠AOD=30°+α,∴(30°+α)=30°﹣α,解得:α=10°,∴t=s;......................................................7分如图2,∵∠BOC 是∠AOD的内半角,∠AOC=∠BOD=α,∴∠AOD=30°+α,∴(30°+α)=α﹣30°,∴α=90°,∴t==30s;.....................................................8分如图3,∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360﹣α,∴∠BOC=360°+30°﹣α,∴(360°+30°﹣α)=360°﹣α﹣30°,∴α=270°,∴t=90s,.............................................................9分如图4,∵∠AOD是∠BOC的内半角,∠AOC=∠BOD=360﹣α,∴∠BOC=360°+30°﹣α,∴(360°+30°﹣α)=30°+30°﹣(360°+30°﹣α),解得:α=350°,∴t=s,.........................................................10分综上所述,当旋转的时间为s或30s或90s或s时,射线OA,OB,OC,OD能构成内半角.28.(12分)解:(1)①∵数轴上原点为O,点A表示的数为﹣1,点B表示的数为5,∴OA=1,OB=5,而1<5,∴点O到线段AB的“绝对距离”为1.故答案为1;....................................................................2分②点M 表示的数为m,点A表示的数为﹣1,点B表示的数为5,若点M到线段AB的“绝对距离”为3,则可分三种情况:Ⅰ)当点M在点A的左边时,MA<MB,∵点M到线段AB的“绝对距离”为3,∴﹣1﹣m=3,∴m=﹣4,符合题意;Ⅱ)当点M在点A、B之间时,∵MA=m+1,MB=5﹣m,如果m+1=3,那么m =2,此时5﹣m=3,符合题意;Ⅲ)当点M在点B的右边时,MB<MA,∵点M到线段AB的“绝对距离”为3,∴m﹣5=3,∴m=8,符合题意;综上,所求m的值为﹣4或2或8.故答案为﹣4或2或8;.......................................................5分,答对一个答案给1分(2)点P运动到点A时需要的时间为:秒,点B运动到点A时需要的时间为:5秒,点P、点B相遇需要的时间为:秒............................................................6分移动的时间为t(t>0)秒,点P表示的数为﹣6+2t,点B表示的数为2﹣t. (7)分分四种情况:①当0<t≤时,P A<PB,∵P A=﹣3﹣(﹣6+2t)=3﹣2t=2,∴t=,符合题意;..................................................................................8分②当<t≤时,P A=﹣6+2t﹣(﹣3)=2t﹣3,PB=2﹣t﹣(﹣6+2t)=8﹣3t,如果2t﹣3=2,t=,此时8﹣3t=<2,不合题意,舍去;如果8﹣3t=2,t=2,此时2t﹣3=1<2,不合题意,舍去;......................................9分③当<t≤5时,PB<P A,∵PB=(﹣6+2t)﹣(2﹣t)=3t﹣8=2,∴t=,符合题意;.....................................................................................10分④当t>5时,P A<PB,∵P A=(﹣6+2t)﹣(﹣3)=2t﹣3=2,∴t=<5,不合题意,舍去.................................................................11分综上,所求t的值为或.....................................................................12分七年级 数学 命题学校: 成都高新玉成乡九年义务教育学校 命题人: 审题人:2019—2020学年度(上期)七年级期末考试 数学答题卷A 卷(共100分)一、选择题(共30分,每小题3分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效18.(每小题10分).(1)本次一共调查了 名市民;(2)在图1中将选项B 的部分补充完整,并求图2中,A 类所对应扇形圆心角α的度数; (3)若该市共有200万私家车,你估计全市可能有多少私家车平均每天开车出行的时间在1小时以上?19.(每小题8分)20. (每小题10分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 学校(校区): 班级: 姓名:________考号:××××××××××××××××××密 封 线 内 不 要 答 题×××××××××××××××××××注意事项:1.答题前请将密封线内的项目填写清楚;2.请严格按照题号在相应的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上的答案无效。