2017年上海市中考数学一模试卷
上海市2017各区中考数学一模试卷6套(包含答案解析)
2017年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.三、解答题:(本大题共7题,满分78分)19.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.2017年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出cotA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=,cotA=.2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣1【考点】二次函数图象上点的坐标特征.【分析】分别求出x=0时y的值,即可判断是否过原点.【解答】解:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键.3.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米【考点】相似三角形的应用.【专题】应用题.【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同.4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =【考点】*平面向量.【分析】根据向量的定义对各选项分析判断后利用排除法求解.【解答】解:A、∥,∥,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B.【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题.5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴=,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴=,故B正确;∵AD∥BC,∴△AEF∽△EBC∴=,故D正确.∴C错误.故选C.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【考点】相似三角形的判定与性质.【分析】由△AEF∽△ABC,可知△AEF与△ABC的周长比=AE:AB,根据cosA==,即可解决问题.【解答】解:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.【考点】比例的性质.【分析】用a表示出b,然后代入比例式进行计算即可得解.【解答】解:∵ =,∴b=a,∴==.故答案为:.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.计算:(﹣3)﹣(+2)= .【考点】*平面向量.【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算.【解答】解::(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型.9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是k<1 .【考点】二次函数的性质.【分析】由开口向下可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x ﹣4)2.故答案为:y=(x﹣4)2.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】利用锐角三角函数定义求出所求即可.【解答】解:∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,故答案为:.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可.【解答】解:当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.故答案为:>【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .【考点】二次函数的性质.【分析】根据函数值相等的点到对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,故答案为:x=2.【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】CF⊥AB于点F,构成两个直角三角形.运用三角函数定义分别求出AF和BF,即可解答.【解答】解:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米故答案为:5+5.【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【专题】探究型.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.【考点】旋转的性质;解直角三角形.【分析】先解直角△ABC,得出BC=AB•cosB=9×=6,AC==3.再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN.解直角△ANC求出AN=AC•cos∠CAN=3×=2,根据等腰三角形三线合一的性质得出AE=2AN=4.【解答】解:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.故答案为4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了解直角三角形以及等腰三角形的性质.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】实数的运算;特殊角的三角函数值.【分析】直接将特殊角的三角函数值代入求出答案.【解答】解:原式====.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.【解答】解:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【点评】本题考查平面向量,需要掌握一向量在另一向量方向上的分量的定义,以及向量加法的平行四边形法则.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【考点】相似三角形的判定与性质.【分析】(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.【解答】解:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【考点】相似三角形的判定与性质.【分析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.【解答】证明:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【点评】本题考查的是二次函数知识的综合运用、相似三角形的判定和性质,掌握待定系数法求二次函数解析式的一般步骤、熟记相似三角形的判定定理和性质定理、掌握二次函数的性质、灵活运用数形结合思想是解题的关键.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【考点】四边形综合题.【分析】(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,。
2017年中考数学一模试卷(上海市普陀区含答案和解释)
2017年中考数学一模试卷(上海市普陀区含答案和解释)2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是() A.形状相同的图形 B.大小不相同的图形 C.能够重合的图形 D.大小相同的图形 2.下列函数中,y 关于x的二次函数是() A.y=2x+1 B.y=2x(x+1) C.y= D.y=(x�2)2�x2 3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D. 4.抛物线y=�x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x … �2 �1 0 1 2 … y … 0 4 6 6 4 … 从上表可知,下列说法中,错误的是() A.抛物线于x 轴的一个交点坐标为(�2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的 5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是() A.∠DAC=∠ABC B.AC 是∠BCD的平分线 C.AC2=BC•CD D. = 6.下列说法中,错误的是() A.长度为1的向量叫做单位向量 B.如果k≠0,且≠ ,那么k 的方向与的方向相同 C.如果k=0或 = ,那么k = D.如果= , = ,其中是非零向量,那么∥ 二、填空题(每题2分) 7.如果x:y=4:3,那么 = . 8.计算:3 �4( + )= . 9.如果抛物线y=(m�1)x2的开口向上,那么m的取值范围是. 10.抛物线y=4x2�3x与y轴的交点坐标是. 11.若点A(3,n)在二次函数y=x2+2x�3的图象上,则n的值为. 12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于厘米. 13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是. 14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是. 15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是. 16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域) 17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于. 18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果 = ,那么S△DPQ:S△CPE的值是.三、解答题 19.计算:cos245°+ �•tan30°. 20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径. 21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设 = , = ,那么试用,表示向量,(请直接写出结论) 22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号) 23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC= ,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE. 24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x�c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标. 25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分) 1.“相似的图形”是() A.形状相同的图形 B.大小不相同的图形 C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A. 2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y= D.y=(x�2)2�x2 【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误; B、y=2x(x+1)是二次函数,故B正确; C、y= 不是二次函数,故C错误; D、y=(x�2)2�x2是一次函数,故D错误;故选:B. 3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于() A. B. C. D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴ ,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴ ,∴ ,故选D. 4.抛物线y=�x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x … �2 �1 0 1 2 … y …0 4 6 6 4 … 从上表可知,下列说法中,错误的是() A.抛物线于x轴的一个交点坐标为(�2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(�2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=�2时,y=0,∴抛物线过(�2,0),∴抛物线与x轴的一个交点坐标为(�2,0),故A正确;当x=0时,y=6,∴抛物线与y 轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x= ,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C. 5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC相似的是() A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D. = 【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;② = ;故选:C. 6.下列说法中,错误的是() A.长度为1的向量叫做单位向量 B.如果k≠0,且≠ ,那么k 的方向与的方向相同 C.如果k=0或 = ,那么k = D.如果 = , = ,其中是非零向量,那么∥ 【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误; B、当k>0且≠ 时,那么k 的方向与的方向相同,故本选项正确; C、如果k=0或 = ,那么k = ,故本选项错误; D、如果 = , = ,其中是非零向量,那么向量a与向量b共线,即∥ ,故本选项错误;故选:B.二、填空题(每题2分) 7.如果x:y=4:3,那么 = .【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x= y,∴ = = ,故答案为:. 8.计算:3 �4( + )= ��4 .【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3 �4( + )=3 �4 �4 =��4 .故答案是:��4 . 9.如果抛物线y=(m�1)x2的开口向上,那么m的取值范围是m>1 .【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m�1>0.【解答】解:因为抛物线y=(m�1)x2的开口向上,所以m�1>0,即m>1,故m 的取值范围是m>1. 10.抛物线y=4x2�3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2�3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0). 11.若点A(3,n)在二次函数y=x2+2x�3的图象上,则n的值为12 .【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x�3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x�3的图象上,∴A(3,n)满足二次函数y=x2+2x�3,∴n=9+6�3=12,即n=12,故答案是:12. 12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于 5 �5 厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP= AB=(5 �5)厘米,故答案为:5 �5. 13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是1:4 .【考点】相似图形.【分析】根据等边三角形周长的比是三角形边长的比解答即可.【解答】解:因为原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,所以放大前后的两个三角形的面积比为5:20=1:4,故答案为:1:4. 14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是x>5 .【考点】点与圆的位置关系.【分析】根据点在圆外的判断方法得到x的取值范围.【解答】解:∵点P在半径为5的⊙O外,∴OP>5,即x>5.故答案为x>5. 15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是北偏西52°.【考点】方向角.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图,∵∠1=∠2=52°,∴从小岛B观察港口A的方向是北偏西52°.故答案为:北偏西52°. 16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:y=�πx2+16π(结果保留π,不要求写出定义域)【考点】函数关系式;函数自变量的取值范围.【分析】根据圆的面积公式,可得答案.【解答】解:由题意得在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米, y=�πx2+16π,故答案为:y=�πx2+16π. 17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.【考点】解直角三角形;等腰三角形的性质.【分析】如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC 于E,则BE=EC,在Rt△AEC中,根据cos∠C= = = ,即可解决问题.【解答】解:如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC于E,则BE=EC,,在Rt△AEC中,cos∠C= = = ,故答案为. 18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果 = ,那么S△DPQ:S△CPE的值是1:15 .【考点】三角形的重心;相似三角形的判定与性质.【分析】连接QE,由DE∥BC、DE过△ABC的重心即可得出 = ,设DE=4m,则BC=6m,结合 = 即可得出DP=m,PE=3m,由△DPQ与△QPE有相同的高即可得出 = = ,再根据DE∥BC,利用平行线的性质即可得出∠QDP=∠QBC,结合公共角∠DQP=∠BQC即可得出△QDP∽△QBC,依据相似三角形的性质即可得出 = = ,进而得出= ,结合三角形的面积即可得出 = = ,将与相乘即可得出结论.【解答】解:连接QE,如图所示.∵DE∥BC,DE过△ABC的重心,∴ = .设DE=4m,则BC=6m.∵ = ,∴DP=m,PE=3m,∴ = = .∵DE∥BC,∴∠QDP=∠QBC,∵∠DQP=∠BQC,∴△QDP∽△QBC,∴ = = ,∴ = ,∴ = = ,∴= • = × = .故答案为:1:15.三、解答题 19.计算:cos245°+ �•tan30°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=()2+ �× = + �1 = . 20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.【考点】垂径定理;勾股定理.【分析】连接OB,根据垂径定理求出BE,根据勾股定理得出方程,求出方程的解即可.【解答】解:连接OB,设OB=OA=R,则OE=16�R,∵AD⊥BC,BC=16,∴∠OEB=90°,BE= BC=8,由勾股定理得:OB2=OE2+BE2,R2=(16�R)2+82,解得:R=10,即⊙O的直径为20. 21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设 = , = ,那么试用,表示向量,(请直接写出结论)【考点】*平面向量.【分析】(1)根据向量加法的平行四边形法则,分别过P作OA、OB的平行线,交OA于D,交OB于E;(2)易得△OAQ∽△PEQ,根据相似三角形对应边成比例得出 = = = ,那么 =2 =�2 , = = .再求出 = = �2 ,然后根据 = �即可求解.【解答】解:(1)如图,分别过P作OA、OB的平行线,交OA于D,交OB于E,则向量分别在,方向上的分向量是,;(2)如图,∵四边形ODPE是平行四边形,∴PE∥DO,PE=DO,∴△OAQ∽△PEQ,∴ = = ,∵点A是线段OD的中点,∴OA= OD= PE,∴ = = = ,∴ =2 =�2 , = = .∵ = � = �2 ,∴ = = �2 ,∴ = � = �2 � = �2 . 22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DE⊥AB,可得∠BDE=∠BAC,即可知tan∠BAC=tan∠BDE,即 = = ,设DC=2x,由角平分线性质得DE=DC=2x,再分别表示出BD、AC的长,最后由坡比定义可得答案.【解答】解:过点D作DE⊥AB于点E,∴∠DEB=∠C=90°,∵∠B=∠B,∴∠BDE=∠BAC,∴tan∠BAC=tan∠BDE,即 = = ,设DC=2x,∵∠DAC=∠DAE,∠DEB=∠C=90°,∴DE=DC=2x,则BE=x,BD= = x,∴BC=CD+BD=(2+ )x,∴AC=2BC=(4+2 )x,∴新坡面AD的坡比i2= = =�2. 23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC= ,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.【考点】相似三角形的判定与性质.【分析】(1)两组对应边的比相等且夹角对应相等的两个三角形相似,据此进行证明即可;(2)先根据相似三角形的性质,得出∠BAC=∠EDA, = ,再根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行证明即可.【解答】证明:(1)∵DC= ,CE=a,AC=b,∴CD2=CE×CA,即 = ,又∵∠ECD=∠DCA,∴△DEC∽△ADC;(2)∵△DEC∽△ADC,∴∠DAE=∠CDE,∵∠BAD=∠CDA,∴∠BAC=∠EDA,∵△DEC∽△ADC,∴ = ,∵DC=AB,∴ = ,即= ,∴△ADE∽△CAB,∴ = ,即AE•AB=BC•DE. 24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x�c 上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C 的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.【考点】二次函数综合题.【分析】(1)先根据点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x�c,得原抛物线为y=�x2+2x+8,向下平移6个单位后所得的新抛物线为y=�x2+2x+2,据此求得顶点C的坐标;(2)根据A(4,0),B(0,2),C(1,3),得到AB2=20,AC2=18,BC2=2,进而得出AB2=AC2+BC2,根据∠ACB=90°,求得tan∠CAB的值即可;(3)先设抛物线的对称轴x=1与x轴交于点H,根据 = = ,求得PH= AH= ,进而得到P (1,),再由HA=HC=3,得∠HCA=45°,根据当点Q在点C下方时,∠BCQ=∠ACP,因此△BCQ与△ACP相似分两种情况,根据相似三角形的性质即可得到点Q的坐标.【解答】解:(1)点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x�c,得,解得,∴原抛物线为y=�x2+2x+8,向下平移6个单位后所得的新抛物线为y=�x2+2x+2,∴顶点C的坐标为(1,3);(2)如图2,由A(4,0),B(0,2),C(1,3),得 AB2=20,AC2=18,BC2=2,∴AB2=AC2+BC2,∴∠ACB=90°,∴tan∠CAB= = = ;(3)如图3,设抛物线的对称轴x=1与x轴交于点H,由 = = ,得PH= AH= ,∴P(1,),由HA=HC=3,得∠HCA=45°,∴当点Q 在点C下方时,∠BCQ=∠ACP,因此△BCQ与△ACP相似分两种情况:①如图3,当 = 时, = ,解得CQ=4,此时Q(1,�1);②如图4,当 = 时, = ,解得CQ= ,此时Q(1,). 25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.【考点】几何变换综合题.【分析】(1)如图1中,作OH⊥BC于H.只要证明△DCM≌△OHM,即可得出CD=OH=3.(2)如图2中,作NG⊥OB于G.首先证明∠1=∠2,根据tan∠1=tan∠2,可得 = ,由此即可解决问题.(3)分两种情形讨论即可①如图3中,当OM=ON时,OH垂直平分MN,②如图4中,当OM=MN时,分别求解即可.【解答】解:(1)如图1中,作OH⊥BC 于H.在Rt△ABC中,∵AB=10,sinB= ,∴AC=6,BC=8,∵AO=OB,OH∥AC,∴CH=HB=4,OH=3,∵CM=2,∴CM=HM=2,在△DCM和△OHM 中,,∴△DCM≌△OHM,∴CD=OH=3.(2)如图2中,作NG⊥OB于G.∵∠HOB=∠A=∠MON,∴∠1=∠2,在Rt△BNG中,BN=y,sibB= ,∴GN= y,BG= y,∵tan∠1=tan∠2,∴ = ,∴ = ,∴y= ,(0<x<4).(3)①如图3中,当OM=ON时,OH垂直平分MN,∴BN=CM=x,∵△OMH≌△ONG,∴NG=HM=4�x,∵sinB= ,∴ = ,∴CM=x= .②如图4中,当OM=MN时.连接CO,∵OA=OB,OM=MN,∴CO=OA=OB,∴∠MON=∠MNO=∠A=∠OCA,∴△MON∽△OAC,∴∠AOC=∠OMN,∴∠BOC=∠CMO,∵∠B=∠B,∴△CMO∽△COB,∴ = ,∴8x=52,∴x= .综上所述,△OMN是以OM为腰的等腰三角形时,线段CM的长为或. 2017年2月12日。
2017年上海市长宁区、金山区中考数学一模试卷附答案解析
2017年上海市长宁区、金山区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2) C.(2,﹣1)D.(2,1)2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A.B.C.D.3.如图,下列能判断BC∥ED的条件是()A.=B.= C.= D.=4.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<105.已知非零向量与,那么下列说法正确的是()A.如果||=||,那么= B.如果||=|﹣|,那么∥C.如果∥,那么||=||D.如果=﹣,那么||=||6.已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离B.相切C.相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.如果3x=4y,那么=.8.已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是.9.已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c=.10.已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m=.11.设α是锐角,如果tanα=2,那么cotα=.12.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是 .13.已知⊙A 的半径是2,如果B 是⊙A 外一点,那么线段AB 长度的取值范围是 . 14.如图,点G 是△ABC 的重心,联结AG 并延长交BC 于点D ,GE ∥AB 交BC 与E ,若AB=6,那么GE= .15.如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为 米.16.如图,⊙O 1与⊙O 2相交于A 、B 两点,⊙O 1与⊙O 2的半径分别是1和,O 1O 2=2,那么两圆公共弦AB 的长为 .17.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,DO :BO=1:2,点E 在CB 的延长线上,如果S △AOD :S △ABE =1:3,那么BC :BE= .18.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A'处,当A'E ⊥AC 时,A'B= .三、解答题(本大题共7题,满分78分)19.计算:sin30°•tan30°﹣cos60°•cot30°+.20.如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=,=,请用向量、表示和(直接写出结果)21.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.22.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23.如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG ∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.24.在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.25.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB 边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.2017年上海市长宁区、金山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2) C.(2,﹣1)D.(2,1)【考点】二次函数的性质.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选B.2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据sinA=代入数据直接得出答案.【解答】解:∵∠C=90°,AB=5,BC=4,∴sinA==,故选D.3.如图,下列能判断BC∥ED的条件是()A.=B.= C.= D.=【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,对每一项进行分析即可得出答案.【解答】解:∵=,∴BC∥ED;故选C.4.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<10【考点】圆与圆的位置关系.【分析】本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r<P<R+r.(P表示圆心距,R,r 分别表示两圆的半径).【解答】解:两圆半径差为4,半径和为8,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,4<O1O2<8.故选C.5.已知非零向量与,那么下列说法正确的是()A.如果||=||,那么= B.如果||=|﹣|,那么∥C.如果∥,那么||=||D.如果=﹣,那么||=||【考点】*平面向量.【分析】根据向量的定义,可得答案.【解答】解:A、如果||=||,与的大小相等,与的方向不一向相同,故A错误;B、如果||=||,与的大小相等,与不一定平行,故B错误;C、如果∥,与的大小不应定相等,故C错误;D、如果=﹣,那么||=||,故D正确;故选:D.6.已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离B.相切C.相交D.不能确定【考点】直线与圆的位置关系;等腰三角形的性质.【分析】作AD⊥BC于D,由等腰三角形的性质得出BD=CD=BC=2,由勾股定理求出AD=4>5,即d>r,即可得出结论.【解答】解:如图所示:在等腰三角形ABC中,作AD⊥BC于D,则BD=CD=BC=2,∴AD===4>5,即d>r,∴该圆与底边的位置关系是相离;故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.如果3x=4y,那么=.【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:.8.已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是x=1.【考点】二次函数的性质.【分析】用配方法将抛物线的一般式转化为顶点式,可求抛物线的对称轴.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,对称轴是:x=1.故本题答案为:x=1.9.已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c=﹣3.【考点】二次函数图象上点的坐标特征.【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,c),再根据已知条件得出c的值.【解答】解:当x=0时,y=c,∵抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),∴c=﹣3,故答案为﹣3.10.已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m=4.【考点】二次函数图象上点的坐标特征.【分析】直接把点(﹣2,m)代入抛物线y=﹣x2﹣3x中,列出m的一元一次方程即可.【解答】解:∵y=﹣x2﹣3x经过点(﹣2,m),∴m=﹣×22﹣3×(﹣2)=4,故答案为4.11.设α是锐角,如果tanα=2,那么cotα=.【考点】同角三角函数的关系.【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.12.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是y=2(x﹣1)2+1.【考点】二次函数图象与几何变换.【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的规律写出(0,0)平移后对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)向上平移1个单位,再向右平移1个单位所得对应点的坐标为(1,1),所以平移后的抛物线解析式为y=2(x﹣1)2+1.故答案为y=2(x﹣1)2+1.13.已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是AB>2.【考点】点与圆的位置关系.【分析】根据点P在圆外⇔d>r,可得线段AB长度的取值范围是AB>2.【解答】解:∵⊙A的半径是2,B是⊙A外一点,∴线段AB长度的取值范围是AB>2.故答案为:AB>2.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE=2.【考点】三角形的重心;平行线分线段成比例.【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段成比例定理,得出=,即=,进而得出GE的长.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为6+1.5米.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据正切的定义求出CE,计算即可.【解答】解:在Rt△CDE中,tan∠CDE=,∴CE=DE•tan∠CDE=6,∴BC=CE+BE=6+1.5(米),故答案为:6+1.5.16.如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.【考点】相交两圆的性质.【分析】首先连接O1A,O2A,设AC=x,O1C=y,由勾股定理可得方程组,解方程组即可求得x与y 的值,继而求得答案.【解答】解:连接O 1A ,O 2A ,如图所示 设AC=x ,O 1C=y ,则AB=2AC=2x , ∵O 1O 2=2, ∴O 2C=2﹣y , ∵AB ⊥O 1O 2,∴AC 2+O 1C 2=O 1A 2,O 2C 2+AC 2=O 2A 2,∴,解得:,∴AC=,∴AB=2AC=;故答案为:.17.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,DO :BO=1:2,点E 在CB 的延长线上,如果S △AOD :S △ABE =1:3,那么BC :BE= 2:1 .【考点】相似三角形的判定与性质;梯形.【分析】由平行线证出△AOD ∽△COB ,得出S △AOD :S △COB =1:4,S △AOD :S △AOB =1:2,由S △AOD :S △ABE =1:3,得出S △ABC :S △ABE =2:1,即可得出答案. 【解答】解:∵AD ∥BC , ∴△AOD ∽△COB ,∵DO :BO=1:2,∴S △AOD :S △COB =1:4,S △AOD :S △AOB =1:2, ∵S △AOD :S △ABE =1:3, ∴S △ABC :S △ABE =6:3=2:1, ∴BC :BE=2:1.18.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A'处,当A'E ⊥AC 时,A'B=或7.【考点】翻折变换(折叠问题);勾股定理. 【分析】分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD 和BD 的长,证明四边形HFGB 是矩形,根据同角的三角函数列式可以求DG 和DF 的长,并由翻折的性质得:∠DA′E=∠A ,A′D=AD=5,由矩形性质和勾股定理可以得出结论:A′B=;②如图2,作辅助线,构建矩形A′MNF ,同理可以求出A′B 的长. 【解答】解:分两种情况:①如图1,过D 作DG ⊥BC 与G ,交A′E 与F ,过B 作BH ⊥A′E 与H , ∵D 为AB 的中点,∴BD=AB=AD ,∵∠C=90,AC=8,BC=6, ∴AB=10, ∴BD=AD=5,sin ∠ABC=,∴,∴DG=4,由翻折得:∠DA′E=∠A ,A′D=AD=5,∴sin∠DA′E=sin∠A=,∴,∴DF=3,∴FG=4﹣3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8﹣1=7,∴A′H=A′E﹣EH=7﹣6=1,在Rt△AHB中,由勾股定理得:A′B==;②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.三、解答题(本大题共7题,满分78分)19.计算:sin30°•tan30°﹣cos60°•cot30°+.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=×﹣××+=﹣+2=+2.20.如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=,=,请用向量、表示和(直接写出结果)【考点】相似三角形的判定与性质;*平面向量.【分析】(1)求出AD=AB=5,证明△ACD∽△ABC,得出,即可得出结果;(2)由平行线的性质得出AE=EC,由向量的定义容易得出结果.【解答】解:(1)∵D是AB中点,∴AD=AB=5,∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AB•AD=10×5=50,∴AC==5;(2)如图所示:∵DE∥BC,D是AB的中点,∴AD=DB,AE=EC,∵=,=,∴==,∴,∵==,∴.21.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.【考点】圆周角定理;解直角三角形.【分析】(1)根据三角函数的定义得出CD和BD,从而得出⊙D的半径;(2)过圆心D作DH⊥BC,根据垂径定理得出BH=EH,由勾股定理得出BC,再由三角函数的定义得出BE,从而得出CE即可.【解答】解:(1)∵CD⊥AB,AD=8,tanA=,在Rt△ACD中,tanA==,AD=8,CD=4,在Rt△CBD,cot∠ABC==,BD=3,∴⊙D的半径为3;(2)过圆心D作DH⊥BC,垂足为H,∴BH=EH,在Rt△CBD中∠CDB=90°,BC==5,cos∠ABC==,在Rt△BDH中,∠BHD=90°,cos∠ABC==,BD=3,BH=,∵BH=EH,∴BE=2BH=,∴CE=BC﹣BE=5﹣=.22.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.【考点】解直角三角形的应用﹣坡度坡角问题;梯形.【分析】(1)作CP⊥AB于点P,即可知四边形CDGP是矩形,从而得CP=DG=2、CD=GP=6,由BP==2根据AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根据题意得EF=MN=4、ME=CD=6、∠B=30°,由BF=、HN=、NF=ME,根据HB=HN+NF+BF可得答案.【解答】解:(1)如图,过点C作CP⊥AB于点P,则四边形CDGP是矩形,∴CP=DG=2,CD=GP=6,∵∠B=30°,∴BP===2,∴AG=AB﹣GP﹣BP=8+2﹣6﹣2=2=DG,∴背水坡AD的坡度DG:AG=1:1;(2)由题意知EF=MN=4,ME=CD=6,∠B=30°,则BF===4,HN===4,NF=ME=6,∴HB=HN+NF+BF=4+6+4=10+4,答:加高后坝底HB的宽度为(10+4)米.23.如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG ∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据已知条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF=FB;(2)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,∴,∵AD=CD,∴GF=BF;(2)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,∴,∴,∴FO•ED=OD•EF.24.在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.【考点】圆的综合题.【分析】(1)利用待定系数法即可确定出函数解析式;(2)用tan∠OAP=3建立一个b,c的关系,再结合点A得出的等式即可求出b,c进而得出函数关系式;(3)用两圆外切,半径之和等于AC建立方程结合点A代入建立的方程即可得出抛物线解析式.【解答】解:(1)把点A(2,0)、B(﹣4,0)的坐标代入y=﹣x2+2bx+c得,,∴b=﹣1.c=8,∴抛物线的解析式为y=﹣x2﹣2x+8;(2)如图1,设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入y=﹣x2+2bx+c 得,﹣4+4b+c=0①,∵抛物线的顶点为P,∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,∴P(b,b2+c),∴PH=b2+c,AH=2﹣b,在Rt△PHA中,tan∠OAP=,∴=3②,联立①②得,,∴(不符合题意,舍)或,∴抛物线的解析式为y=﹣x2﹣2x+8;(3)∵如图2,抛物线y=﹣x2+2bx+c与y轴正半轴交于点C,∴C(0,c)(c>0),∴OC=c,∵A(2,0),∴OA=2,∴AC=,∵⊙A与⊙C外切,∴AC=c+2=,∴c=0(舍)或c=,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0,∴b=,∴抛物线的解析式为y=﹣x2+x+.25.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB 边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.【考点】相似形综合题.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)过点D作DM∥AB交AC于M(如图1中).由△BDE∽△CFD,得=,推出FC=,由DM∥AB,得=,推出DM=,由DM∥AB,推出∠B=∠MDC,∠MDC=∠C,CM=DM=,FM=﹣,于DM∥AB,得=,代入化简即可.(3)分三种情形讨论①当AO=AF时,②当FO=FA时,③当OA=OF时,分别计算即可.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠EDC=∠B+∠BED,∴∠FDC+∠EDO=∠B+∠BED,∵∠EDO=∠B,∴∠BED=∠EDC,∵∠B=∠C,∴△BDE∽△CFD.(2)过点D作DM∥AB交AC于M(如图1中).∵△BDE∽△CFD,∴=,∵BC=8,BD=3,BE=x,∴=,∴FC=,∵DM∥AB,∴=,即=,∴DM=,∵DM∥AB,∴∠B=∠MDC ,∴∠MDC=∠C ,∴CM=DM=,FM=﹣,∵DM ∥AB ,∴=,即=,∴y=(0<x <3).(3)①当AO=AF 时,由(2)可知AO=y=,AF=FC ﹣AC=﹣5,∴=﹣5,解得x=.∴BE=②当FO=FA 时,易知DO=AM=,作DH ⊥AB 于H (如图2中),BH=BD•cos ∠B=3×=,DH=BD•sin ∠B=3×=,∴HO==,∴OA=AB ﹣BH ﹣HO=,由(2)可知y=,即=,解得x=,∴BE=.③当OA=OF 时,设DP 与CA 的延长线交于点N (如图3中).∴∠OAF=∠OFA,∠B=∠C=∠ANE,由△ABC≌△CDN,可得CN=BC=8,ND=5,由△BDE≌△NAE,可得NE=BE=x,ED=5﹣x,作EG⊥BC于G,则BG=x,EG=x,∴GD=,∴BG+GD=x+=3,∴x=>3(舍弃),综上所述,当△OAF是等腰三角形时,BE=或.2017年3月2日。
2017年上海各区初三数学一模卷
2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A. 100tan α B. 100cot α C. 100sin α D. 100cos α 3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B. 22(1)1y x =-+ C. 22(1)3y x =++ D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=r r r ,2a b c -=r r r ,那么a =r (用b r表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =u u u r r ,AC b =u u u r r ,试用向量a r 和b r 表示向量AG u u u r; (2)在图中求作向量AG u u u r 与AB u u u r的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积.22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2AC AD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅;24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ; (1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域; (3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B二. 填空题7. 8. (4,0)-9. 减小10.32x=11.2312.1213. 2014. 45br15. 6016. 2.417. 318.12三. 解答题19.(1)2233AG a b=-u u u r r r;(2)略;20.(1)223y x x=-++;(2)向上平移4个单位;21.(1)6BD=;(2)26;22.2t=;23.(1)略;(2)略;24.(1)(2,3)D、(2,0)M;(2)32a=-或12a=-;25.(1)13;(2)344x xy-=(02)x<<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( ) (A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( ) (A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x . 二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r,B =b ρ,那么=____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)图3F ABCE 图2ABCDA B C D EF图119.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =u u u r r,=b ρ. 求:(1)向量DC (用向量a r 、b r表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈).图4ABCDEF23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.图6ABCD E25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.B AC备用图图8QPDBAC E2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米. 6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r ,B =b ρ,那么=__b a ϖϖ-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___. 17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)图3 F A B C D E图2 AB CD A B C DEF 图1解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(. (2)过点D 作y DA ⊥轴,垂足为A . ∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =. ∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB ϖ=,=EC b BC ϖ2121=;∴b a DC ϖϖ21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里; 它从B 处到达小岛C 的航行时间约为3.7小时. 23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =. 24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ; ∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO ,︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;QPD BAC E F∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x xy ;定义域为:30<<x . (2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( )A. 34B.43C. 35D. 453.如图,下列能判断BC ED ∥的条件是( ) A.ED AD BC AB = B. ED AEBC AC =C.AD AE AB AC = D. AD ACAB AE=4.已知1O e 与2O e 的半径分别是2和6,若1O e 与2O e 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4B.2<12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a r 与b r,那么下列说法正确的是( )A. 如果a b =r r ,那么a b =r r ;B. 如果a b =-r r,那么a b r r ∥ C. 如果a b r r ∥,那么a b =r r ; D. 如果a b =-r r ,那么a b =r r6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是( ) A. 相离 B. 相切 C. 相交 D.不能确定 二、填空题(本大题共12题,每题4分,满分48分) 7. 如果()340x y x =≠,那么xy=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________. 9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________. 10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.第3题图DEABC12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________.13. 已知A e 的半径是2,如果B 是A e 外一点,那么线段AB 长度的取值范围是__________. 14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为_________米.OBA第17题图第16题图第15题图第14题图GEDC BDCAACD EB16. 如图,1O e 与2O e 相交于A B 、两点,1O e 与2O e 的半径分别是112O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.BAC第18题图三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒如图,在ABC ∆中,D 是AB 中点,联结CD . (1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =u u u r r ,DC b =u u u r r ,请用向量a r 、b r 表示AC u u u r和AB u u u r(直接写出结果)BA第20题图D21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D e 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D e 的半径;(2)CE 的长.第21题图B22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC的坡角为30°,坝底宽AB 为()米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.H G N MD FEBA C第22题图如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G. (1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0) (1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式; (3)O 为坐标原点,以A 为圆心OA 长为半径画A e ,以C 为圆心,12OC 长为半径画圆C e ,当A e 与C e 外切时,求此抛物线的解析式.第24题图DBGEFCA第23题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.D第25题备用图OQPD FE第25题图B CA2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( ) ;35.A ;53.B 83.C 85.D2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( ))0,2-.(A )-2,0.(B )0,2.(C )2,0.(D4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BCAB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( ) ①.A ②.B ③.C ④.D6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )13.A 132.B 23.C 32.D二、填空题 7.如果)b -a 2(3b a ρρρρ=+,用a ρ表示b ρ,那么b ρ=8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为 11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ; 13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60o ,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O e 的半径是4,ABC ∆是O e 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD V 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-o o o o o20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =u u u r r ,DC b =u u u r r . (1)请用a r 、b r 来表示DE u u u r ; (2)在原图中求作向量DE u u u r 在a r 、b r 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC V 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E . 求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F . (1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE于点F ,联结BD .(1)求证:BCCECD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案1.B2.B3.D4.C5.C6..A7.53a v8.1:2 9.2 10.3 11.120 12.内含 13.6 14.()221y x =-- .15. 19.56 20(1).2133DE a b =+u u u r r r (2)略 21.0.3米/秒 22.18平方厘米23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭25.(1)略(2)24(04)2x xy x +=<≤ (3)4或42017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC 交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF 中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB 的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c 的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;。
2017年上海市普陀区中考数学一模试卷含答案解析
2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2﹣1012…y…04664…从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c 上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2﹣1012…y…04664…从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=(5﹣5)厘米,故答案为:5﹣5.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是1:4.【考点】相似图形.【分析】根据等边三角形周长的比是三角形边长的比解答即可.【解答】解:因为原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,所以放大前后的两个三角形的面积比为5:20=1:4,故答案为:1:4.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是x>5.【考点】点与圆的位置关系.【分析】根据点在圆外的判断方法得到x的取值范围.【解答】解:∵点P在半径为5的⊙O外,∴OP>5,即x>5.故答案为x>5.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是北偏西52°.【考点】方向角.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图,∵∠1=∠2=52°,∴从小岛B观察港口A的方向是北偏西52°.故答案为:北偏西52°.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:y=﹣πx2+16π(结果保留π,不要求写出定义域)【考点】函数关系式;函数自变量的取值范围.【分析】根据圆的面积公式,可得答案.【解答】解:由题意得在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y 平方厘米,y=﹣πx2+16π,故答案为:y=﹣πx2+16π.17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.【考点】解直角三角形;等腰三角形的性质.【分析】如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC于E,则BE=EC,在Rt△AEC中,根据cos∠C===,即可解决问题.【解答】解:如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC于E,则BE=EC,,在Rt△AEC中,cos∠C===,故答案为.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是1:15.【考点】三角形的重心;相似三角形的判定与性质.【分析】连接QE,由DE∥BC、DE过△ABC的重心即可得出=,设DE=4m,则BC=6m,结合=即可得出DP=m,PE=3m,由△DPQ与△QPE有相同的高即可得出==,再根据DE∥BC,利用平行线的性质即可得出∠QDP=∠QBC,结合公共角∠DQP=∠BQC即可得出△QDP∽△QBC,依据相似三角形的性质即可得出==,进而得出=,结合三角形的面积即可得出==,将与相乘即可得出结论.【解答】解:连接QE,如图所示.∵DE∥BC,DE过△ABC的重心,∴=.设DE=4m,则BC=6m.∵=,∴DP=m,PE=3m,∴==.∵DE∥BC,∴∠QDP=∠QBC,∵∠DQP=∠BQC,∴△QDP∽△QBC,∴==,∴=,∴==,∴=•=×=.故答案为:1:15.三、解答题19.计算:cos245°+﹣•tan30°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=()2+﹣×=+﹣1=.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.【考点】垂径定理;勾股定理.【分析】连接OB,根据垂径定理求出BE,根据勾股定理得出方程,求出方程的解即可.【解答】解:连接OB,设OB=OA=R,则OE=16﹣R,∵AD⊥BC,BC=16,∴∠OEB=90°,BE=BC=8,由勾股定理得:OB2=OE2+BE2,R2=(16﹣R)2+82,解得:R=10,即⊙O的直径为20.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)【考点】*平面向量.【分析】(1)根据向量加法的平行四边形法则,分别过P作OA、OB的平行线,交OA于D,交OB于E;(2)易得△OAQ∽△PEQ,根据相似三角形对应边成比例得出===,那么=2=﹣2,==.再求出==﹣2,然后根据=﹣即可求解.【解答】解:(1)如图,分别过P作OA、OB的平行线,交OA于D,交OB于E,则向量分别在,方向上的分向量是,;(2)如图,∵四边形ODPE是平行四边形,∴PE∥DO,PE=DO,∴△OAQ∽△PEQ,∴==,∵点A是线段OD的中点,∴OA=OD=PE,∴===,∴=2=﹣2,==.∵=﹣=﹣2,∴==﹣2,∴=﹣=﹣2﹣=﹣2.22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DE⊥AB,可得∠BDE=∠BAC,即可知tan∠BAC=tan∠BDE,即==,设DC=2x,由角平分线性质得DE=DC=2x,再分别表示出BD、AC的长,最后由坡比定义可得答案.【解答】解:过点D作DE⊥AB于点E,∴∠DEB=∠C=90°,∵∠B=∠B,∴∠BDE=∠BAC,∴tan∠BAC=tan∠BDE,即==,设DC=2x,∵∠DAC=∠DAE,∠DEB=∠C=90°,∴DE=DC=2x,则BE=x,BD==x,∴BC=CD+BD=(2+)x,∴AC=2BC=(4+2)x,∴新坡面AD的坡比i2===﹣2.23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.【考点】相似三角形的判定与性质.【分析】(1)两组对应边的比相等且夹角对应相等的两个三角形相似,据此进行证明即可;(2)先根据相似三角形的性质,得出∠BAC=∠EDA,=,再根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行证明即可.【解答】证明:(1)∵DC=,CE=a,AC=b,∴CD2=CE×CA,即=,又∵∠ECD=∠DCA,∴△DEC∽△ADC;(2)∵△DEC∽△ADC,∴∠DAE=∠CDE,∵∠BAD=∠CDA,∴∠BAC=∠EDA,∵△DEC∽△ADC,∴=,∵DC=AB,∴=,即=,∴△ADE∽△CAB,∴=,即AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c 上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.【考点】二次函数综合题.【分析】(1)先根据点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x﹣c,得原抛物线为y=﹣x2+2x+8,向下平移6个单位后所得的新抛物线为y=﹣x2+2x+2,据此求得顶点C的坐标;(2)根据A(4,0),B(0,2),C(1,3),得到AB2=20,AC2=18,BC2=2,进而得出AB2=AC2+BC2,根据∠ACB=90°,求得tan∠CAB的值即可;(3)先设抛物线的对称轴x=1与x轴交于点H,根据==,求得PH=AH=,进而得到P(1,),再由HA=HC=3,得∠HCA=45°,根据当点Q在点C下方时,∠BCQ=∠ACP,因此△BCQ与△ACP相似分两种情况,根据相似三角形的性质即可得到点Q的坐标.【解答】解:(1)点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x﹣c,得,解得,∴原抛物线为y=﹣x2+2x+8,向下平移6个单位后所得的新抛物线为y=﹣x2+2x+2,∴顶点C的坐标为(1,3);(2)如图2,由A(4,0),B(0,2),C(1,3),得AB2=20,AC2=18,BC2=2,∴AB2=AC2+BC2,∴∠ACB=90°,∴tan∠CAB===;(3)如图3,设抛物线的对称轴x=1与x轴交于点H,由==,得PH=AH=,∴P(1,),由HA=HC=3,得∠HCA=45°,∴当点Q在点C下方时,∠BCQ=∠ACP,因此△BCQ与△ACP相似分两种情况:①如图3,当=时,=,解得CQ=4,此时Q(1,﹣1);②如图4,当=时,=,解得CQ=,此时Q(1,).25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.【考点】几何变换综合题.【分析】(1)如图1中,作OH⊥BC于H.只要证明△DCM≌△OHM,即可得出CD=OH=3.(2)如图2中,作NG⊥OB于G.首先证明∠1=∠2,根据tan∠1=tan∠2,可得=,由此即可解决问题.(3)分两种情形讨论即可①如图3中,当OM=ON时,OH垂直平分MN,②如图4中,当OM=MN时,分别求解即可.【解答】解:(1)如图1中,作OH⊥BC于H.在Rt△ABC中,∵AB=10,sinB=,∴AC=6,BC=8,∵AO=OB,OH∥AC,∴CH=HB=4,OH=3,∵CM=2,∴CM=HM=2,在△DCM和△OHM中,,∴△DCM≌△OHM,∴CD=OH=3.(2)如图2中,作NG⊥OB于G.∵∠HOB=∠A=∠MON,∴∠1=∠2,在Rt△BNG中,BN=y,sibB=,∴GN=y,BG=y,∵tan∠1=tan∠2,∴=,∴=,∴y=,(0<x<4).(3)①如图3中,当OM=ON时,OH垂直平分MN,∴BN=CM=x,∵△OMH≌△ONG,∴NG=HM=4﹣x,∵sinB=,∴=,∴CM=x=.②如图4中,当OM=MN时.连接CO,∵OA=OB,OM=MN,∴CO=OA=OB,∴∠MON=∠MNO=∠A=∠OCA,∴△MON∽△OAC,∴∠AOC=∠OMN,∴∠BOC=∠CMO,∵∠B=∠B,∴△CMO∽△COB,∴=,∴8x=52,∴x=.综上所述,△OMN是以OM为腰的等腰三角形时,线段CM的长为或.2017年2月12日。
上海市闵行区2017年中考数学一模试卷(解析版)
2017年上海市闵行区中考数学一模试卷一.选择题(共6题,每题4分,满分24分)1.在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A.B.C.D.2.在 Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,下列四个三角比正确的是()A.sinA= B.cosA= C.tanA= D.cotA=3.将二次函数y=2x2﹣1的图象向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣3)2﹣1 B.y=2(x+3)2﹣1 C.y=2x2+4 D.y=2x2﹣44.已知=﹣2,那么下列判断错误的是()A.||=2|| B.2 C.D.5.一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣(x﹣2.5)2+3.5.已知篮圈中心到地面的距离3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为()A.1米B.2米C.4米D.5米6.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE二.填空题(共12题,每题4分,满分48分)7.已知:3a=2b,那么= .8.计算:(+)﹣(﹣2)= .9.如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是cm.10.二次函数y=﹣x2+5的图象的顶点坐标是.11.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是.12.已知两个相似三角形的面积之比是1:4,那么这两个三角形的周长之比是.13.已知在Rt△ABC中,∠C=90°,BC=6,sinA=,那么AB= .14.已知一斜坡的坡度i=1:2,高度在20米,那么这一斜坡的坡长约为米(精确到0.1米)15.如图,在平行四边形ABCD中,点E在边AB上,联结DE,交对角线AC于点F,如果=,CD=6,那么AE= .16.如图,△OPQ在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置,点A,B,C,D,E也是小正方形的顶点,从点A,B,C,D,E中选取三个点所构成的三角形与△OPQ相似,那么这个三角形是.17.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)18.如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B 落在点B1处,如果B1D⊥AC,那么BD= .三.解答题(共7题,满分78分)19.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)(1)求抛物线的表达式;(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.20.如图,在△ABC中,点D,E分别是边AB,AC的中点,设=, =.(1)填空:向量= .(用向量,的式子表示).(2)在图中作出向量在向量,方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).21.如图,在△ABC中,点D是AB边上一点,过点D作DE∥BC,交AC于E,点F是DE延长线上一点,联结AF.(1)如果=,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.22.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.23.如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证: =.24.如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.25.如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=.点E为线段BD上任意一点(点E 与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.2017年上海市闵行区中考数学一模试卷参考答案与试题解析一.选择题(共6题,每题4分,满分24分)1.在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例定理和相似三角形对应边对应成比例作答.【解答】解:∵DE∥BC,∴△ADE∽△ABC,,∴=,选项A、B、D正确;选项C错误.故选C.【点评】本题主要考查了相似三角形的性质、平行线分线段成比例定理.找准相似三角形对应边是解题的关键.2.在 Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,下列四个三角比正确的是()A.sinA= B.cosA= C.tanA= D.cotA=【考点】锐角三角函数的定义.【分析】利用三角函数的定义解答即可.【解答】解:因为,,,,故选B【点评】此题考查三角函数的问题,关键是利用三角函数的定义解答.3.将二次函数y=2x2﹣1的图象向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣3)2﹣1 B.y=2(x+3)2﹣1 C.y=2x2+4 D.y=2x2﹣4【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据平移不改变二次函数的系数可得新二次函数解析式.【解答】解:∵原抛物线的顶点为(0,﹣1),二次函数y=2x2﹣1的图象向下平移3个单位,∴新抛物线的解析式为(0,﹣4),∴二次函数y=2x2﹣1的图象向下平移3个单位后所得函数的解析式是 y=2x2﹣4.故选:D.【点评】考查二次函数的平移问题;用到的知识点为:抛物线的平移,看顶点的平移即可;平移不改变二次函数的系数.4.已知=﹣2,那么下列判断错误的是()A.||=2|| B.2 C.D.【考点】*平面向量.【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、||=1,2||=2,则||=2||,故该选项判断正确;B、由=﹣2得到∥,且+2=﹣,故该选项判断错误;C、由=﹣2得到∥,故该选项判断正确;D、由=﹣2得到||=2||,则≠,故该选项判断正确;故选:B.【点评】本题考查了平面向量,注意,平面向量既有大小,又由方向.5.一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣(x﹣2.5)2+3.5.已知篮圈中心到地面的距离3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为()A.1米B.2米C.4米D.5米【考点】二次函数的应用.【分析】令y=3.05得到关于x的二元一次方程,然后求得方程的解可得到问题的答案.【解答】解:令y=3.05得:﹣(x﹣2.5)2+3.5=3.05,解得:x=4或x=1.5(舍去).所以运行的水平距离为4米.故选C.【点评】本题主要考查的是二次函数的应用,将函数问题转化为方程问题是解题的关键.6.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【考点】相似三角形的判定.【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.二.填空题(共12题,每题4分,满分48分)7.已知:3a=2b,那么= ﹣.【考点】比例的性质.【分析】由3a=2b,可得=,可设a=2k,那么b=3k,代入,计算即可求解.【解答】解:∵3a=2b,∴=,∴可设a=2k,那么b=3k,∴==﹣.故答案为﹣.【点评】本题考查了比例的基本性质,是基础题,利用设“k”法比较简单.8.计算:(+)﹣(﹣2)= .【考点】*平面向量.【分析】根据平面向量的加法运算律进行计算即可.【解答】解:(+)﹣(﹣2)=(﹣)+(1+2),=.故答案是:.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握平面向量的加法运算定律的应用.9.如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是100 cm.【考点】比例线段.【分析】先设实际距离500km的两地在地图上的图距是xcm,根据图上距离比上实际距离等于比例尺,可得关于x的方程,解即可.【解答】解:设实际距离500km的两地在地图上的图距是xcm,则4:2000000=x:50000000,解得x=100.故答案是100.【点评】本题考查了比例线段,解题的关键是根据比例尺不变得出等式.10.二次函数y=﹣x2+5的图象的顶点坐标是(0,5).【考点】二次函数的性质.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣x2+5,∴抛物线顶点坐标为(0,5),故答案为:(0,5).【点评】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).11.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是(4,5).【考点】二次函数图象与几何变换.【分析】首先确定抛物线的对称轴,然后根据对称点的性质解题即可.【解答】解:∵y=x2﹣4x+3的对称轴为x=2∴点P(0,5)关于该抛物线的对称轴对称点Q的坐标为(4,5),故答案为:(4,5)【点评】本题考查了二次函数图象与几何变换,解题的关键是了解对称点的性质.12.已知两个相似三角形的面积之比是1:4,那么这两个三角形的周长之比是1:2 .【考点】相似三角形的性质.【分析】由两个相似三角形的面积比是1:4,根据相似三角形的面积比等于相似比的平方,即可求得它们的相似比,又由相似三角形周长的比等于相似比,即可求得它们的周长比.【解答】解:∵两个相似三角形的面积比是1:4,∴这两个相似三角形的相似比是1:2,∴它们的周长比是1:2.故答案为:1:2.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形周长的比等于相似比性质的应用.13.已知在Rt△ABC中,∠C=90°,BC=6,sinA=,那么AB= 9 .【考点】解直角三角形.【分析】根据锐角三角函数的定义即可求出AB的值.【解答】解:∵sinA=,∴AB==9,故答案为:9【点评】本题考查锐角三角函数的定义,属于基础题型.14.已知一斜坡的坡度i=1:2,高度在20米,那么这一斜坡的坡长约为44.7 米(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意画出图形,由斜坡的坡度i=1:2可设BC=x,则AC=2x,由勾股定理得出AB的长,再由BC=20米即可得出结论.【解答】解:如图,∵斜坡的坡度i=1:2,∴设BC=x,则AC=2x,∴AB===x,∴=.∵BC=20米,∴=,解得x=20≈44.7(米).故答案为:44.7.【点评】本题考查的是解直角三角形的应用﹣坡度坡脚问题,熟记锐角三角函数的定义是解答此题的关键.15.如图,在平行四边形ABCD中,点E在边AB上,联结DE,交对角线AC于点F,如果=,CD=6,那么AE= 4 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由=推出AF:FC=2:3,由四边形ABCD是平行四边形,推出CD∥AB,推出= =,由此即可解决问题.【解答】解:∵ =,∴AF:FC=2:3,∵四边形ABCD是平行四边形,∴CD∥AB,∴△AEF∽△CDF,∴==,∵CD=6,∴AE=4,故答案为4.【点评】本题考查相似三角形的性质、平行四边形的性质等知识,解题的关键是灵活应用所学知识解决问题,求出AF:CF的值是关键,属于中考常考题型.16.如图,△OPQ在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置,点A,B,C,D,E也是小正方形的顶点,从点A,B,C,D,E中选取三个点所构成的三角形与△OPQ相似,那么这个三角形是△CDB .【考点】相似三角形的判定.【分析】连接BC、BD,由正方形的性质得出∠BCD=∠QOP,由勾股定理得:OP=BC=,证出,得出△OPQ∽△CDB即可.【解答】解:与△OPQ相似的是△BCD;理由如下:连接BC、BD,如图所示:则∠BCD=90°+45°=135°=∠QOP,由勾股定理得:OP=BC=,∵OQ=2,CD=1,∴,∴△OPQ∽△CDB;故答案为:△CDB.【点评】本题考查了相似三角形的判定定理、正方形的性质以及勾股定理;熟练掌握相似三角形的判定定理和勾股定理是解决问题的关键.17.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为632 米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据Rt△ACE中,∠AEC=90°,∠CAE=22.3°,AE=900,求得CE=AE×tan22.3°=900×0.41≈369米,再根据AB=DE=263米,求得CD=CE+DE=369+263=632米.【解答】解:如图所示,在Rt△ACE中,∠AEC=90°,∠CAE=22.3°,AE=900,∴CE=AE×tan22.3°=900×0.41≈369米,∵AB=DE=263米,∴CD=CE+DE=369+263=632(米).故答案是:632.【点评】本题主要考查了解直角三角形的运用,解决问题的关键是作辅助线构造直角三角形,根据直角三角形中的边角关系矩形计算求解.18.如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B 落在点B1处,如果B1D⊥AC,那么BD= 2﹣2 .【考点】翻折变换(折叠问题);等边三角形的性质.【分析】作DE⊥AB于E,根据折叠的性质、三角形内角和定理求出∠B′AC=30°,求出∠BAD=45°,利用锐角三角函数的概念计算即可.【解答】解:作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得,BD=2﹣2,故答案为:2﹣2.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三.解答题(共7题,满分78分)19.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)(1)求抛物线的表达式;(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.【考点】待定系数法求二次函数解析式.【专题】计算题;二次函数图象及其性质.【分析】(1)把A,B,C三点坐标代入解析式求出a,b,c的值,即可求出函数解析式;(2)把x=﹣2代入抛物线解析式求出y的值,确定出D坐标,由OA为底,D纵坐标绝对值为高,求出三角形AOD面积即可.【解答】解:(1)把A(3,0),B(2,﹣3),C(0,﹣3)代入y=ax2+bx+c得:,解得:,则抛物线解析式为y=x2﹣2x﹣3;(2)把x=﹣2代入抛物线解析式得:y=5,即D(﹣2,5),∵A(3,0),即OA=3,∴S△AOD=×3×5=.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.20.如图,在△ABC中,点D,E分别是边AB,AC的中点,设=, =.(1)填空:向量= .(用向量,的式子表示).(2)在图中作出向量在向量,方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).【考点】*平面向量.【分析】(1)首先利用平面向量三角形法则求得,然后由“E是边AC的中点”来求向量;(2)利用平行四边形法则,即可求得向量,方向上的分向量.【解答】解:(1)∵在△ABC中, =, =.∴=﹣=﹣=.又∵E是边AC的中点,∴=.故答案是:;(2)如图,过点E作EM∥AB交BC于点M.、即为向量在向量,方向上的分向量.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握三角形法则与平行四边形法则的应用.21.如图,在△ABC中,点D是AB边上一点,过点D作DE∥BC,交AC于E,点F是DE延长线上一点,联结AF.(1)如果=,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.【考点】相似三角形的判定与性质.【分析】(1)由DE与BC平行,得到两对同位角相等,进而得到三角形ADE与三角形ABC相似,由相似得比例求出BC的长即可;(2)由两直线平行得到一对同位角相等,再由已知角相等等量代换得到∠FAE=∠ADF,根据公共角相等,得到三角形AEF与三角形ADF相似,由相似得比例求出DF的长即可.【解答】解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==,∵DE=6,∴BC=9;(2)∵DE∥BC,∴∠B=∠ADE,∵∠B=∠FAE,∴∠FAE=∠ADE,∵∠F=∠F,∴△AEF∽△DAF,∴=,∵FA=6,FE=4,∴DF=9.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.【考点】解直角三角形的应用-仰角俯角问题;矩形的性质.【分析】过点A作AM⊥CD于点M,可得四边形ABDM为矩形,根据A处测得电线杆上C处得仰角为23°,在△ACM中求出CM的长度,然后在Rt△CDE中求出CE的长度.【解答】解:过点A作AM⊥CD于点M,则四边形ABDM为矩形,AM=BD=6米,在Rt△ACM中,∵∠CAM=30°,AM=6米,∴CM=AM•tan∠CAM=6×=2(米),∴CD=2+1.5≈4.96(米),在Rt△CDE中,ED=6﹣2.3=3.7(米),∴CE=≈6.2(米).【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.23.如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证: =.【考点】相似三角形的判定与性质.【分析】(1)由AD∥BC,得到△ADG∽△CEG,根据相似三角形的性质即可得到结论;(2)根据平行线的性质得到,根据等式的性质得到=,等量代换即可得到结论.【解答】证明:(1)∵AD∥BC,∴△ADG∽△CEG,∴,∵=,∴,∴AB∥CD;(2)∵AD∥BC,∴△ADG∽△CEG,∴,∴=,∴=,∵AD2=DG•DE,∴=,∵AD∥BC,∴=,∴=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.【考点】二次函数综合题;勾股定理的逆定理;相似三角形的判定与性质.【专题】综合题.【分析】(1)根据二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),求得m和n的值即可;(2)根据A,C,D三点的坐标,求得CD=,AC=3,AD=2,得到CD2+AC2=AD2,根据勾股定理的逆定理得出△ACD是直角三角形,且∠ACD=90°,据此求得∠CAD的正弦值;(3)先求得直线CD为y=x+3,再设点P的坐标为(a,a+3),然后分两种情况进行讨论:当点P在x轴上方时,过点P作PE⊥x轴于E;当点P在x轴下方时,过点P作PF⊥x轴于F,分别判定△ACD∽△AEP,△ACD∽△AFP,列出比例式求得a的值即可.【解答】解:(1)∵二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),∴,解得,∴二次函数的解析式为:y=﹣x2+2x+3,顶点D的坐标为(1,4);(2)如图所示,在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3)∵A(3,0),D(1,4),∴CD=,AC=3,AD=2,∴CD2+AC2=AD2,∴△ACD是直角三角形,且∠ACD=90°,∴sin∠ACD==;(3)∵直线CD经过C(0,3),D(1,4),∴设可设直线CD为y=kx+b,则,解得,∴直线CD为y=x+3,设点P的坐标为(a,a+3),①如图所示,当点P在x轴上方时,过点P作PE⊥x轴于E,则PE=a+3,AE=3﹣a,∵∠AEP=∠ACD=90°,∠PAO=∠CAD,∴△ACD∽△AEP,∴=,即=,解得a=﹣,∴a+3=,∴此时P的坐标为(﹣,);②如图所示,当点P在x轴下方时,过点P作PF⊥x轴于F,则PF=﹣(a+3),AF=3﹣a,∵∠AFP=∠ACD=90°,∠PAO=∠CAD,∴△ACD∽△AFP,∴=,即=,解得a=﹣6,∴a+3=﹣3,∴此时P的坐标为(﹣6,﹣3);综上所述,点P的坐标为.【点评】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、勾股定理的逆定理以及相似三角形的判定与性质的综合应用,解这类问题关键是作辅助线构造相似三角形,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.25.如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=.点E为线段BD上任意一点(点E 与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.【考点】四边形综合题.【分析】(1)过A作AH⊥BD于H,再根据AD∥BC,AB=AD=5,可得∠ABD=∠ADB=∠DBC,BH=HD,再根据tan∠ABD=tan,计算出BH=DH=4,进而得到BD=8;(2)分两种情况用锐角三角函数计算即可得出结论.(3)首先利用平行线的性质得出△FEB∽△CDB,即可得出y与x的函数关系式;【解答】解:(1)如图1,过A作AH⊥BD于H,∵AD∥BC,AB=AD=5,∴∠ABD=∠ADB=∠DBC,BH=HD,在Rt△ABH中,∵tan∠ABD=tan∠DBC=,∴cos∠ABD=,∴BH=DH=4,∴BD=8;(2)∵△DCE是等腰三角形,且BC=BD=8,∴①如图2,当CD=DE时,即:CD=DE=BD﹣BE=8﹣x,过点D作DG⊥BC于G,在Rt△BDG中,tan∠DBC=,BD=8,∴DG=BD=,BG=BD=,∴CG=8﹣BG=,在Rt△CDG中,根据勾股定理得,DG2+CG2=CD2,∴()2+()2=(8﹣x)2,∴x=8+(舍)或x=8﹣,②如图3,当CE=CD时,过点C作CG⊥BD,∴DG=EG=DE,在Rt△BCG中,BC=8,tan∠DBC=,∴BG=,∴DG=BD﹣BG=,∴x=BE=BD﹣DE=BD﹣2DG=.(3)∵BF=x,BC=10,∴FC=10﹣x,∴,∵EF∥DC,∴△FEB∽△CDB,∴∴==﹣x2+x(0<x<8)【点评】此题是四边形综合题,主要考查了锐角三角函数的定义,等腰三角形的性质,勾股定理,相似三角形的性质和判定,同高的三角形的面积的比等于底的比,分类讨论是解本题的关键,是一道比较典型的中考常考题.7、我们各种习气中再没有一种象克服骄傲那麽难的了。
上海市黄浦区2017届中考数学一模试题附答案
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.0 1.5 2.5 3.6?0 0 0 0A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP 与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时, =,即=,解得AP=4;当△ADP ∽△ACB 时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD 内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的,则cosA=.【考点】菱形的性质;解直角三角形.【分析】如图,连接AN 、CM ,延长BM 交AD 于H .AN 是菱形ABCD 的角平分线,同理CM 也是菱形ABCD 的角平分线,设BD 与AC 交于点O ,易知四边形BMDN 是菱形,设S △OMB =S △ONB =S △OMD =S △OND =a ,因为四边形BMDN 的面积是菱形ABCD 面积的,所以S △AMB =S △AMD =S △CNB =S △CND =4a ,推出AM=4OM ,CN=4ON ,设ON=OM=k ,则AM=CN=4k ,由△ABO ∽△BNO ,推出OB 2=OA •ON=5k 2,推出OB=k ,AB=AD==k ,由AD •BH=•BD •AO ,推出BH==,再利用勾股定理求出AH 即可解决问题.【解答】解:如图,连接AN 、CM ,延长BM 交AD 于H .∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=x sin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC 是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH ⊥AB 于H ,Rt △ACH 中,求得CH 和AH 的长,在Rt △CDH 中,根据勾股定理得出:CD 2=x 2﹣x+9,再判定△BDC ∽△CDE ,得出CD 2=DE •DB ,即x 2﹣x+9=(5﹣x ﹣y )(5﹣x ),最后求得y 关于x 的函数解析式,并写出定义域.【解答】(1)在△ABC 中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD ⊥AB 时,△ACD 为直角三角形,∴CD=AC •sinA=,∴AD==, 又∵∠DCE=∠ABC ,∴在Rt △CDE 中,DE=CD •tan ∠DCE=×=,∴BE=AB ﹣AD ﹣DE=5﹣﹣=;(2)当△CDE 时等腰三角形时,可知∠CDE >∠A >∠B=∠DCE ,∠CED >∠B=∠DCE ,∴唯有∠CED=∠CDE ,又∵∠B=∠DCE ,∠CDE=∠BDC ,∴∠BCD=∠CED=∠CDE=∠BDC ,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH ⊥AB 于H ,∵×BC ×AC=AB ×CH ,∴CH=,∴Rt △ACH 中,AH==,∴在Rt △CDH 中,CD 2=CH 2+DH 2=()2+(﹣x )2=x 2﹣x+9, 又∵∠CDE=∠BDC ,∠DCE=∠B ,∴△BDC ∽△CDE ,∴CD 2=DE •DB ,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2017年上海市普陀区中考数学一模试卷有答案.docx
2017 年上海市普陀区中考数学一模试卷一、(每 4 分)1.“相似的形”是()A.形状相同的形B.大小不相同的形C.能重合的形D.大小相同的形2.下列函数中, y 关于 x 的二次函数是()A. y=2x 1B.y=2x(x 1) C. y=2x2++3.如,直 l1∥l2∥l3,直 AC分交 l 1、l2、l3与点 A、B、C,直 DF分交 l1、l2、l3与点D、 E、 F,AC与 DF相交于点 H,如果 AH=2,BH=1, BC=5,那么的等于()A.B.C.D.4.抛物 y= x2+bx+c 上部分点的横坐x,坐 y 的如下表所示:x⋯21012⋯y⋯04664⋯从上表可知,下列法中,的是()A.抛物于 x 的一个交点坐(2,0)B.抛物与 y 的交点坐( 0,6)C.抛物的称是直x=0D.抛物在称左部分是上升的5.如,在四形 ABCD中,如果∠ ADC=∠ BAC,那么下列条件中不能判定△ADC和△ BAC相似的是()A.∠ DAC=∠ABC B.AC是∠ BCD的平分C.AC2=BC?CD D.=6.下列说法中,错误的是()A.长度为 1 的向量叫做单位向量B.如果 k≠0,且≠,那么k的方向与的方向相同C.如果 k=0 或 = ,那么 k =D.如果=,=,其中是非零向量,那么∥二、填空题(每题 2 分)7.如果 x:y=4:3,那么=.8.计算: 3 ﹣4( + ) =.9.如果抛物线 y=(m﹣1)x2的开口向上,那么 m 的取值范围是.10.抛物线 y=4x2﹣ 3x 与 y 轴的交点坐标是.11.若点 A(3,n)在二次函数 y=x2+2x﹣3 的图象上,则 n 的值为.12.已知线段 AB 的长为 10 厘米,点 P 是线段 AB 的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为 5 厘米的一个等边三角形放大成边长为20 厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点 P 在半径为 5 的⊙ O 外,如果设 OP=x,那么 x 的取值范围是.15.如果港口 A 的南偏东 52°方向有一座小岛 B,那么从小岛 B 观察港口 A 的方向是.16.在半径为 4 厘米的圆面中,挖去一个半径为 x 厘米的圆面,剩下部分的面积为y 平方厘米,写出 y 关于 x 的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是 5:6,那么底角的余弦值等于.18.如图, DE∥BC,且过△ ABC的重心,分别与 AB、AC交于点 D、E,点 P 是线段 DE上一点,CP的延长线交 AB 于点Q,如果= ,那么△ DPQ:S△ CPE的值是.S19.计算: cos245°+﹣tan30 °.20.如图,已知 AD 是⊙ O 的直径, BC是⊙ O 的弦, AD⊥BC,垂足为点 E,AE=BC=16,求⊙ O 的直径.21.如图,已知向量,,.( 1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).( 2)如果点 A 是线段 OD 的中点,联结AE、交线段 OP于点 Q,设= ,= ,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示, BC⊥AC,其中坡面 AB 的坡比 i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面 AD 的坡比 i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠ BAD=∠CDA, AB=DC=,CE=a,AC=b,求证:(1)△ DEC∽△ ADC;(2) AE?AB=BC?DE.24.如图,已知在平面直角坐标系 xOy 中,点 A(4,0)是抛物线y=ax2+2x﹣c 上的一点,将此抛物线向下平移 6 个单位后经过点 B(0,2),平移后所得的新抛物线的顶点记为 C,新抛物线的对称(1)求平移后所得到的新抛物线的表达式,并写出点C 的坐标;(2)求∠ CAB的正切值;(3)如果点 Q 是新抛物线对称轴上的一点,且△ BCQ与△ ACP相似,求点 Q 的坐标.25.如图,在直角三角形 ABC中,∠ ACB=90°,AB=10,sinB= ,点 O 是 AB 的中点,∠ DOE=∠ A,当∠ DOE以点 O 为旋转中心旋转时, OD 交 AC 的延长线于点 D,交边 CB于点 M,OE 交线段 BM 于点 N.(1)当 CM=2 时,求线段 CD的长;(2)设 CM=x, BN=y,试求 y 与 x 之间的函数解析式,并写出定义域;( 3)如果△ OMN 是以 OM 为腰的等腰三角形,请直接写出线段CM 的长.2017 年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题 4 分)1.“相似的图形”是()A.形状相同的图形B.大小不相同的图形C.能够重合的图形D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选 A.2.下列函数中, y 关于 x 的二次函数是()A. y=2x 1B.y=2x(x 1) C. y=2x2++【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1 是一次函数,故A 错误;B、y=2x(x+1)是二次函数,故 B 正确;C、y=不是二次函数,故 C 错误;D、 y=(x﹣2)2﹣ x2是一次函数,故 D 错误;故选: B.3.如图,直线 l1∥l2∥l3,直线 AC分别交 l 1、l2、l3与点 A、B、C,直线 DF分别交 l1、l2、l3与点D、 E、 F,AC与 DF相交于点 H,如果 AH=2,BH=1, BC=5,那么的值等于()A.B.C.D.【考点】平行分段成比例.【分析】根据平行分段成比例,可以解答本.【解答】解:∵直 l1∥ l2∥ l3,∴,∵AH=2,BH=1,BC=5,∴ AB=AH+BH=3,∴,∴,故 D.4.抛物 y= x2+bx+c 上部分点的横坐x,坐 y 的如下表所示:x⋯21012⋯y⋯04664⋯从上表可知,下列法中,的是()A.抛物于 x 的一个交点坐(2,0)B.抛物与 y 的交点坐( 0,6)C.抛物的称是直x=0D.抛物在称左部分是上升的【考点】二次函数的性.【分析】由表可知抛物点( 2,0)、(0,6)可判断 A、B;当 x=0 或 x=1 , y=6 可求得其称,可判断 C;由表中所函数可判断 D.【解答】解:当x= 2 , y=0,∴抛物( 2, 0),∴抛物与 x 的一个交点坐( 2, 0),故 A 正确;当x=0 , y=6,∴抛物与 y 的交点坐( 0, 6),故 B 正确;当x=0 和 x=1 , y=6,∴ 称 x= ,故 C ;∴抛物线在对称轴左侧部分是上升的,故 D 正确;故选 C.5.如图,在四边形 ABCD中,如果∠ ADC=∠ BAC,那么下列条件中不能判定△ADC和△ BAC 相似的是()A.∠ DAC=∠ABC B.AC是∠ BCD的平分线C.AC2=BC?CD D.=【考点】相似三角形的判定.【分析】已知∠ ADC=∠ BAC,则 A、B 选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似; D 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ ADC和△ BAC中,∠ ADC=∠BAC,如果△ ADC∽△ BAC,需满足的条件有:①∠DAC=∠ABC或 AC是∠ BCD的平分线;②= ;故选: C.6.下列说法中,错误的是()A.长度为 1 的向量叫做单位向量B.如果 k≠0,且≠,那么k的方向与的方向相同C.如果 k=0 或 = ,那么 k =D.如果=,=,其中是非零向量,那么∥【考点】 * 平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解: A、长度为 1 的向量叫做单位向量,故本选项错误;B、当 k>0 且≠时,那么 k 的方向与的方向相同,故本选项正确;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥ ,故本选项错误;故选: B.二、填空题(每题 2 分)7.如果 x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x 表示 y,代入计算即可.【解答】解:∵ x: y=4: 3,∴x= y,∴==,故答案为:.8.计算: 3 ﹣4( + ) =﹣﹣4.【考点】 * 平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解: 3 ﹣4( + ) =3 ﹣4 ﹣ 4 =﹣﹣4 .故答案是:﹣﹣4 .9.如果抛物线 y=(m﹣1)x2的开口向上,那么m 的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣ 1> 0.【解答】解:因为抛物线y=( m﹣1)x2的开口向上,所以 m﹣ 1> 0,即 m>1,故 m 的取值范围是 m>1.10.抛物线 y=4x2﹣ 3x 与 y 轴的交点坐标是( 0,0).【考点】二次函数图象上点的坐标特征.【分析】令 x=0 可求得 y=0,可求得答案.【解答】解:在 y=4x2﹣3x 中,令 x=0 可得 y=0,∴抛物线与 y 轴的交点坐标为( 0, 0),故答案为:( 0, 0).112 2x﹣3的图象上,则 n 的值为 12..若点 A(3,n)在二次函数 y=x +【考点】二次函数图象上点的坐标特征.【分析】将 A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于 n 的方程即可.【解答】解:∵ A( 3, n)在二次函数 y=x2+2x﹣3 的图象上,∴A(3,n)满足二次函数 y=x2+2x﹣3,∴n=9+6﹣3=12,即 n=12,故答案是: 12.12.已知线段 AB 的长为 10 厘米,点 P 是线段 AB 的黄金分割点,那么较长的线段AP 的长等于5﹣5 厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点 P 是线段 AB 的黄金分割点, AP>BP,∴ AP=AB=(5﹣5)厘米,故答案为: 5﹣5.13.利用复印机的缩放功能,将原图中边长为 5 厘米的一个等边三角形放大成边长为20 厘米的等边三角形,那么放大前后的两个三角形的周长比是1:4.【考点】相似图形.【分析】根据等边三角形周长的比是三角形边长的比解答即可.【解答】解:因为原图中边长为5cm 的一个等边三角形放大成边长为20cm 的等边三角形,所以放大前后的两个三角形的面积比为5:20=1:4,故答案为: 1:4.14.已知点 P 在半径为 5 的⊙ O 外,如果设 OP=x,那么 x 的取值范围是x> 5.【考点】点与圆的位置关系.【分析】根据点在圆外的判断方法得到x 的取值范围.【解答】解:∵点 P 在半径为 5 的⊙ O 外,∴OP> 5,即 x>5.故答案为 x>5.15.如果港口 A 的南偏东 52°方向有一座小岛 B,那么从小岛 B观察港口 A的方向是北偏西52° .【考点】方向角.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图,∵∠ 1=∠ 2=52°,∴从小岛 B 观察港口 A 的方向是北偏西 52°.故答案为:北偏西52°.16.在半径为 4 厘米的圆面中,挖去一个半径为x 厘米的圆面,剩下部分的面积为y 平方厘米,写出 y 关于 x 的函数解析式:2y=﹣πx16π(结果保留π,不要求写出定义域)+【考点】函数关系式;函数自变量的取值范围.【分析】根据圆的面积公式,可得答案.【解答】解:由题意得在半径为 4 厘米的圆面中,挖去一个半径为x 厘米的圆面,剩下部分的面积为y 平方厘米,2y=﹣πx+16π,2故答案为: y=﹣πx+16π.17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.【考点】解直角三角形;等腰三角形的性质.【分析】如图,△ ABC中, AB=AC,AC: BC=5:6,作 AE⊥BC于 E,则 BE=EC,在 Rt△AEC中,根据 cos∠C= ==,即可解决问题.【解答】解:如图,△ ABC中, AB=AC, AC:BC=5:6,作 AE⊥ BC于 E,则 BE=EC,,在 Rt△ AEC中, cos∠ C= == ,故答案为.18.如图, DE∥BC,且过△ ABC的重心,分别与 AB、AC交于点 D、E,点 P 是线段 DE上一点,CP 的延长线交AB于点,如果=,那么△ DPQ:S△ CPE的值是1:15 .Q S【考点】三角形的重心;相似三角形的判定与性质.【分析】连接QE DE BC DE过△ABC=,设DE=4m BC=6m ,由∥、的重心即可得出,则,结合=即可得出 DP=m,PE=3m,由△ DPQ 与△ QPE 有相同的高即可得出== ,再根据DE∥BC,利用平行线的性质即可得出∠QDP=∠QBC,结合公共角∠ DQP=∠BQC 即可得出△ QDP ∽△ QBC,依据相似三角形的性质即可得出== ,进而得出=,结合三角形的面积即可得出==,将与相乘即可得出结论.【解答】解:连接 QE,如图所示.∵DE∥ BC,DE过△ ABC的重心,∴ = .设 DE=4m,则 BC=6m.∵= ,∴DP=m,PE=3m,∴= = .∵DE∥ BC,∴∠ QDP=∠QBC,∵∠ DQP=∠BQC,∴= = ,∴= ,∴= = ,∴=?= × = .故答案为: 1:15.三、解答题19.计算: cos245°+﹣tan30 °.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式 =()2+﹣×= +﹣1=.20.如图,已知 AD 是⊙ O 的直径, BC是⊙ O 的弦, AD⊥BC,垂足为点 E,AE=BC=16,求⊙ O 的直径.【考点】垂径定理;勾股定理.【分析】连接 OB,根据垂径定理求出BE,根据勾股定理得出方程,求出方程的解即可.【解答】解:连接 OB,设 OB=OA=R,则 OE=16﹣R,∵AD⊥ BC,BC=16,∴∠ OEB=90°,BE= BC=8,由勾股定理得: OB2=OE2+BE2,R2=( 16﹣R)2 +82,解得: R=10,即⊙ O 的直径为 20.21.如图,已知向量,,.( 1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).( 2)如果点 A 是线段 OD 的中点,联结AE、交线段 OP于点 Q,设= ,= ,那么试用,表示向量,(请直接写出结论)【考点】 * 平面向量.【分析】(1)根据向量加法的平行四边形法则,分别过P 作 OA、OB 的平行线,交 OA 于 D,交OB 于 E;( 2)易得△ OAQ∽△ PEQ,根据相似三角形对应边成比例得出= = = ,那么=2 =﹣2 ,==.再求出= = ﹣ 2 ,然后根据=﹣即可求解.【解答】解:(1)如图,分别过 P 作 OA、 OB 的平行线,交 OA 于 D,交 OB 于 E,则向量分别在,方向上的分向量是,;(2)如图,∵四边形 ODPE是平行四边形,∴ PE∥DO,PE=DO,∴△ OAQ∽△ PEQ,∴ = = ,∵点 A 是线段 OD 的中点,∴OA= OD= PE,∴= = = ,∴=2 =﹣2 ,==.∵= ﹣ = ﹣2 ,∴ = = ﹣2 ,∴=﹣= ﹣2 ﹣=﹣2.22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面 AB 的坡比 i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD 的坡比 i2(结果保留根号)【考点】解直角三角形的应用 -坡度坡角问题.【分析】作 DE⊥AB,可得∠ BDE=∠BAC,即可知 tan∠ BAC=tan∠ BDE,即= =,设DC=2x,由角平分线性质得 DE=DC=2x,再分别表示出 BD、AC的长,最后由坡比定义可得答案.【解答】解:过点 D 作 DE⊥AB 于点 E,∴∠ DEB=∠C=90°,∵∠ B=∠ B,∴∠ BDE=∠BAC,∴tan ∠BAC=tan∠ BDE,即 = = ,设DC=2x,∵∠ DAC=∠DAE,∠ DEB=∠C=90°,∴DE=DC=2x,则BE=x BD== x,,∴BC=CD+BD=(2+ ) x,∴AC=2BC=(4+2 )x,∴新坡面 AD 的坡比 i2= ==﹣2.23.已知:如图,在四边形ABCD中,∠ BAD=∠CDA, AB=DC=,CE=a,AC=b,求证:(1)△ DEC∽△ ADC;(2) AE?AB=BC?DE.【考点】相似三角形的判定与性质.【分析】(1)两组对应边的比相等且夹角对应相等的两个三角形相似,据此进行证明即可;( 2)先根据相似三角形的性质,得出∠BAC=∠EDA,=,再根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行证明即可.【解答】证明:(1)∵ DC=,CE=a,AC=b,∴CD2=CE×CA,即 = ,又∵∠ ECD=∠ DCA,∴△ DEC∽△ ADC;(2)∵△ DEC∽△ ADC,∴∠ DAE=∠CDE,∵∠ BAD=∠CDA,∴∠ BAC=∠EDA,∵△ DEC∽△ ADC,∴ = ,∵ DC=AB,∴ = ,即 = ,∴△ ADE∽△ CAB,∴ = ,即 AE?AB=BC?DE.24.如图,已知在平面直角坐标系 xOy 中,点 A(42 2x﹣c 上的一点,将此,0)是抛物线 y=ax +抛物线向下平移 6 个单位后经过点 B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB 的交点记为 P.(1)求平移后所得到的新抛物线的表达式,并写出点C 的坐标;(2)求∠ CAB的正切值;(3)如果点 Q 是新抛物线对称轴上的一点,且△ BCQ与△ ACP相似,求点 Q 的坐标.【考点】二次函数综合题.【分析】(1)先根据点 B(0,2)向上平移 6 个单位得到点B'( 0, 8),将 A(4,0),B'(0,8)分别代入 y=ax2+2x﹣c,得原抛物线为 y=﹣x2+2x+8,向下平移6个单位后所得的新抛物线为y=﹣ x2+2x+2,据此求得顶点 C 的坐标;2,2,2,进而得出222( 2)根据 A(4,0),B(0,2),C(1,3),得到 AB+BC,根据∠ ACB=90°,求得 tan ∠CAB 的值即可;( 3)先设抛物线的对称轴 x=1 与 x 轴交于点 H ,根据= = ,求得 PH= AH= ,进而得到 P( 1, ),再由 HA=HC=3,得∠HCA=45°,根据当点 Q 在点 C 下方时,∠ BCQ=∠ ACP ,因此△ BCQ与△ ACP 相似分两种情况,根据相似三角形的性质即可得到点Q 的坐标.【解答】 解:(1)点 B ( 0, 2)向上平移 6 个单位得到点 B'( 0, 8),将 A (4,0),B'(0,8)分别代入 y=ax 2 +2x ﹣ c ,得,解得,∴原抛物线为 y=﹣x 2+2x+8,向下平移 6 个单位后所得的新抛物线为 y=﹣x 2+2x+2,∴顶点 C 的坐标为( 1,3);( 2)如图 2,由 A (4,0),B (0,2), C ( 1, 3),得2 2 2AB =20, AC =18,BC =2,2 2 2 , ∴ AB BC =AC+ ∴∠ ACB=90°,∴ tan ∠CAB= == ;( 3)如图 3,设抛物线的对称轴 x=1 与 x 轴交于点 H ,由= = ,得 PH= AH= ,∴ P ( 1, ),由 HA=HC=3,得∠ HCA=45°,∴当点 Q 在点 C 下方时,∠ BCQ=∠ ACP,因此△ BCQ与△ ACP相似分两种情况:①如图 3,当=时,=,解得 CQ=4,此时 Q( 1,﹣ 1);②如图 4,当=时,=,解得 CQ= ,此时 Q( 1,).25.如图,在直角三角形 ABC中,∠ ACB=90°,AB=10,sinB= ,点 O 是 AB 的中点,∠ DOE=∠ A,当∠ DOE以点 O 为旋转中心旋转时, OD 交 AC 的延长线于点 D,交边 CB于点 M,OE 交线段 BM 于点 N.( 1)当 CM=2 时,求线段 CD的长;( 2)设 CM=x, BN=y,试求 y 与 x 之间的函数解析式,并写出定义域;( 3)如果△ OMN 是以 OM 为腰的等腰三角形,请直接写出线段CM 的长.【考点】几何变换综合题.【分析】(1)如图 1 中,作 OH⊥ BC于 H.只要证明△ DCM≌△ OHM,即可得出 CD=OH=3.( 2)如图 2 中,作 NG⊥OB 于 G.首先证明∠ 1=∠2,根据 tan∠1=tan∠ 2,可得=,由此即可解决问题.( 3)分两种情形讨论即可①如图 3 中,当 OM=ON 时,OH 垂直平分 MN,②如图 4 中,当 OM=MN 时,分别求解即可.【解答】解:(1)如图 1 中,作 OH⊥BC于 H.在Rt△ ABC中,∵ AB=10,sinB= ,∴AC=6,BC=8,∵AO=OB,OH∥AC,∴CH=HB=4,OH=3,∵ CM=2,∴CM=HM=2,在△ DCM 和△ OHM 中,,∴△ DCM≌△ OHM,∴CD=OH=3.( 2)如图 2 中,作 NG⊥OB 于 G.∵∠ HOB=∠A=∠MON,∴∠ 1=∠ 2,在Rt△ BNG中, BN=y,sibB= ,∴GN= y,BG= y,∵ tan ∠1=tan∠2,∴= ,∴=,∴ y=,(0<x<4).( 3)①如图 3 中,当 OM=ON 时, OH 垂直平分 MN,∴BN=CM=x,∵△ OMH≌△ ONG,∴NG=HM=4﹣x,∵ sinB= ,∴= ,∴CM=x= .②如图 4 中,当 OM=MN 时.连接 CO,∵OA=OB,OM=MN,∴ CO=OA=OB,∴∠ MON=∠MNO=∠ A=∠OCA,∴△ MON∽△ OAC,∴∠ AOC=∠OMN,∴∠ BOC=∠CMO,∵∠ B=∠ B,∴△ CMO∽△ COB,∴= ,∴8x=52,∴x= .综上所述,△ OMN 是以 OM 为腰的等腰三角形时,线段CM 的长为或.2017 年 2 月 12 日。
2017年上海市青浦区中考数学一模试卷
2017年上海市青浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)在下列各数中,属于无理数的是()A.4B.C.D.2.(4分)已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b3.(4分)一次函数y=kx﹣1(常数k<0)的图象一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)抛物线y=2x2+4与y轴的交点坐标是()A.(0,2)B.(0,﹣2)C.(0,4)D.(0,﹣4)5.(4分)顺次连结矩形四边中点所得的四边形一定是()A.菱形B.矩形C.正方形D.等腰梯形6.(4分)如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)函数y=的定义域是.8.(4分)方程=2的根是.9.(4分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是.10.(4分)从点数为1、2、3的三张扑克牌中随机摸出两张牌,摸到的两张牌的点数之积为素数的概率是.11.(4分)将抛物线y=x2+4x向下平移3个单位,所得抛物线的表达式是.12.(4分)如果点A(﹣2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1y2.(填“>”、“=”、“<”)13.(4分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.14.(4分)点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是.15.(4分)已知在△ABC中,点D在边AC上,且AD:DC=2:1.设=,=.那么=.(用向量、的式子表示)16.(4分)如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.17.(4分)如图,在平行四边形ABCD中,点E在边AD上,联结CE并延长,交对角线BD于点F,交BA的延长线于点G,如果DE=2AE,那么CF:EF:EG=.18.(4分)如图,已知△ABC,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连接BD,如果∠DAC=∠DBA,那么的值是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:÷(a﹣1)+.20.(10分)解方程组:.21.(10分)已知:如图,在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0),与y轴交于点C.(1)求平移后直线的表达式;(2)求∠OBC的余切值.22.(10分)某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)23.(12分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.24.(12分)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+1与x轴的正半轴交于点A和点B,与y轴交于点C,且OB=3OC,点P是第一象限内的点,连接BC,△PBC是以BC为斜边的等腰直角三角形.(1)求这个抛物线的表达式;(2)求点P的坐标;(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以点C、A、B为顶点的三角形相似,求点Q的坐标.25.(14分)已知:如图,在菱形ABCD中,AB=5,联结BD,sin∠ABD=.点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,△PEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,求线段BP的长.2017年上海市青浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)(2017•青浦区一模)在下列各数中,属于无理数的是()A.4B.C.D.【解答】解:4=2,,是有理数,是无理数,故选:B.2.(4分)(2017•阳谷县一模)已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.3.(4分)(2017•青浦区一模)一次函数y=kx﹣1(常数k<0)的图象一定不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=kx﹣1(常数k<0),b=﹣1<0,∴一次函数y=kx﹣1(常数k<0)的图象一定经过第二、三,四象限,不经过第﹣象限.故选:A.4.(4分)(2017•青浦区一模)抛物线y=2x2+4与y轴的交点坐标是()A.(0,2)B.(0,﹣2)C.(0,4)D.(0,﹣4)【解答】解:把x=0代入抛物线y=2x2+4中,解得:y=4,则抛物线y=2x2+4与y轴的交点坐标是(0,4).故选C.5.(4分)(2017•青浦区一模)顺次连结矩形四边中点所得的四边形一定是()A.菱形B.矩形C.正方形D.等腰梯形【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:A.6.(4分)(2017•青浦区一模)如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD :S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:6【解答】解:∵在梯形ABCD 中,AD ∥BC ,而且S △ACD :S △ABC =1:2,∴AD :BC=1:2;∵AD ∥BC ,∴△AOD ~△BOC ,∵AD :BC=1:2,∴S △AOD :S △BOC =1:4.故选:B .二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2017•青浦区一模)函数y=的定义域是 x ≠1 . 【解答】解:由题意得,x ﹣1≠0,解得x ≠1.故答案为:x ≠1.8.(4分)(2017•青浦区一模)方程=2的根是 x= . 【解答】解:∵=2, ∴3x ﹣1=4,∴x=,经检验x=是原方程组的解,故答案为:.9.(4分)(2008•苏州)若关于x 的一元二次方程x 2﹣2x +m=0有实数根,则m 的取值范围是 m ≤1 .【解答】解:由题意知,△=4﹣4m ≥0,∴m ≤1答:m 的取值范围是m ≤1.10.(4分)(2017•青浦区一模)从点数为1、2、3的三张扑克牌中随机摸出两张牌,摸到的两张牌的点数之积为素数的概率是.【解答】解:画树状图如下:一共有6种等可能结果,其中和为素数的有4种,∴点数之积为素数的概率是=,故答案为:.11.(4分)(2017•青浦区一模)将抛物线y=x2+4x向下平移3个单位,所得抛物线的表达式是y=x2+4x﹣3.【解答】解:∵抛物线y=x2+4x向下平移3个单位,∴抛物线的解析式为y=x2+4x﹣3,故答案为y=x2+4x﹣3.12.(4分)(2017•青浦区一模)如果点A(﹣2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1<y2.(填“>”、“=”、“<”)【解答】解:当x=﹣2时,y1=(﹣2+3)2=1,当x=2时,y2=(2+3)2=25,y1<y2,故答案为<.13.(4分)(2017•青浦区一模)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为6.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=8.∴此多边形的边数为6.故答案为:6.14.(4分)(2017•青浦区一模)点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是4.【解答】解:延长AG交BC与F,∵点G是△ABC的重心,BC=6,∴BF=3,∵点G是△ABC的重心,∴AG:GF=2:1,∵GD∥AB,∴BD:DF=DG:GF=2:1,∴BD=2,DF=1,∴CD=3+1=4,故答案为:415.(4分)(2017•青浦区一模)已知在△ABC中,点D在边AC上,且AD:DC=2:1.设=,=.那么=+.(用向量、的式子表示)【解答】解:如图,∵=2,∴=,即AD=AC,则==+=()+=+=+,故答案为:+.16.(4分)(2017•青浦区一模)如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.【解答】解:∵边AB的垂直平分线交AC边于点D,交AB边于点E,∴AD=BD,设CD=x,则有BD=AD=AC﹣CD=3﹣x,在Rt△BCD中,根据勾股定理得:(3﹣x)2=x2+22,解得:x=,则tan∠DBC==,故答案为:17.(4分)(2017•青浦区一模)如图,在平行四边形ABCD中,点E在边AD上,联结CE并延长,交对角线BD于点F,交BA的延长线于点G,如果DE=2AE,那么CF:EF:EG=6:4:5.【解答】解:设AE=x,则DE=2x,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3x,AD∥BC,∴△GAE∽△GBC,△DEF∽△BCF,∴==,==,∴=,设EF=2y,则CF=3y,∴EC=EF+CF=5y,∴GE=y,则CF:EF:EG=3y:2y:y=6:4:5,故答案为:6:4:5.18.(4分)(2017•青浦区一模)如图,已知△ABC,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连接BD,如果∠DAC=∠DBA,那么的值是.【解答】解:如图,由旋转的性质得到AB=AD,∠CAB=∠DAB,∴∠ABD=∠ADB,∵∠CAD=∠ABD,∴∠ABD=∠ADB=2∠BAD,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D作∠ADB的平分线DF,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD,∴△ABD∽△DBF,∴,即,解得=,故答案为:.三、解答题:(本大题共7题,满分78分)19.(10分)(2017•青浦区一模)计算:÷(a﹣1)+.【解答】解:原式=×+=+=+=.20.(10分)(2017•青浦区一模)解方程组:.【解答】解:由①得:x﹣2y=2或x﹣2y=﹣2.原方程可化为,解得,原方程的解是,.21.(10分)(2017•青浦区一模)已知:如图,在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0),与y轴交于点C.(1)求平移后直线的表达式;(2)求∠OBC的余切值.【解答】解:(1)当x=2时,y==4,∴点A的坐标为(2,4).∵A(2,4)在y=kx(k≠0)的图象上,∴4=2k,解得:k=2.设直线BC的函数解析式为y=2x+b,∵点B的坐标为(3,0),∴0=2×3+b,解得:b=﹣6,∴平移后直线的表达式y=2x﹣6.(2)当x=0时,y=﹣6,∴点C的坐标为(0,﹣6),∴OC=6.∴.22.(10分)(2017•青浦区一模)某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)【解答】解:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,=i=1:,∴设BF=k,则CF=,BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+6.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.答:大楼AB的高度约为33.3米.23.(12分)(2017•青浦区一模)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.【解答】证明:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC.∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC.∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE.∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC.∴.∴FE•CG=EG•CB.24.(12分)(2017•青浦区一模)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+1与x轴的正半轴交于点A和点B,与y轴交于点C,且OB=3OC,点P是第一象限内的点,连接BC,△PBC是以BC为斜边的等腰直角三角形.(1)求这个抛物线的表达式;(2)求点P的坐标;(3)点Q在x轴上,若以Q、O、P为顶点的三角形与以点C、A、B为顶点的三角形相似,求点Q的坐标.【解答】解:(1)∵抛物线y=ax2﹣4ax+1,∴点C的坐标为(0,1).∵OB=3OC,∴点B的坐标为(3,0).∴9a﹣12a+1=0,∴.∴.(2)如图,过点P作PM⊥y轴,PN⊥x轴,垂足分别为点M、N.∵∠MPC=90°﹣∠CPN,∠NPB=90°﹣∠CPN,∴∠MPC=∠NPB.在△PCM和△PBN中,,∴△PMC≌△PNB,∴PM=PN.设点P(a,a).∵PC2=PB2,∴a2+(a﹣1)2=(a﹣3)2+a2.解得a=2.∴P(2,2).(3)∵该抛物线对称轴为x=2,B(3,0),∴A(1,0).∵P(2,2),A(1,0),B(3,0),C(0,1),∴PO=,AC=,AB=2.∵∠CAB=135°,∠POB=45°,在Rt△BOC中,tan∠OBC=,∴∠OBC≠45°,∠OCB<90°,在Rt△OAC中,OC=OA,∴∠OCA=45°,∴∠ACB<45°,∴当△OPQ与△ABC相似时,点Q只有在点O左侧时.(i)当时,∴,∴OQ=4,∴Q(﹣4,0).(ii)当时,∴,∴OQ=2,∴Q(﹣2,0).当点Q在点A右侧时,综上所述,点Q的坐标为(﹣4,0)或(﹣2,0).25.(14分)(2017•青浦区一模)已知:如图,在菱形ABCD中,AB=5,联结BD,sin ∠ABD=.点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,△PEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,求线段BP的长.【解答】解:(1)∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,又∵BE=BE,∴AE=CE.(2)连接AC,交BD于点O,过点A作AH⊥BC,过点E作EF⊥BC,如图1所示:垂足分别为点H、F.∵四边形ABCD是菱形,∴AC⊥BD.∵AB=5,,∴AO=OC=,BO=OD=.∵,∴AH=4,BH=3.∵AD∥BC,∴,∴,∴,∴.∵EF∥AH,∴,∴.∴.(3)因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵,∴,∴BP=.②当∠CEP=90°时,∴∠AEB=∠CEB=45°,∴,∴,.∵AD∥BP,∴,∴,∴BP=15.综上所述,当△EPC是直角三角形时,线段BP的长为或15.====Word行业资料分享--可编辑版本--双击可删====参与本试卷答题和审题的老师有:2300680618;sdwdmahongye;733599;dbz1018;放飞梦想;星期八;zjx111;HLing;郝老师;三界无我;nhx600;sd2011;1987483819;sks;王学峰;caicl;曹先生;zhjh;CJX;星月相随;家有儿女(排名不分先后)菁优网2017年4月8日源-于-网-络-收-集。
上海市杨浦区2017年中考一模数学试卷(含解析)
上海市杨浦区2017年中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.如果延长线段AB到C,使得,那么AC:AB等于()A.2:1 B.2:3 C.3:1 D.3:22.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是()A.100tanα B.100cotα C.100sinα D.100cosα3.将抛物线y=2(x﹣1)2+3向右平移2个单位后所得抛物线的表达式为()A.y=2(x﹣1)2+5 B.y=2(x﹣1)2+1 C.y=2(x+1)2+3 D.y=2(x﹣3)2+34.在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于100°的两个等腰三角形相似6.在△ABC和△DEF中,∠A=40°,∠D=60°,∠E=80°,,那么∠B的度数是()A.40° B.60° C.80° D.100°二、填空题(本大题共12题,每题4分,满分48分)7.线段3cm和4cm的比例中项是cm.8.抛物线y=2(x+4)2的顶点坐标是.9.函数y=ax2(a>0)中,当x<0时,y随x的增大而.10.如果抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),那么它的对称轴是直线.11.如图,△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值为.12.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果BC=2AD,那么S△ADC:S△ABC 的值为.13.如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm,那么大三角形对应边上的中线长是cm.14.如果+=3,2﹣=,那么= (用表示).15.已知α是锐角,tanα=2cos30°,那么α= 度.16.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是i=1:.17.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:那么该二次函数在x=0时,y= .18.如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D旋转后分别落在点E、F的位置,那么∠EFD的正切值是.三、解答题(本大题共7题,满分78分)。
2017年上海中学中考数学一模试卷(含解析)
2017年上海中学中考数学一模试卷一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)的相反数是()A.2016 B.﹣2016 C.D.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×1044.(3分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x55.(3分)如图,下面几何体的俯视图不是圆的是()A.B.C.D.6.(3分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.(3分)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二.填空题(每小题3分,共24分)11.(3分)分解因式:x2y﹣y=.12.(3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.(3分)化简:﹣=.14.(3分)已知,则2016+x+y=.15.(3分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.16.(3分)抛物线y=(x﹣1)2+2的对称轴是.17.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.(3分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)计算:()﹣1+20160﹣|﹣4|20.(8分)解不等式组,并写出它的所有正整数解.21.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(8分)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.(8分)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.(10分)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2017年上海中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)(2016•益阳)的相反数是()A.2016 B.﹣2016 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2008•邵阳)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.5.(3分)(2016•邵阳县一模)如图,下面几何体的俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.(3分)(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.(3分)(2015•泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二.填空题(每小题3分,共24分)11.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)(2014•泰州)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.(3分)(2016•常州)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.(3分)(2016•邵阳县一模)已知,则2016+x+y=2018.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.(3分)(2017•邵阳县校级一模)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴从这10名学生中选出一人担任组长,则男生当选组长的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2016•邵阳县一模)抛物线y=(x﹣1)2+2的对称轴是x=1.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.(3分)(2014•梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.(3分)(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)(2016•邵阳县一模)计算:()﹣1+20160﹣|﹣4|【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2016•邵阳县一模)解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2016•邵阳县一模)如图,平行四边形ABCD中,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)(2016•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.(8分)(2016•邵阳县一模)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.(8分)(2016•邵阳县一模)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)(2016•邵阳县一模)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n,B n,等腰△A n B n﹣1B n为第n个三角﹣1形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.(10分)(2016•邵阳县一模)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.。
2017年上海市静安区中考数学一模试卷含答案解析
2017年上海市静安区中考数学一模试卷一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣43.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)二.填空题(每个小题4分,共48分)7.16的平方根是.8.如果代数式有意义,那么x的取值范围为.9.方程+=1的根为.10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为.11.二次函数y=x2﹣8x+10的图象的顶点坐标是.12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为.15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为.三、解答题(共78分)19.计算:.20.解方程组:.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.2017年上海市静安区中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.a(a>0)等于()A.B.﹣C.D.﹣【考点】分数指数幂;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,分数指数幂,可得答案.【解答】解:a===,故选:C.2.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【考点】实数范围内分解因式.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A3.在△ABC中,点D,E分别在边AB,AC上,=,要使DE∥BC,还需满足下列条件中的()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD=2,BD=4,=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选D.4.在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【考点】锐角三角函数的定义.【分析】根据余角函数是邻边比斜边,可得答案.【解答】解:由题意,得cosA=,AC=AB•cosA=m•cosα,故选:B.5.如果锐角α的正弦值为,那么下列结论中正确的是()A.α=30°B.α=45°C.30°<α<45° D.45°<α<60°【考点】锐角三角函数的增减性.【分析】正弦值随着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α<45°,故选:C.6.将抛物线y=ax2﹣1平移后与抛物线y=a(x﹣1)2重合,抛物线y=ax2﹣1上的点A(2,3)同时平移到A′,那么点A′的坐标为()A.(3,4) B.(1,2) C.(3,2) D.(1,4)【考点】二次函数图象与几何变换.【分析】根据两个抛物线的平移规律得到点A的平移规律,易得点A′的坐标.【解答】解:∵抛物线y=ax2﹣1的顶点坐标是(0,﹣1),抛物线y=a(x﹣1)2的顶点坐标是(1,0),∴将抛物线y=ax2﹣1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x﹣1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4),故选:A.二.填空题(每个小题4分,共48分)7.16的平方根是±4.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.8.如果代数式有意义,那么x的取值范围为x>﹣2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.9.方程+=1的根为x=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+2x+2=x2﹣1,整理得:x2﹣3x+2=0,即(x﹣2)(x﹣1)=0,解得:x=1或x=2,经检验x=1是增根,分式方程的解为x=2,故答案为:x=210.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值范围为m<2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质,一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么图象一定与y轴的负半轴有交点,即可解答.【解答】解:∵一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,∴图象一定与y轴的负半轴有交点,∴m﹣2<0,∴m<2,故答案为:m<2.11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).【考点】二次函数的性质.【分析】将二次函数化为顶点式后即可确定其顶点坐标.【解答】解:∵y=2x2﹣8x+10=2(x﹣4)2﹣6,∴顶点坐标为(4,﹣6),故答案为:(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为3.【考点】二次函数图象上点的坐标特征.【分析】根据函数值相等两点关于对称轴对称,可得答案.【解答】解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为1:16.【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,∴△ABC与△DEF的面积比=()2=1:16.故答案为:1:16.14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为2.【考点】三角形的重心;等腰三角形的性质;解直角三角形.【分析】根据等腰三角形的三线合一,知三角形的重心在BC边的高上.根据勾股定理求得该高,再根据三角形的重心到顶点的距离是它到对边中点的距离的2倍,求得G到BC的距离.【解答】解:∵AB=AC=10,∴△ABC是等腰三角形∴三角形的重心G在BC边的高∵cosB=,∴在BC边的高=6,根据三角形的重心性质∴G到BC的距离是2.故答案为:215.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=,=,那么=﹣(用,的式子表示)【考点】*平面向量;平行四边形的性质.【分析】根据平行四边形的性质及中点的定义得BC∥AD、BC=AD=2EC,再证△ADF∽△CEF得=,根据==﹣=﹣()可得答案.【解答】解:∵四边形ABCD是平行四边形,点E是边BC的中点,∴BC∥AD,BC=AD=2EC,∴△ADF∽△CEF,,∴==2,则=,∴==﹣=﹣()=﹣(+)=﹣,故答案为:﹣.16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.【考点】相似三角形的性质.【分析】根据题意画出图形,根据相似三角形的性质求出DE及AE的长,进而可得出结论.【解答】解:如图,∵△ADE∽△ABC,∴==,即==,解得DE=,AE=,∴△ADE的周长=AD+AE+DE=3++=;故答案为:.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,推出∠EDC=∠BCD,=,由△BDC∽△CED,推出===,由此即可解决问题.【解答】解:∵DE∥BC,∴∠EDC=∠BCD,=∵∠BDC=∠DEC,∴△BDC∽△CED,∴===,∴=.故答案为3:2.18.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为13.【考点】翻折变换(折叠问题).【分析】根据直角三角形的性质求出CD,得到∠DCB=∠B,根据垂直的定义、等量代换得到∠OEC=∠B,根据正切的定义、勾股定理计算即可.【解答】解:∵CD是斜边AB上的中线,∴DC=DB=AB=12,∴∠DCB=∠B,由题意得,EF是CD的垂直平分线,∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,∴∠OEC=∠B,设CF=2x,则CE=3x,由勾股定理得,EF=x,×2x×3x=×x×6,解得,x=,∴EF=×=13,故答案为:13.三、解答题(共78分)19.计算:.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式===.20.解方程组:.【考点】高次方程.【分析】由②得出x﹣3y=±2,由①得出x(x﹣y+2)=0,组成四个方程组,求出方程组的解即可.【解答】解:由②得:(x﹣3y)2=4,x﹣3y=±2,由①得:x(x﹣y+2)=0,x=0,x﹣y+2=0,原方程组可以化为:,,,,解得,原方程组的解为:,,,.21.已知:如图,第一象限内的点A,B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且cot∠ACB=求:(1)反比例函数的解析式;(2)点C的坐标;(3)∠ABC的余弦值.【考点】待定系数法求反比例函数解析式;解直角三角形.【分析】(1)待定系数法求解可得;(2)作AE⊥x轴于点E,AE与BC交于点F,则CF=2,根据cot∠ACB==得AF=3,即可知EF,从而得出答案;(3)先求出点B的坐标.继而由勾股定理得出AB的长,最后由三角函数可得答案.【解答】解:(1)设反比例函数解析式为y=,将点A(2,4)代入,得:k=8,∴反比例函数的解析式y=;(2)过点A作AE⊥x轴于点E,AE与BC交于点F,则CF=2,∵cot∠ACB==,∴AF=3,∴EF=1,∴点C的坐标为(0,1);(3)当y=1时,由1=可得x=8,∴点B的坐标为(1,8),∴BF=BC﹣CF=6,∴AB==3,∴cos∠ABC===.22.将笔记本电脑放置在水平桌面上,显示屏OB与底板OA夹角为115°(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架O′AC后,电脑转到AO′B′的位置(如图3),侧面示意图为图4,已知OA=0B=20cm,B′O′⊥OA,垂足为C.(1)求点O′的高度O′C;(精确到0.1cm)(2)显示屏的顶部B′比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏O′B′与原来的位置OB平行,显示屏O′B′应绕点O′按顺时针方向旋转多少度?参考数据:(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)【考点】解直角三角形的应用.【分析】(1)解直角三角形即可得到结论;(2)如图2,过B作BD⊥AO交AO的延长线于D,根据三角函数的定义即可得到结论;(3)如图4,过O′作EF∥OB交AC于E,根据平行线的性质得到∠FEA=∠BOA=115°,于是得到结论.【解答】解:(1)∵B′O′⊥OA,垂足为C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A•cos∠CO′A=20•cos65°=8.46≈8.5(cm);(2)如图2,过B作BD⊥AO交AO的延长线于D,∵∠AOB=115°,∴∠BOD=65°,∵sin∠BOD=,∴BD=OB•sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴显示屏的顶部B′比原来升高了10.3cm;(3)如图4,过O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴显示屏O′B′应绕点O′按顺时针方向旋转25度.23.已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.【考点】相似三角形的判定与性质.【分析】(1)由BA•BD=BC•BE得,结合∠B=∠B,证△ABC∽△EBD得,即可得证;(2)先根据AC2=AD•AB证△ADC∽△ACB得∠ACD=∠B,再由证△BAE∽△BCD得∠BAE=∠BCD,根据∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD可得∠AEC=∠ACE,即可得证.【解答】证明:(1)∵BA•BD=BC•BE,∴,又∵∠B=∠B,∴△ABC∽△EBD,∴,∴DE•AB=AC•BE;(2)∵AC2=AD•AB,∴,∵∠DAC=∠CAB,∴△ADC∽△ACB,∴∠ACD=∠B,∵,∠B=∠B,∴△BAE∽△BCD,∴∠BAE=∠BCD,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠AEC=∠ACE,∴AE=AC.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.【考点】二次函数综合题.【分析】(1)根据相似三角形的判定定理得到△BEC∽△DEA,根据相似三角形的性质定理得到=,根据相似三角形的判定定理证明即可;(2)设AC=m,根据正切的定义得到DC=3m,根据相似三角形的性质得到∠DBA=∠DCA=90°,根据勾股定理列出算式,求出m的值,利用待定系数法求出抛物线的解析式.【解答】(1)证明:∵∠DCB=∠DAB,∠BEC=∠DEA,∴△BEC∽△DEA,∴=,又∠BED=∠CEA,∴△BDE∽△CAE;(2)解:∵抛物线y=ax2+bx+4与y轴相交于点B,∴点B的坐标为(0,4),即OB=4,∵tan∠DAC=3,∴=3,设AC=m,则DC=3m,OA=m+2,则点A的坐标为(m+2,0),点D的坐标为(2,3m),∵△BDE∽△CAE,∴∠DBA=∠DCA=90°,∴BD2+BC2=AD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,解得,m=2,则点A的坐标为(4,0),点D的坐标为(2,6),∴,解得,,∴抛物线的表达式为y=﹣x2+3x+4.25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.【考点】相似形综合题.【分析】(1)只要证明△DAC∽△CEB,得到=,再根据题意AC=BC,即可证明.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.由△CEB∽△DAC,得=,由此即可解决问题.(3)首先证明四边形ABCD是等腰梯形,再证明△ABG≌△DCH,推出CH=BG=2,推出x=GH=BC ﹣BG﹣CH=9﹣2﹣2=5,再利用(2)中即可即可解决问题.【解答】解:(1)∵∠DCB=∠ACD+∠ACB,∠DCB=∠EBC+∠BEC,∠ACB=∠BEC,∴∠ACD=∠EBC,∵AD∥BC,∴∠DAC=∠ACB=∠CEB,∴△DAC∽△CEB,∴=,∴BC•AC=CD•BE,∵AC=BC,∴BC2=CD•BF.(2)过点C作CF⊥AB于F,AG⊥BC于G,DH⊥BC于H.在Rt△CBF中,BF=BC•cos∠ABC=9×=3,∴AB=6,在Rt△ABG中,BG=AB•cos∠ABC=6×=2,∵AD∥BC,DH=AG,∴DH2=AG2=AB2﹣BG2=62﹣22=32,∵AG∥DH,∴GH=AD=x,∴CH=BC﹣BG﹣GH=7﹣x,∴CD===,∵△CEB∽△DAC,∴=,∴=,∴y=,∴y=(x>0且x≠9).(3)∵△DBC∽△DEB,∠CDB=∠BDE,∠CBD<∠DBC,∴∠DBC=∠DEB=∠ACB,∴OB=OC,∵AD∥BC,∴=,∴AC=BD,∴四边形ABCD是等腰梯形,∴AB=CD,∠ABC=∠DCB,∵∠AGB=∠DHC=90°,∴△ABG≌△DCH,∴CH=BG=2,∴x=GH=BC﹣BG﹣CH=9﹣2﹣2=5.∴CE=y=.2017年2月12日21。
上海市黄浦区2017届中考数学一模试题含解析
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A .B .C . D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.5 2.0 1.2 2.4?0 0 0 0绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00 二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简:= .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2017年上海市奉贤区中考数学一模试卷含答案解析
2017年上海市奉贤区中考数学一模试卷一、选择题1.下列抛物线中,顶点坐标是(-2,0)的是()A.y=x2+2B.y=x2-2C.y=(x+2)2D.y=(x-2)22.如果在RtAABC中,ZC=90°,AC=2,BC=3,那么下列各式正确的是()2222A.tanB=—B.cotB=—C.sinB=—D.cosB=—33333.如果把一个锐角^ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A.扩大为原来的3被B.缩小为原来的岑C.没有变化D.不能确定4.对于非零向量言、E、z下列条件中,不能判定三与E是平行向量的是()A.a〃b>c〃bB. a +3 b =3cC.a=-3bD.|a=3|^15.在AABC和ADEF中,AB=AC,DE=DF,根据下列条件,能判断AABC和z\DEF 相似的是()A.樽=^B.樽=率.ZA^ZED.ZB=ZDDE DF DE EF6.一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=--^t2+|t+l (0WtW20),那么网球到达最高点时距离地面的高度是()A.1米B. 1.5米C. 1.6米D. 1.8米二、填空题7.如果线段a、b、c、d满足§=孚=*,那么告.匕,d/•B+d8.计算:专(2言+6七)-3言=.9.已知线段a=3,b=6,那么线段a、b的比例中项等于—.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).11.如果二次函数y=ax2(a/0)的图象开口向下,那么a的值可能是—(只需写一个).12.如果二次函数y=x2-mx+m+1的图象经过原点,那么m的值是.13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是—.14.在^ABC中,点D、E分别在边AB、AC上,如果普=£,AE=4,那么当ECAB3的长是时,DE/7BC.15.如图,已知AD〃BE〃CF,它们依次交直线11、侦于点A、B、C和点D、E、F.如果AB=6,BC=1O,那么些的值是.16.边长为2的等边三角形的重心到边的距离是—.17.如图,如果在坡度i=l: 2.4的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是—米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将AABP沿着BP所在直线翻折得到AEBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是.D CB三、解答题19, 计算:4cos 230° -cot45° .tan60° +2sin45°20. 已知抛物线y=ax +bx+c (aKO )上部分点的横坐标x 与纵坐标y 的对应值如 下表:12(1) 根据上表填空:① 这个抛物线的对称轴是—,抛物线一定会经过点(-2,—);② 抛物线在对称轴右侧部分是—(填"上升”或"下降”);(2) 如果将这个抛物线y=ax2+成+c 向上平移使它经过点(0, 5),求平移后的抛 物线表达式.21.已知:如图,在^ABC 中,AB=AC,过点A 作AD±BC,垂足为点D,延长 AD 至点E,使DE=*AD,过点A 作AF//BC,交EC 的延长线于点F.(1)设奇=搭,BC =总用搭、E 的线性组合表示蓝;(2)求孕嵯的值.22.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图 2),支架与坐板均用线段表示,若座板DF 平行于地面MN,前支撑架AB 与后支 撑架AC 分别与座板DF 交于点E 、D,现测得DE=20厘米,DC=40厘米,/AED=58。
2017年上海市数学中考真题(含答案)
2017年上海市数学中考真题(含答案)精选文档2017 年上海市初中毕业一致学业考试数学试卷考生注意:1.本试卷共25 题;2.试卷满分150 分,考试时间100 分钟3.答题时,考生务必按答题要求在答题纸规定的地点上作答,在底稿纸、本试卷上答题一律无效;4.除第一、二大题外,其他各题如无特别说明,都一定在答题纸的相应地点上写出证明或计算的主要步骤.一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)【以下各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应地点上】1.以下实数中,无理数是()2 A. 0;B.2;C.2;D.72.以下方程中,没有实数根的是()A.x2 2x 0 ;B.x2 2x 1 0 ;C.x2 2x 1 0 ;D.x2 2x 2 0 .3.假如一次函数y kx b (k、b是常数,k 0 )的图像经过第一、二、四象限,那么k、 b 应知足的条件是()A.k 0,且b 0;B.k 0,且b 0 ;C.k 0,且b 0;D.k 0,且b 0.4.数据 2、 5、6、 0、 6、 1、 8 的中位数和众数分别是()A.0和 6;B.0 和 8;C.5 和 6;D.5 和 8.5.以下图形中,既是轴对称又是中心对称图形的是()A.菱形;B.等边三角形;C.平行四边形;D.等腰梯形.6.已知平行四边形ABCD , AC 、 BD 是它的两条对角线,那么以下条件中,能判断这个平行四边形为矩形的是()A.BAC DCA ;B.BAC DAC ;C.BACABD ;D.BAC ADB .二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)【请将结果直接填入答题纸的相应地点上】2017年上海市数学中考真题(含答案) .精选文档7.计算:2a a2____▲ ____.2x 6的解集是▲.8.不等式组2x 09.方程2x 3 1 的根是____▲____.10.假如反比率函数y k( k 是常数, k 0 )的图像经过点 2,3 ,那么在这个函数图像所在的每个象限内,y 的x值随 x 的值增大而___▲___.(填“增大”或“减小”)11.某市前年 PM2.5 的年均浓度为 50 微克 / 立方米,昨年比前年降落了10% .假如今年 PM2.5 的年均浓度比昨年也下降 10% ,那么今年PM2.5的年均浓度将是___▲___微克/立方米.12.不透明的布袋里有 2 个黄球、 3 个红球、 5 个白球,它们除颜色外其他都同样,那么从布袋中随意摸出一个球恰巧为红球的概率是 ___▲ ___.13.已知一个二次函数的图像张口向上,极点坐标为0, 1 ,那么这个二次函数的分析式能够是___▲ ___.(只要写一个)14.某公司今年第一季度各月份产值占这个季度总产值的百分比方图 1 所示,又知二月份产值是72 万元,那么该公司第一季度月产值的均匀数是___▲___万元.uuur r uur r uuur r 15.如图 2,已知AB∥CD,CD 2AB,AD、BC订交于点E.设AE a , CE b ,那么向量 CD 用向量a、rb表示为 ___▲ ___.图 1 图 2 图 3 图 416.一副三角尺按图 3 的地点摆放(极点C 与F重合,边CA 与边FE叠合,极点B、C 、D在一条直线上).将三角尺DEF绕着点 F 按顺时针方向旋转 n o 后( 0 n 180 ),假如 EF / / AB ,那么n的值是___▲___.17.如图 4,已知RtV ABC,C 90,AC 3BC4.分别以点A、B为圆心画圆,假如点C在e A内,点,B 在e A外,且e B与e A内切,那么e B的半径长 r 的取值范围是___▲___.18.我们规定:一个正n 边形( n 为整数,n 4 )的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特点值”,记为n,那么6 ___▲ __..精选文档三、解答题:(本大题共 7 题,满分 78 分)19.(此题满分10 分)1 12 1计算:182192220.(此题满分10 分)解方程:3 13x 1x2 x 321.(此题满分10 分,第( 1)小题满分 4 分,第( 2)小题满分 6 分)如图 5,一座钢构造桥梁的框架是V ABC ,水平横梁 BC 长18米,中柱AD高6米,此中D是 BC 的中点,且 AD BC .( 1)求sinB的值;( 2)现需要加装支架DE 、 EF ,此中点 E 在 AB 上 BE 2AE ,且 EF BC ,垂足为点 F .求支架 DE 的长..精选文档22.(此题满分10 分,每题满分各 5 分)甲、乙两家绿化保养公司各自推出了校园绿化保养服务的收费方案.甲公司方案:每个月的保养花费y(元)与绿化面积(平方米)是一次函数关系,如图 6 所示.乙公司方案:绿化面积不超出1000 平方米时,每个月收取花费5500 元;绿x化面积超出1000 平方米时,每个月在收取5500 元的基础上,超出部分每平方米收取 4 元.(1)求图 6 所示的y与x的函数分析式;(不要求写出定义域)(2)假如某学校当前的绿化面积是1200 平方米,试经过计算说明:选择哪家公司的服务,每个月的绿化保养花费较少.23.(此题满分12 分,第( 1)小题满分7 分,第( 2)小题满分 5 分)已知:如图7,四边形ABCD 中, AD / /BC , AD CD ,E是对角线BD上一点,且 EA EC .( 1)求证:四边形ABCD 是菱形;( 2)假如BE BC ,且CBE : BCE 2:3 ,求证:四边形ABCD 是正方形..精选文档24.(此题满分 12 分,每题满分各 4 分)已知在平面直角坐标系 xOy 中(如图 8),已知抛物线 y x 2 bx c 经过点 A 2,2,对称轴是直线 x1 ,极点为B .( 1)求这条抛物线的表达式和点B 的坐标;( 2)点 M 在对称轴上,且位于极点上方,设它的纵坐标为m ,联络 AM ,用含 m 的代数式表示AMB 的余切值;( 3)将该抛物线向上或向下平移,使得新抛物线的极点C 在 x 轴上.原抛物线上一点P 平移后的对应点为点,假如QOP OQ ,求点 Q 的坐标..精选文档25.(此题满分 14 分,第( 1)小题满分 4 分,第( 2)小题满分 5 分,第( 3)小题满分 5 分)如图 9,已知e O的半径长为 1,AB、AC是e O的两条弦,且AB AC , BO 的延伸线交 AC 于点D,联络 OA、OC .( 1)求证:VOAD : V ABD;( 2)当VOCD是直角三角形时,求B、 C两点的距离;(3)记VAOB V AOD、、VCOD 的面积分别为S1、S2、S3,假如 S2是 S1和S3 的比例中项,求OD 的长..精选文档2017 年上海市初中毕业一致学业考试数学试卷参照答案一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)1、 B;观察方向:基础观点。
上海市杨浦区2017年中考数学一模试卷(含解析)
精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!上海市杨浦区2017年中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)1.如果延长线段AB到C,使得,那么AC:AB等于()A.2:1 B.2:3 C.3:1 D.3:22.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是()A.100tanα B.100cotα C.100sinα D.100cosα3.将抛物线y=2(x﹣1)2+3向右平移2个单位后所得抛物线的表达式为()A.y=2(x﹣1)2+5 B.y=2(x﹣1)2+1 C.y=2(x+1)2+3 D.y=2(x﹣3)2+34.在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于100°的两个等腰三角形相似6.在△ABC和△DEF中,∠A=40°,∠D=60°,∠E=80°,,那么∠B的度数是()A.40° B.60° C.80° D.100°二、填空题(本大题共12题,每题4分,满分48分)7.线段3cm和4cm的比例中项是cm.8.抛物线y=2(x+4)2的顶点坐标是.9.函数y=ax2(a>0)中,当x<0时,y随x的增大而.10.如果抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),那么它的对称轴是直线.11.如图,△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值为.12.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果BC=2AD,那么S△ADC:S△ABC 的值为.13.如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm,那么大三角形对应边上的中线长是cm.14.如果+=3,2﹣=,那么= (用表示).15.已知α是锐角,tanα=2cos30°,那么α=度.16.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是i=1:.17.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格: x … 1 2 3 4 …y=ax2+bx+c … 0 ﹣1 0 3 …那么该二次函数在x=0时,y= .18.如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D旋转后分别落在点E、F的位置,那么∠EFD的正切值是.三、解答题(本大题共7题,满分78分)19.(10分)如图,已知△ABC中,点F在边AB上,且AF=AB、过A作AG∥BC交CF的延长线于点G.(1)设=, =,试用向量和表示向量;(2)在图中求作向量与的和向量.(不要求写作法,但要指出所作图中表示结论的向量)20.(10分)已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.21.(10分)已知:如图,梯形ABCD中,AD∥BC,∠ABD=∠C,AD=4,BC=9,锐角∠DBC 的正弦值为.求:(1)对角线BD的长;(2)梯形ABCD的面积.22.(10分)如图,某客轮以每小时10海里的速度向正东方向航行,到A处时向位于南偏西30°方向且相距12海里的B处发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C处恰好与客轮相逢,试求货轮从出发到客轮相逢所用的时间.23.(12分)已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD 相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.24.(12分)在直角坐标系xOy中(如图),抛物线y=ax2﹣4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.(1)求点D、点M的坐标;(2)如果该抛物线与y轴的交点为A,点P在抛物线上且AM∥DP,AM=2DP,求a的值.25.(14分)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为边BC上的一动点(不与B、C 重合),点P关于直线AC、AB的对称点分别为M、N,连接MN交边AB于点F,交边AC于点E.(1)如图1,当点P为边BC的中点时,求∠M的正切值;(2)连接FP,设CP=x,S△MPF=y,求y关于x的函数关系式,并写出定义域;(3)连接AM,当点P在边BC上运动时,△AEF与△ABM是否一定相似?若是,请证明;若不是,请求出当△AEF与△ABM相似时CP的长.2017年上海市杨浦区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.如果延长线段AB到C,使得,那么AC:AB等于()A.2:1 B.2:3 C.3:1 D.3:2【考点】两点间的距离.【分析】作出图形,用AB表示出AC,然后求比值即可.【解答】解:如图,∵BC=AB,∴AC=AB+BC=AB+AB=AB,∴AC:AB=3:2.故选D.【点评】本题考查了两点间的距离,用AB表示出AC是解题的关键,作出图形更形象直观.2.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是()A.100tanα B.100cotα C.100sinα D.100co sα【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意画出图形,利用锐角三角函数的定义直接进行解答即可.【解答】解:∵∠BAC=α,BC=100m,∴AB=BC•cotα=100cotαm.故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意画出图形,利用数形结合求解是解答此题的关键.3.将抛物线y=2(x﹣1)2+3向右平移2个单位后所得抛物线的表达式为()A.y=2(x﹣1)2+5 B.y=2(x﹣1)2+1 C.y=2(x+1)2+3 D.y=2(x﹣3)2+3【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=2(x﹣1)2+3向右平移2个单位,可得y=2(x﹣1﹣2)2+3,即y=2(x﹣3)2+3,故选:D.【点评】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.4.在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】二次函数图象与系数的关系.【分析】根据已知条件“a>0,b<0,c>0”判断出该函数图象的开口方向、与x和y轴的交点、对称轴所在的位置,然后据此来判断它的图象一定不经过第三象限.【解答】解:①∵a>0、c>0,∴该抛物线开口方向向上,且与y轴交于正半轴;②∵a>0,b<0,∴二次函数y=ax2+bx+c的函数图象的对称轴是x=﹣>0,∴二次函数y=ax2+bx+c的函数图象的对称轴在第一象限;综合①②,二次函数y=ax2+bx+c的图象一定不经过第三象限.故选C.【点评】本题考查了二次函数图象与系数的关系.根据二次函数y=ax2+bx+c系数符号判断抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数.5.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于100°的两个等腰三角形相似【考点】命题与定理.【分析】根据相似三角形的判定定理进行判定即可.【解答】解:斜边与一条直角边对应成比例的两个直角三角形相似一定成立;两个等腰直角三角形相似一定成立;两边对应成比例且有一个角相等的两个三角形相似不一定成立;各有一个角等于100°的两个等腰三角形相似一定成立,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.在△ABC和△DEF中,∠A=40°,∠D=60°,∠E=80°,,那么∠B的度数是()A.40° B.60° C.80° D.100°【考点】相似三角形的判定与性质.【分析】根据可以确定对应角,根据对应角相等的性质即可求得∠B的大小,即可解题.【解答】解:∵,∴∠B与∠D是对应角,故∠B=∠D=60°.故选B.【点评】本题考查了相似三角形对应角相等的性质,考查了对应边比值相等的性质,本题中求∠B和∠D是对应角是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.线段3cm和4cm的比例中项是2cm.【考点】比例线段.【分析】根据比例中项的概念,a:b=b:c,设比例中项是xcm,则列比例式可求.【解答】解:设比例中项是xcm,则:3:x=x:4,x2=12,x=±2,∵线段是正值,∴负值舍去,故答案为:2.【点评】本题主要考查了比例线段,理解比例中项的概念,求两条线段的比例中项的时候,应舍去负数是解答此题的关键.8.抛物线y=2(x+4)2的顶点坐标是(﹣4,0).【考点】二次函数的性质.【分析】由抛物线的解析式可求得答案.【解答】解:∵y=2(x+4)2,∴抛物线顶点坐标为(﹣4,0),故答案为:(﹣4,0).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x ﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).9.函数y=ax2(a>0)中,当x<0时,y随x的增大而减小.【考点】二次函数的性质.【分析】由解析式可确定其开口方向,再根据增减性可求得答案.【解答】解:∵y=ax2(a>0),∴抛物线开口向上,对称轴为y轴,∴当x<0时,y随x的增大而减小,故答案为:减小.【点评】本题主要考查二次函数的性质,掌握二次函数的增减性是解题的关键.10.如果抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),那么它的对称轴是直线x=.【考点】二次函数的性质.【分析】根据抛物线上函数值相等的点离对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,2)和(4,2),∴对称轴为x==,故答案为:x=.【点评】本题主要考查二次函数的性质,掌握抛物线上函数值相等的点离对称轴的距离相等是解题的关键.11.如图,△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值为.【考点】相似三角形的判定与性质.【分析】利用DE∥BC可判断△ADE∽△ABC,利用相似的性质的得==,再利用比例性质得=,然后证明△CEF∽△CAB,然后利用相似比可得到的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴=,∵EF∥AB,∴△CEF∽△CAB,故答案为.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要利用相似进行几何计算.12.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果BC=2AD,那么S△ADC:S△ABC 的值为1:2 .【考点】相似三角形的判定与性质;梯形.【分析】根据梯形的性质和三角形的面积计算公式,可以解答本题.【解答】解:∵在梯形ABCD中,AD∥BC,BC=2AD,设AD与BC间的距离为h,则,故答案为:1:2.【点评】本题考查梯形、三角形的面积,解题的关键是明确题意,找出所求问题需要的条件.13.如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm,那么大三角形对应边上的中线长是20 cm.【考点】相似三角形的性质.【分析】因为两个三角形的面积之比9:25,根据相似三角形面积比等于相似比的平方,即可求出周长的比,又因为对应中线的比等于相似比即可求出大三角形的中线.【解答】解:∵两个相似三角形的面积之比是9:25,∴大三角形的周长:小三角形的周长是5:3,∵小三角形一边上的中线长是12cm,∴大三角形对应边上的中线长是20cm.【点评】本题考查对相似三角形性质的理解.(1)相似三角形面积的比等于相似比的平方;(3)相似三角形对应中线的比等于相似比.14.如果+=3,2﹣=,那么= (用表示).【考点】*平面向量.【分析】根据平面向量的运算法则进行计算即可.【解答】解:∵2﹣=,∴6﹣3=3,∵+=3,∴+=6﹣3,∴=.故答案是:.【点评】本题考查了平面向量的运算,类似于解一元一次方程进行计算即可,比较简单,要注意移项要变号.15.已知α是锐角,tanα=2cos30°,那么α=60 度.【考点】特殊角的三角函数值.【分析】根据30°角的余弦值等于,正切值是的锐角为60°解答即可.【解答】解:∵tanα=2cos30°=2×=,∴α=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的正弦值、余弦值、正切值是解此类题目的关键.16.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是i=1: 2.4 .【考点】解直角三角形的应用﹣坡度坡角问题.【分析】垂直高度、水平距离和坡面距离正好构成一个直角三角形,先根据勾股定理,求出水平距离,然后根据定义解答.【解答】解:由题意得,水平距离==12,∴坡比i=5:12=1:2.4.故答案为2.4【点评】本题考查的知识点为:坡度=垂直距离:水平距离,通常写成1:n的形式,属于基础题.17.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格: x … 1 2 3 4 …y=ax2+bx+c … 0 ﹣1 0 3 …那么该二次函数在x=0时,y= 3 .【考点】二次函数的图象.【分析】根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用抛物线的对称性找到当x=0时,y的值即可.【解答】解:由上表可知函数图象经过点(1,0)和点(3,0),∴对称轴为x=2,∴当x=4时的函数值等于当x=0时的函数值,∵当x=4时,y=3,∴当x=0时,y=3.故答案是:3.【点评】本题考查了二次函数的图象的性质,利用表格找到二次函数的对称点是解决此题的关键.18.如图,△ABC中,AB=AC=5,BC=6,BD⊥AC于点D,将△BCD绕点B逆时针旋转,旋转角的大小与∠CBA相等,如果点C、D旋转后分别落在点E、F的位置,那么∠EFD的正切值是.【考点】旋转的性质;等腰三角形的性质;解直角三角形.【分析】作AH⊥BC于H,延长CD交EF于G,根据等腰三角形的性质和勾股定理求出AH、BD、CD、AD,根据旋转变换的性质得到∠FBD=∠CBA,证明FB∥AH,根据四点共圆得到∠EFD=∠GBD,求出tan∠GBD即可.【解答】解:作AH⊥BC于H,延长CD交EF于G,∵AB=AC,∴BH=CH=BC=3,由勾股定理得,AH==4,×BC×AH=×AC×BD,即6×4=5×BD,解得,BD=,∴CD==,AD=,∵∠FBD=∠CBA,∴∠FBE=∠DBC,∵∠DBC+∠C=90°,∠HAC+∠C=90°,∴∠FBE=∠BAH,∴FB∥AH,∴∠FBC=∠AHC=90°,∴EF∥BC,∴∠E=∠ABC=∠C=∠EGA,∴AG=AE=BE﹣AB=BC﹣AB=1,∴DG=,∴∠F=∠BDC=90°,∴F、B、D、G四点共圆,∴∠EFD=∠GBD,tan∠GBD==,∴∠EFD的正切值是,故答案为:.【点评】本题考查的是旋转变换的性质、等腰三角形的性质、锐角三角函数的应用,掌握旋转变换的性质、熟记锐角三角函数的概念是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)(2017•杨浦区一模)如图,已知△ABC中,点F在边AB上,且AF=AB、过A作AG∥BC交CF的延长线于点G.(1)设=, =,试用向量和表示向量;(2)在图中求作向量与的和向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量;作图—复杂作图.【分析】(1)证△AGF∽△BCF得==,即AG=CB,由=()可得答案;(2)延长CB到E,使BE=AG,连接AE,则=.【解答】解:(1)∵AG∥BC,AF=AB,∴△AGF∽△BCF, =,∴==,即AG=CB,∴=()=﹣;(2)如图所示,==.【点评】本题主要考查相似三角形的判定与性质及向量的运算、作图,熟练掌握向量的基本运算法则是解题的关键.20.(10分)(2017•杨浦区一模)已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【考点】待定系数法求二次函数解析式;二次函数图象与几何变换.【分析】(1)待定系数法求解可得;(2)求出原抛物线上x=﹣2时,y的值,若点(﹣2,﹣5)平移后的对应点为(﹣2,﹣1),根据纵坐标的变化可得其中的一种平移方式.【解答】解:(1)将点B(﹣1,0)、C(2,3)代入y=﹣x2+bx+c,得:,解得:,∴此抛物线的表达式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,当x=﹣2时,y=﹣4﹣4+3=﹣5,若点(﹣2,﹣5)平移后的对应点为(﹣2,﹣1),则需将抛物线向上平移4个单位.【点评】本题主要考查待定系数法求二次函数的解析式及抛物线的平移,熟练掌握待定系数法求二次函数的解析式是解题的关键.21.(10分)(2017•杨浦区一模)已知:如图,梯形ABCD中,AD∥BC,∠ABD=∠C,AD=4,BC=9,锐角∠DBC的正弦值为.求:(1)对角线BD的长;(2)梯形ABCD的面积.【考点】梯形;解直角三角形.【分析】(1)求出△ABD∽△DCB,得出比例式,即可得出答案;(2)过D作DE⊥BC于E,解直角三角形求出DE,根据面积公式求出即可.【解答】解:(1)∵AD∥BC,∴∠ADB=∠DBC,∵∠ABD=∠C,∴△ABD∽△DCB,∴=,∵AD=4,BC=9,∴BD=6;(2)过D作DE⊥BC于E,则∠DEB=90°,∵锐角∠DBC的正弦值为,∴sin∠DBC==,∵BD=6,∴DE=4,∴梯形ABCD的面积为×(AD+BC)×DE=×(4+9)×4=26.【点评】本题考查了相似三角形的性质和判定,梯形的性质,解直角三角形等知识点,能求出BD的长是解此题的关键.22.(10分)(2017•杨浦区一模)如图,某客轮以每小时10海里的速度向正东方向航行,到A处时向位于南偏西30°方向且相距12海里的B处发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C处恰好与客轮相逢,试求货轮从出发到客轮相逢所用的时间.【考点】解直角三角形的应用﹣方向角问题.【分析】首先证明AC=AB=12,根据时间=路程÷速度,计算即可解决问题.【解答】解:如图,由题意,∠ABF=30°,∠CBF=60°,∴∠FAB=60°,∠ABC=∠C=30°,∴AC=AB=12,货轮从出发到客轮相逢所用的时间==1.2小时.答:货轮从出发到客轮相逢所用的时间1,2小时.【点评】本题考查解直角三角形的应用﹣方向角、等腰三角形的判定、路程、时间、速度之间的关系等知识,解题的关键是掌握方向角的定义,属于中考常考题型.23.(12分)(2017•杨浦区一模)已知:如图,在△ABC中,点D、G分别在边AB、BC上,∠ACD=∠B,AG与CD相交于点F.(1)求证:AC2=AD•AB;(2)若=,求证:CG2=DF•BG.【考点】相似三角形的判定与性质.【分析】(1)证明△ACD∽△ABC,得出对应边成比例AC:AB=AD:AC,即可得出结论;(2)由相似三角形的性质得出∠ADF=∠ACG,由已知证出△ADF∽△ACG,得出∠DAF=∠CAF,AG是∠BAC的平分线,由角平分线得出,即可得出结论.【解答】(1)证明:∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AD•AB;(2)证明:∵△ACD∽△ABC,∴∠ADF=∠ACG,∵=,∴△ADF∽△ACG,∴∠DAF=∠CAF,即∠BAG=∠CAG,AG是∠BAC的平分线,∴,∴,∴CG2=DF•BG.【点评】本题考查了相似三角形的判定与性质以及角平分线的性质;熟练掌握相似三角形的判定与性质是解决问题的关键.24.(12分)(2017•杨浦区一模)在直角坐标系xOy中(如图),抛物线y=ax2﹣4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.(1)求点D、点M的坐标;(2)如果该抛物线与y轴的交点为A,点P在抛物线上且AM∥DP,AM=2DP,求a的值.【考点】抛物线与x轴的交点.【分析】(1)由y=ax2﹣4ax+4a+3=a(x﹣2)2+3,可得顶点D(2,3),M(2,0).(2)作PN⊥DM于N.由△PDN∽△MAO,得===,因为OM=2,OA=﹣4a﹣3,PN=1,所以P(1,a+3),DN=﹣a,根据OA=2DN,可得方程﹣4a﹣3=﹣2a,由此即可解决问题.【解答】解:(1)∵y=ax2﹣4ax+4a+3=a(x﹣2)2+3,∴顶点D(2,3),M(2,0).(2)作PN⊥DM于N.∵AM∥DP,∴∠PDN=∠AMG,∵DG∥OA,∴∠OAM=∠AMG=∠PDN,∵∠PND=∠AOM=90°,∴△PDN∽△MAO,∴===,∵OM=2,OA=﹣4a﹣3,PN=1,∴P(1,a+3),∴DN=﹣a,∵OA=2DN,∴﹣4a﹣3=﹣2a,∴a=﹣.(当点A在y的正半轴上时,方法类似,求得a=﹣).【点评】本题考查抛物线与x轴的交点、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用相似三角形的性质解决问题,用方程的思想思考问题,属于中考常考题型.25.(14分)(2017•杨浦区一模)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为边BC上的一动点(不与B、C重合),点P关于直线AC、AB的对称点分别为M、N,连接MN交边AB 于点F,交边AC于点E.(1)如图1,当点P为边BC的中点时,求∠M的正切值;(2)连接FP,设CP=x,S△MPF=y,求y关于x的函数关系式,并写出定义域;(3)连接AM,当点P在边BC上运动时,△AEF与△ABM是否一定相似?若是,请证明;若不是,请求出当△AEF与△ABM相似时CP的长.【考点】相似形综合题.【分析】(1)先求出CP=1,利用对称得出∠MB N=90°,BP=BP=3,最后用锐角三角函数的定义即可;(2)先求出FG,再利用同角的三角函数相等,得出PG,再用三角形的面积公式求解即可;(3)利用对称先判断出AM=AP=AN,进而得出三角形AMN是等腰直角三角形,即可得出∠AMN=45°,得出∠AFE=∠AMB,即可判断出△AEF∽△BAM.【解答】解:(1)如图1,连接BN,∵点P为边BC的中点,∴CP=BP=BC=1,∵点P与点M关于AC对称,∴CM=CP=1∵∠ACB=90°,AC=BC=2,∴∠BAC=∠ABC=45°,∵点P与点N关于AB对称,∴BP=BN=1,∠ABN=∠ABC=45°,∴∠CBM=90°,BM=CM+BC=3,在Rt△MBN中,tan∠M==;(2)如图2,过点F作FG⊥BC,设PG=m,∴BG=BP﹣PG=2﹣x﹣m,MG=MP+PG=2x+m,在Rt△BFG中,∠FBG=45°,∴FG=BG=2﹣x﹣m,在Rt△FMG中,tan∠M==,在Rt△MNB中,tan∠M==,∴,∴m=,∴y=S△MPF=MP•FG=×2x×=(0<x<2);(3)△AEF∽△BAM理由:如图3,连接AM,AP,AN,BN,∵点P关于直线AC、AB的对称点分别为M、N,∴AM=AP=AN.∠MAC=∠PAC,∠PAB=∠NAB,∵∠BAC=∠PAC+∠PAB=45°,∴∠MAN=∠MAC+∠PAC+∠BAP+∠NAB=2(∠PAC+∠PAB)=90°,∴∠AMN=45°=∠ABC,∵∠AFE=∠ABC+∠BMF,∠AMB=∠AMN+∠BMF,∴∠AFE=∠AMB,∵∠EAF=∠ABM=45°,∴△AEF∽△BAM.。