生物柴油-产品与质量 ASTM D6751

合集下载

国内外生物柴油的标准

国内外生物柴油的标准

生物柴油标准中的各项指标分析生物柴油标准中要考虑很多指标,有些指标是与石油柴油共有的,包括密度、运动粘度、闪点、硫含量、10%蒸余物残碳、十六烷值、灰分、水含量、机械杂质、铜片腐蚀、燃料安定性、低温性等;还有一些指标是生物柴油所特有的,包括总酯含量、游离甘油含量、甘油单酯、二酯及三酯含量、甲醇含量、碘价及多元不饱和脂肪酸甲酯的含量、酸值、磷含量、碱及碱土金属含量等;另外,还有一些额外的指标包括馏程、燃烧热值、润滑性、不皂化物含量等,是可以选择的。

闪点:为了储存和运输的安全,燃料都要最低闪点的要求。

生物柴油的闪点一般高于110℃,远超过石油柴油的70℃,所以生物柴油储运比石油柴油安全。

甲醇的含量是影响生物柴油闪点高低的重要因素。

即使在生物柴油中含有少量的甲醇,其闪点也会降低。

除此之外,较多的甲醇也会对燃料泵、橡塑配件等有影响,并且会降低生物柴油的燃烧性能。

美国生物柴油标准要求闭口闪点不低于130℃,欧洲标准要求不低于120℃。

水分:游离水会导致生物柴油氧化并与游离脂肪酸生成酸性水溶液,水本身对金属就有腐蚀。

美国生物柴油标准要求生物柴油水分和沉渣不超过0.05%,欧洲标准要求水含量不超过500mg/kg。

机械杂质:指存在于油品中所有不溶于规定溶剂的杂质。

机械杂质对发动机零部件的磨损以及运转是否正常都有严重影响。

生物柴油中不允许有机械杂质。

欧洲生物柴油标准要求总杂质含量不超过24mg/kg。

运动粘度:运动粘度表示生物柴油在重力作用下流动时内摩擦力的量度,其值为相同温度下生物柴油的动力粘度与密度之比。

对于一些发动机而言,为了防止喷射泵和喷射器泄漏而造成功率损失,可设定一个粘度最小值;另一方面,通过对发动机的设计尺寸、喷油系统特性的考虑,限定了允许粘度的最大值。

生物柴油的粘度高于石油柴油,调入2~20%的生物柴油到石油柴油中后,柴油的粘度会增加,但也能满足标准对柴油运动粘度的要求。

美国标准要求生物柴油40℃运动粘度为1.9~6.0mm2/s,欧洲标准要求40℃运动粘度为3.5~5.0mm2/s。

2019化工设计大赛项目描述

2019化工设计大赛项目描述

2019化工设计大赛项目描述英文回答:Introduction.The 2019 Chemical Design Competition is a prestigious event that challenges students to design and optimize chemical processes. This year's competition focuses on the production of biofuels from renewable resources.Project Description.The goal of this project is to design a process for the production of biodiesel from vegetable oil. The process should be efficient, cost-effective, and environmentally friendly.The following are the specific requirements for the project:The process should use vegetable oil as the feedstock.The process should produce biodiesel that meets the ASTM D6751 specification.The process should be designed to operate at a commercial scale.The process should be evaluated for its economic feasibility.The process should be evaluated for its environmental impact.Design Considerations.The following factors should be considered when designing the process:The type of vegetable oil used.The reaction conditions (temperature, pressure, etc.)。

生物柴油产品手册

生物柴油产品手册
6. 安全、健康、环保、标识及消防....................................................................................16 6.1. 安全,健康,环保................................................................................................. 16 6.2. 标志,标签,标牌................................................................................................. 16 6.3. 消防安全措施......................................................................................................... 16
生物柴油产品手册
目录
1. 产品定义..............................................................................................................................3 1.1. 生物柴油(BD100)定义......................................................................................... 3 1.2. 生物柴油调合燃料(B5—20)定义....................................................................... 3

一种易用的采用自清洁API离子源的生物柴油分析方法

一种易用的采用自清洁API离子源的生物柴油分析方法

一种易用的采用自清洁API离子源的生物柴油分析方法Jennifer Huang1, Ray Chen1, Daniela Cavagnino2, and Ed Long1,1Thermo Fisher Scientific, San Jose, CA, USA; 2Thermo Fisher Scientific, Milan, Italy实验目标:开发一种高效易用的LC/MS生物柴油分析方法作为现存方法ASTM 6751和EN 14331的补充。

方法:一种二元梯度反相高速液相色谱结合质谱检测器和光电二极管阵列检测器的生物柴油样品分析法。

实验结果:使用高速LC/MS系统首次分离检测生物柴油样品。

采用锥清洗来预防接口污染和堵塞。

前言生物柴油是用植物油甘油三酸酯与甲醇合成脂肪酸甲酯(FAMEs)时脂交换的产物。

该合成的副产品,包括甘油、酰基甘油、甘油二酯、未反应的甘油三酸酯和脂肪酸,会引起发动机故障。

为预防此发动机问题,美国材料实验协会(ASTM) 规范D6751规定,在美国出售的生物柴油燃料中,甘油含量必须小于0.25%。

该规范建立了第一个生物柴油产品纯度标准,是生物柴油工业的里程碑。

为与ASTM D6751规范及未来可能出现的混合生物柴油的新规章保持一致性,有必要开发一种检测甘油含量的灵敏可靠的分析方法。

ASTM D6584和EN 14105规定的方法是采用火焰离子化检测器(FID)的气相色谱法(GC)。

然而,用气相色谱分析高沸点甘油三酸酯,为避免样品歧视和/或降解,需要准确的选择进样器、色谱柱和整体操作条件。

一般而言,LC/MS适用于非挥发性组分分析,但是因为传统LC/MS接口易被复杂肮脏样品基体污染,该分析方式在一般实验室中没有得到普及。

如果缺少严格的样品制备,由于LC/MS接口累积的粘性残留物,造成质谱仪的污染和堵塞。

本文中,我们论证了一种简单高效的LC/MS 生物柴油分析方法。

该方法或者可以作为EN 14331的替代方法,或者用其检测结果作为EN 14331所得数据的补充。

生物柴油及其制备方法研究

生物柴油及其制备方法研究

生物柴油及其制备方法研究王学虎(河西学院化学化工学院甘肃张掖734000)近年来,由于人们生活水平的提高,汽车城乡化迅速发展,人类对石油的依赖越来越强烈,石油供应和消费的平衡关系制约着世界各国的经济发展。

石油作为不可再生资源正在逐渐枯竭,全世界都将面临着能源短缺的危机,同时随着人们环境保护意识的增强,人们逐渐认识到石油作为燃料所造成的空气污染的严重性,特别是光化学烟雾、酸雨的频繁出现对人体健康造成了极大的伤害,CO2产生的温室效应严重破坏了生态平衡。

因此,世界各国的能源研究人员从资源战略和环境保护的角度出发,积极探究开发一种新的来替代石油燃料,大量研究表明,生物柴油是最重要的清洁燃料之一,从战略角度属于可再生资源,是最有发展前途的柴油机替代燃料[1]。

生物柴油,即脂肪酸甲酯(FAME),是一种含氧清洁可再生能源,它是以大豆和油菜籽等油料作物、油棕和黄连木等油料林木、工程微藻等油料水生植物一级动物油脂、废餐饮油等为原料合成(酯交换)所得的长链脂肪酸甲酯[2]。

1 生物柴油1.1生物柴油的性能1.1.1优良的环保特性生物柴油中硫含量低,因此,SO2和硫化物的排放量低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境造成污染的芳香族烷烃,不具致癌性,并且不含铅、卤素等有害物质,废气对人体的损害降低,检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降94%的患癌率[3];生物柴油含氧量高,其燃烧时一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油可生物降解,对土壤和水的污染较少,有利于环境保护。

1.1.2较好的低温发动启动性能生物柴油有较好的发动机低温启动性能,无添加剂冷滤点达-20℃。

1.1.3较好的润滑性能生物柴油使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。

1.1.4较好的安全性能由于生物柴油的闪点高(超过125℃),不属于危险品。

因此,运输、储存、使用均具安全性。

ASTM通过新的生物柴油规格

ASTM通过新的生物柴油规格

研 制工 作筛 选 、 备 了合 适 的 水 溶 性 润 滑 添加 制
剂, 并收集常用汽车零部件铝合金材料 , 进行防腐性
考察 。通 过综 合性 能 配伍 , 制 出润 滑性 、 研 防腐性 优 良、 性价 比高的合 成 型铝合 金切 削液 。
开展 应 用工作 , 研 制 产 品 在 2家 汽 车零 部 件 将
THE RES EARCH & AI LI I CATI oN oF YNTHETI S ALLoY ] M
L n Z O i Z IJ , H U Qn— R i
( h nh i & et SN P CLbi n C m ay S n h i 0 0 0 ^ ) S ag a D C n r I O E ur at o p n , h g a 0 8 ,c R e c a 2
映产 品不仅 润 滑性 能 良好 , 工 工 件 表 面 光 洁度 较 加
机 床单机 液槽 体积 约 20L 用户 在加工 后不 仅观 察 0 ,
工 件 的光 洁度 , 将 加 工 后 工件 另 外 放 置 进 行 挂 片 并
试验 , 以观察 切 削液 防腐 蚀 能 力 。半 年 多 的连 续 多
80 桶 。20 00 0 5年 9月 在 该公 司选 用 H K机 床
加 工企业 应用 后 , 多项 加 工 性 能 均 能 满 足用 户 要 其 求, 一定 范 围 内替代 了原进 口切 削液 。
配槽 试 验 , 5 的 浓度 配 人 了研 发 的铝 合 金 切 削 以 %
液 新液 。
lc o o e so t e un t na ddtv s S me s e i xp rme t u h a te e f n pr c s fo rf c o l a i e . o ca e e i ns s c se l—aumi um rc on p i vaua h i i p l s l n fit are l - i t n e p rme ta d t e h ng au nu al s e tf r c ro on e pe i ntwe e c r id u .An ts e u t i x e i n u mi m l o n h l oy h e o s x rme r a re o t o i d e t r s l s s wee a ay e nd c n ̄a td t e c n n o a e t.T e a lc t e u t umi um lo a e p rs p o r n lz d a o se t o ve t n t s h pp ia on r s l i a o h i l s i sn l n al y s r a t r - p c si g i d c td t a h v lpe utn ui alme tt e ie n u rct d a tc roso e sn iae tt e de eo d c t g f dsc l e he rqur me t ofl b ii a n io i n. n h i l s yn

生物柴油。

生物柴油。

国外生物柴油产业现状
国外生物柴油产业发展较为成熟。 国外相关配套政策:提供专项资金补贴;鼓励农民种植能
源植物;征收化石能源生态税;采取减税优惠鼓励使用生 物质产品。
国内研究状况
我国生物柴油工业生产比国外晚几年,在2001年 之后才陆续有工业装置投产,这主要包括海南正 和、福建卓越、四川古衫等,都建立1~2万吨/年 左右的生物柴油厂,原料基本都是采用地沟油、 酸化油等。
酯 也可催化酯交换等反应 具有反应条件温和、污染小、催化剂分离相对简单等优点 固定化细胞/酶
生物柴油的用途
与石油柴油调配使用,调和比例可以2%、5%、 10%和20%,即B2、B5、B10、B20柴油。
我国2007年已经颁布了柴油机燃料调和用国家标准 GB/T20828-2007,即B100。
2、福建福清源华能源公司的生物柴油Ⅲ期工程预计2013年3月投 产,以地沟油为原料,将现有的年产3万t扩增至年产18万t。( 2012年5月,能源与环境)
3、融鑫集团在武汉启动200kt/a 生物柴油项目,利用棉籽油转化 成生物柴油,年利润可达4亿元。(2012 齐鲁石油化工)
4、新奥油藻生物柴油项目2015年将实现产业化,年产生物柴油可 达5000吨,新奥科技发展有限公司承担的国家 863 计划项目 “CO2-油藻-生物柴油关键技术研究”通过科技部组织的专家验 收,并与国家开发银行签署 3亿元的贷款合作协议,2015 年将
我国2010年已经颁布了生物柴油调和燃料B5国家标 准GB/T25199-2010,即B5调和柴油;
车用燃料润滑添加剂,能改善低硫柴油的润滑性;
非车用柴油的替代品,如船用、炉用、农用。
Biodiesel at Work

ASTM D 6751-03a

ASTM D 6751-03a

Designation:D 6751–03aAn American National StandardStandard Specification forBiodiesel Fuel Blend Stock (B100)for Middle Distillate Fuels 1This standard is issued under the fixed designation D 6751;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval.1.Scope1.1This specification covers biodiesel (B100)Grades S15and S500for use as a blend component with diesel fuel oils defined by Specification D 975Grades 1-D,2-D,and low sulfur 1-D and 2-D.1.2Biodiesel may be blended with fuel oils whose sulfur or aromatic levels are outside Specification D 975Grades 1-D,2-D,and low sulfur 1-D and 2-D,provided the finished mixture meets pertinent national and local specifications and require-ments for these properties.1.3This specification,unless otherwise provided by agree-ment between the purchaser and the supplier,prescribes the required properties of biodiesel fuel at the time and place of delivery.1.4Nothing in this specification shall preclude observance of federal,state,or local regulations which may be more restrictive.N OTE 1—The generation and dissipation of static electricity can create problems in the handling of distillate fuel oils with which biodiesel may be blended.For more information on the subject,see Guide D 4865.1.5The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.2.Referenced Documents 2.1ASTM Standards:2D 93Test Methods for Flash-Point by Pensky-Martens Closed Cup TesterD 130Test Method for Detection of Copper Corrosion from Petroleum Products by the Copper Strip Tarnish Test D 189Test Method for Conradson Carbon Residue of Petroleum ProductsD 445Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscos-ity)D 524Test Method for Ramsbottom Carbon Residue of Petroleum ProductsD 613Test Method for Cetane Number of Diesel Fuel Oil D 664Test Method for Acid Number of Petroleum Products by Potentiometric TitrationD 874Test Method for Sulfated Ash from Lubricating Oils and AdditivesD 974Test Method for Acid and Base Number by Color-Indicator TitrationD 975Specification for Diesel Fuel OilsD 976Test Methods for Calculated Cetane Index of Distil-late FuelsD 1160Test Method for Distillation of Petroleum Products at Reduced PressureD 1266Test Method for Sulfur in Petroleum Products (Lamp Method)D 1796Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)D 2274Test Method for Oxidation Stability of Distillate Fuel Oil (Accelerated Method)D 2500Test Method for Cloud Point of Petroleum Products D 2622Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry D 2709Test Method for Water and Sediment in Middle Distillate Fuels by CentrifugeD 2880Specification for Gas Turbine Fuel OilsD 3117Test Method for Wax Appearance Point of Distillate FuelsD 3120Test Method for Trace Quantities of Sulfur in Light Liquid Petroleum Hydrocarbons by Oxidative Microcou-lometryD 3242Test Method for Acidity in Aviation Turbine Fuel D 3828Test Method for Flash Point by Small Scale Closed TesterD 4057Practice for Manual Sampling of Petroleum and Petroleum ProductsD 4177Practice for Automatic Sampling of Petroleum and Petroleum Products1This specification is under the jurisdiction of ASTM Committee D02on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.E0on Burner,Diesel,Non-Aviation Gas Turbine,and Marine Fuels.Current edition approved Nov.1,2003.Published December 2003.Originally approved in 1999as PS 121–99.Adopted as a standard in 2002as D 6751–st previous edition approved in 2003as D 6751–03.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.1Copyright ©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Copyright by ASTM Int'l (all rights reserved);Reproduction authorized per License Agreement with Brad Johannes (); Wed Nov 9 13:15:03 EST 2005D 4294Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spec-troscopyD 4530Test Method for Determination of Carbon Residue (Micro Method)D 4737Test Method for Calculated Cetane Index by Four Variable EquationD 4865Guide for Generation and Dissipation of Static Electricity in Petroleum Fuel SystemsD 4951Test Method for Determination of Additive Ele-ments in Lubricating Oils by Inductively Coupled Plasma Atomic Emission SpectrometryD 5453Test Method for Determination of Total Sulfur in Light Hydrocarbons,Motor Fuels,and Oils by Ultraviolet FluorescenceD 6217Test Method for Particulate Contamination in Middle Distillate Fuels by Laboratory FiltrationD 6450Test Method for Flash Point by Continuously Closed Cup (CCCFP)TesterD 6469Guide for Microbial Contamination in Fuels and Fuel SystemsD 6584Test Method for Determination of Free and Total Glycerine in B-100Biodiesel Methyl Esters by Gas Chromatography2.2Government Standard:40CFR Part 79Registration of Fuels and Fuel Additives Section 211(b)Clean Air Act 33.Terminology3.1Definitions of Terms Specific to This Standard:3.1.1biodiesel ,n —a fuel comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats,designated B100.3.1.1.1Discussion —Biodiesel ,as defined above,is regis-tered with the U.S.EPA as a fuel and a fuel additive under Section 211(b)of the Clean Air Act.There is,however,other usage of the term biodiesel in the marketplace.Due to its EPA registration and the widespread commercial use of the term biodiesel in the U.S.marketplace,the term biodiesel will be maintained for this specification.3.1.1.2Discussion —Biodiesel is typically produced by a reaction of a vegetable oil or animal fat with an alcohol such as methanol or ethanol in the presence of a catalyst to yield mono-alkyl esters and glycerin,which is removed.The finished biodiesel derives approximately 10%of its mass from the reacted alcohol.The alcohol used in the reaction may or may not come from renewable resources.3.1.2biodiesel blend,BXX ,n —a blend of biodiesel fuel with petroleum-based diesel fuel.3.1.2.1Discussion —In the abbreviation BXX,the XX rep-resents the volume percentage of biodiesel fuel in the blend.3.1.3biodiesel fuel ,n —synonym for biodiesel .3.1.4diesel fuel ,n —middle petroleum distillate fuel.3.1.5free glycerin ,n —a measure of the amount of glycerin remaining in the fuel.3.1.6Grade S15B100,n —a grade of biodiesel meeting ASTM Specification D 6751and having a sulfur specification of 15ppm maximum.3.1.7Grade S500B100,n —a grade of biodiesel meeting ASTM Specification D 6751and having a sulfur specification of 500ppm maximum.3.1.8middle distillate fuel ,n —kerosines and gas oils boil-ing between approximately 150°C and 400°C at normal atmo-spheric pressure and having a closed-cup flash point above 38°C.3.1.9total glycerin ,n —the sum of the free glycerin and the glycerin portion of any unreacted or partially reacted oil or fat.4.Requirements4.1The biodiesel specified shall be mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats.4.2Unless otherwise specified,samples for analysis shall be taken by the procedure described in Practices D 4057or D 4177.4.3The biodiesel specified shall conform to the detailed requirements shown in Table 1.N OTE 2—A considerable amount of experience exists in the U.S.with a 20%blend of biodiesel,primarily produced from soybean oil,with 80%diesel fuel (B20).Experience with biodiesel produced from animal fat and other oils is similar.Although biodiesel (B100)can be used,blends of over 20%biodiesel with diesel fuel (B20)should be evaluated on a case by case basis until further experience is available.N OTE 3—The user should consult the equipment manufacturer or owner’s manual regarding the suitability of using biodiesel or biodiesel blends in a particular engine or application.5.Test Methods5.1The requirements enumerated in this specification shall be determined in accordance with the following methods.5.1.1Flash Point —Test Methods D 93,except where other methods are prescribed by law.Test Methods D 3828or D 6450can also be used.The precision and bias of Test Methods D 3828and D 6450with biodiesel is not known and is currently under investigation.Test Methods D 93shall be the referee method.5.1.2Water and Sediment —Test Method D 2709.Test Method D 1796may also be used.Test Method D 2709shall be the referee method.The precision and bias of these test methods with biodiesel is not known and is currently under investigation.5.1.3Viscosity —Test Method D 445.5.1.4Sulfated Ash —Test Method D 874.5.1.5Sulfur —Test Method D 5453.Other test methods may also be suitable for determining up to 0.05%sulfur in biodiesel fuels such as Test Methods D 1266,D 2622,D 3120and D 4294but may provide falsely high results (see X1.5)although their precision and bias with biodiesel is unknown.Test Method D 5453shall be the referee test method.5.1.6Corrosion —Test Method D 130,3h test at 50°C.5.1.7Cetane Number —Test Method D 613.5.1.8Cloud Point —Test Method D 2500.Test Method D 3117may also be used because the two are closely related.Test Method D 2500shall be the referee test method.The3Available from Superintendent of Documents,ernment Printing Office,Washington,DC20402.precision and bias of these test methods for biodiesel is not known and is currently under investigation.5.1.9Acid Number —Test Method D 664.Test Methods D 3242or D 974may also be used.Test Method D 664shall be the referee test method.5.1.10Carbon Residue —Test Method D 4530.A 100%sample shall replace the 10%residual,with percent residue in the original sample reported using the 10%residual calcula-tion (see X1.9.1).Test Methods D 189or D 524may also be used.Test Method D 4530shall be the referee method.5.1.11Total Glycerin —Test Method D 6584.5.1.12Free Glycerin —Test Method D 6584.5.1.13Phosphorus Content —Test Method D 4951.5.1.14Distillation Temperature,Reduced Pressure —Test Method D 1160.6.Workmanship6.1The biodiesel fuel shall be visually free of undissolved water,sediment,and suspended matter.7.Keywords7.1alternative fuel;biodiesel fuel;diesel fuel oil;fuel oil;renewable resourceAPPENDIXES(Nonmandatory Information)X1.SIGNIFICANCE OF PROPERTIES SPECIFIED FOR BIODIESEL FUELX1.1IntroductionX1.1.1The properties of commercial biodiesel fuel depends upon the refining practices employed and the nature of the renewable lipids from which it is produced.Biodiesel,for example,can be produced from a variety of vegetable oils or animal fats which produce similar volatility characteristics and combustion emissions with varying cold flow properties.X1.2Flash PointX1.2.1The flash point for biodiesel is used as the mecha-nism to limit the level of unreacted alcohol remaining in the finished fuel.X1.2.2The flash point is also of importance in connection with legal requirements and safety precautions involved in fuel handling and storage,and is normally specified to meet insurance and fire regulations.X1.2.3The flash point specification for biodiesel is intended to be 100°C minimum.Typical values are over 160°C.Due to high variability with Test Method D 93as the flash point approaches 100°C,the flash point specification has been set at 130°C minimum to ensure an actual value of 100°C minimum.Improvements and alternatives to Test Method D 93are being investigated.Once complete,the specification of 100°C mini-mum may be reevaluated.X1.3ViscosityX1.3.1For some engines it may be advantageous to specify a minimum viscosity because of power loss due to injection pump and injector leakage.Maximum allowable viscosity,on the other hand,is limited by considerations involved in engine design and size,and the characteristics of the injection system.The upper limit for the viscosity of biodiesel (6.0mm 2/s at 40°C)is higher than the maximum allowable viscosity inTABLE 1Detailed Requirements for Biodiesel (B100)APropertyTest Method B Grade S15Limits Grade S500Limits Units Flash point (closed cup)D 93130.0min 130.0min °CWater and sedimentD 27090.050max 0.050max %volume Kinematic viscosity,40°C D 445 1.9-6.0C 1.9–6.0C mm 2/s Sulfated ash D 8740.020max0.020max%massSulfur DD 54530.0015max (15)0.05max (500)%mass (ppm)Copper strip corrosion D 130No.3max No.3max Cetane number D 61347min 47min Cloud pointD 2500ReportE Report E °CCarbon residue F D 45300.050max 0.050max %mass Acid number D 6640.80max 0.80max mg KOH/g Free glycerin D 65840.0200.020%mass Total glycerinD 65840.2400.240%mass Phosphorus content D 49510.001max 0.001max %mass Distillation temperature,Atmospheric equivalent temperature,90%recoveredD 1160360max360max°CA To meet special operating conditions,modifications of individual limiting requirements may be agreed upon between purchaser,seller,and manufacturer.BThe test methods indicated are the approved referee methods.Other acceptable methods are indicated in 5.1.CSee X1.3.1.The 6.0mm 2/s upper viscosity limit is higher than petroleum based diesel fuel and should be taken into consideration when blending.DOther sulfur limits can apply in selected areas in the United States and in other countries.EThe cloud point of biodiesel is generally higher than petroleum based diesel fuel and should be taken into consideration when blending.FCarbon residue shall be run on the 100%sample (see5.1.10).Specification D 975Grade 2-D and 2-D low sulfur (4.1mm/s at 40°C).Blending biodiesel with diesel fuel close to its upper limit could result in a biodiesel blend with viscosity above the upper limits contained in Specification D 975.X1.4Sulfated AshX1.4.1Ash-forming materials may be present in biodiesel in three forms:(1)abrasive solids,(2)soluble metallic soaps,and (3)unremoved catalysts.Abrasive solids and unremoved catalysts can contribute to injector,fuel pump,piston and ring wear,and also to engine deposits.Soluble metallic soaps have little effect on wear but may contribute to filter plugging and engine deposits.X1.5SulfurX1.5.1The effect of sulfur content on engine wear and deposits appears to vary considerably in importance and depends largely on operating conditions.Fuel sulfur can also affect emissions control systems performance and various limits on sulfur have been imposed for environmental reasons.B100is essentially sulfur-free.N OTE X1.1—Test Method D 5453should be used with e of other test methods may provide falsely high results when analyzing B100with extremely low sulfur levels (less than 5ppm).Biodiesel sulfur analysis from RR D02-14804,Biodiesel Fuel Cetane Number Testing Program,January-April,1999,using Test Method D 2622yielded falsely high results due to the presence of the oxygen in the biodiesel.Sulfur results using Test Method D 2622were more accurate with B20than with B100due to the lower oxygen content of B20.Potential improvements to Test Method D 2622may provide more accurate values in the future.X1.6Copper Strip CorrosionX1.6.1This test serves as a measure of possible difficulties with copper and brass or bronze parts of the fuel system.The presence of acids or sulfur-containing compounds can tarnish the copper strip,thus indicating the possibility for corrosion.X1.7Cetane NumberX1.7.1Cetane number is a measure of the ignition quality of the fuel and influences white smoke and combustion rough-ness.The cetane number requirements depend on engine design,size,nature of speed and load variations,and on starting and atmospheric conditions.X1.7.2The calculated cetane index,Test Methods D 976or D 4737,may not be used to approximate the cetane number with biodiesel or its blends.There is no substantiating data to support the calculation of cetane index with biodiesel or biodiesel blends.X1.8Cloud PointX1.8.1Cloud point is of importance in that it defines the temperature at which a cloud or haze of crystals appears in the fuel under prescribed test conditions which generally relates to the temperature at which crystals begin to precipitate from the fuel in use.Biodiesel generally has a higher cloud point than petroleum based diesel fuel.The cloud point of biodiesel andits impact on the cold flow properties of the resulting blend should be monitored by the user to ensure trouble-free opera-tion in cold climates.For further information,consult Appen-dix X4of Specification D 975.X1.9Carbon ResidueX1.9.1Carbon residue gives a measure of the carbon depositing tendencies of a fuel oil.While not directly correlat-ing with engine deposits,this property is considered an approximation.Although biodiesel is in the distillate boiling range,most biodiesels boil at approximately the same tempera-ture and it is difficult to leave a 10%residual upon distillation.Thus,a 100%sample is used to replace the 10%residual sample,with the calculation executed as if it were the 10%residual.Parameter E (final weight flask charge/original weight flask charge)in 8.1.2of Test Method D 4530-93is a constant 20/200.X1.10Acid NumberX1.10.1The acid number is used to determine the level of free fatty acids or processing acids that may be present in biodiesel.Biodiesel with a high acid number has been shown to increase fueling system deposits and may increase the likeli-hood for corrosion.N OTE X1.2—Acid number measures a different phenomenon for biodiesel than petroleum based diesel fuel.The acid number for biodiesel measures free fatty acids or degradation by-products not found in petroleum based diesel fuel.Increased recycle temperatures in new fuel system designs may accelerate fuel degradation which could result in high acid values and increased filter plugging potential.X1.11Free GlycerinX1.11.1The free glycerin method is used to determine the level of glycerin in the fuel.High levels of free glycerin can cause injector deposits,as well as clogged fueling systems,and result in a buildup of free glycerin in the bottom of storage and fueling systems.X1.12Total GlycerinX1.12.1The total glycerin method is used to determine the level of glycerin in the fuel and includes the free glycerin and the glycerine portion of any unreacted or partially reacted oil or fat.Low levels of total glycerin ensure that high conversion of the oil or fat into its mono-alkyl esters has taken place.High levels of mono-,di-,and triglycerides can cause injector deposits and may adversely affect cold weather operation and filter plugging.X1.13Phosphorus ContentX1.13.1Phosphorus can damage catalytic converters used in emissions control systems and its level must be kept low.Catalytic converters are becoming more common on diesel-powered equipment as emissions standards are tightened,so low phosphorus levels will be of increasing importance.Biodiesel produced from U.S.sources has been shown to have low phosphorus content (below 1ppm)and the specification value of 10ppm maximum is not problematic.Biodiesel from other sources may or may not contain higher levels of4Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02–1480.phosphorus and this specification was added to ensure that all biodiesel,regardless of the source,has low phosphorus con-tent.X1.14Reduced Pressure DistillationX1.14.1Biodiesel exhibits a boiling point rather than a distillation curve.The fatty acids chains in the raw oils and fats from which biodiesel is produced are mainly comprised of straight chain hydrocarbons with16to18carbons that have similar boiling temperatures.The atmospheric boiling point of biodiesel generally ranges from330to357°C,thus the speci-fication value of360°C is not problematic.This specification was incorporated as an added precaution to ensure the fuel has not been adulterated with high boiling contaminants.N OTE X1.3—The density of biodiesel meeting the specifications in Table1falls between0.86and0.90,with typical values falling between 0.88and0.89.Since biodiesel density falls between0.86and0.90,a separate specification is not needed.The density of raw oils and fats is similar to biodiesel,therefore use of density as an expedient check of fuel quality may not be as useful for biodiesel as it is for petroleum based diesel fuel.This section has been added to provide users and engine interests with this information.N OTE X1.4—In certain items of fuel injection equipment in compres-sion ignition engines,such as rotary/distributor fuel pumps and injectors, the fuel functions as a lubricant as well as a source for combustion. Blending biodiesel fuel with petroleum based compression-ignition fuel typically improves fuel lubricity.X2.LONG-TERM STORAGE OF BIODIESELX2.1ScopeX2.1.1This appendix provides guidance for consumers of biodiesel(B100)who may wish to store quantities of fuels for extended periods.Consistently successful long-term fuel stor-age requires attention to fuel selection,storage conditions,and monitoring of properties prior to and during storage.This appendix is directed toward biodiesel(B100)and may be more or less applicable to blends of biodiesel with petroleum based diesel fuel.X2.1.2Normally produced biodiesel has adequate stability properties to withstand normal storage without the formation of troublesome amounts of insoluble degradation products,al-though data suggests some biodiesel may degrade faster than petroleum based diesel fuel.Biodiesel that is to be stored for prolonged periods should be selected to avoid formation of sediments,high acid numbers,and high viscosities that can clogfilters,affect fuel pump operation or plug combustor nozzles or injectors.The selection of biodiesel should result from supplier-user discussions.X2.1.3These suggested practices are general in nature and should not be considered substitutes for any requirement imposed by the warranty of the distillate fuel equipment manufacturers or by federal,state,or local government regu-lations.Although they cannot replace knowledge of local conditions or good engineering and scientific judgment,these suggested practices do provide guidance in developing an individual fuel management system for the biodiesel fuel user. They include suggestions in the operation and maintenance of existing fuel storage and handling facilities and for identifying where,when,and how fuel quality should be monitored.X2.2TerminologyX2.2.1bulk fuel—fuel in the storage facility in quantities over50gallons.X2.2.2combustor fuel—fuel entering the combustion zone of the burner or engine afterfiltration or other treatment of bulk fuel.X2.2.3fuel contaminants—foreign materials that make fuel less suitable or unsuitable for the intended use.Fuel contami-nants include materials introduced subsequent to the manufac-ture of fuel and fuel degradation products.X2.2.4fuel-degradation products—those materials formed in fuel after it is produced.Insoluble degradation products may combine with other fuel contaminants to reinforce deleterious effects.Soluble degradation products(acids and gums)may be more or less volatile than the fuel and may cause an increase in injector and nozzle deposits.The formation of degradation products may be catalyzed by contact with metals,especially those containing copper and,to a lesser extent,iron.X2.2.5long-term storage—storage of fuel for longer than6 months after it is received by the user.X2.3Fuel SelectionX2.3.1The stability properties of biodiesel are not fully understood and appear to depend on the vegetable oil and animal fat sources,severity of processing,and whether addi-tional production plant treatment has been carried out or stability additives are present.X2.3.2The composition and stability properties of biodiesel produced at specific production plants may be different.Any special requirements of the user,such as long-term storage, should be discussed with the supplier.X2.4Fuel AdditivesX2.4.1Available fuel additives appear to improve the long term storage of biodiesel.Most additives should be added as close to the production site as possible to obtain maximum benefits.X2.4.2Biocides or biostats destroy or inhibit the growth of fungi and bacteria which can grow at fuel-water interfaces to give high particulate concentrations in the fuel.Available biocides are soluble in the fuel phase or the water phase,or both.Refer to Guide D6469for a more complete discussion. X2.5Tests for Fuel QualityX2.5.1Test methods for estimating the storage stability of biodiesel(B100)are being developed.Modifications of Test Method D2274to use glassfiberfilters,varying timesandtemperatures,and the measurement of pre-test and post-test acid number and viscosity appear promising.However,corre-lation of this test with actual storage stability is unknown,and may depend uponfield conditions and fuel composition.X2.5.2Performance criteria for accelerated stability tests that ensure satisfactory long-term storage of biodiesel(B100) have not been established.X2.6Fuel MonitoringX2.6.1A plan for monitoring the quality of bulk fuel during prolonged storage is an integral part of a successful monitoring program.A plan to replace aged fuel with fresh product at established intervals is also desirable.X2.6.2Stored fuel should be periodically sampled and its quality assessed.Practice D4057provides guidance for sam-pling.Fuel contaminants and degradation products may settle to the bottom of a quiescent tank although detrimental changes to biodiesel can occur(rising acid value)without causing sediment formation.A Bottom or Clearance sample,as defined in Practice D4057,should be included in the evaluation along with an All Level sample.X2.6.3The quantity of insoluble fuel contaminants present in biodiesel can be determined using Test Method D6217with glassfiberfilters and abundant washing although no precision or bias testing has been performed with biodiesel using Test Method D6217.X2.6.4The acid value of biodiesel appears to exceed its specified maximum before other deleterious fuel property changes occur.A conscientious program of measuring the acid value of biodiesel may be sufficient for monitoring biodiesel stability.X2.7Fuel Storage ConditionsX2.7.1Contamination levels in fuel can be reduced by storage in tanks kept free of water,and tankage should have provisions for water draining on a scheduled basis.Water promotes corrosion,and microbiological growth may occur at a fuel-water interface.Refer to Guide D6469for a more complete discussion.Underground or isothermal storage is preferred to avoid temperature extremes;above-ground storage tanks should be sheltered or painted with reflective paint.High storage temperatures accelerate fuel degradation.Fixed roof tanks should be kept full to limit oxygen supply and tank breathing.The use of airtight sealed containers,such as drums or totes,can enhance the storage life of biodiesel.X2.7.2Copper and copper-containing alloys should be avoided with biodiesel due to increased sediment and deposit formation.Contact with lead,tin,and zinc can also cause increased sediment levels that can rapidly plugfilters and should be avoided.X2.7.3Appendix X3of Specification D2880discusses fuel contaminants as a general topic.The discussion in Specifica-tion D2880pertains to gas turbine combustion which may or may not be applicable to diesel engine combustion.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website().。

生物柴油系列的国际标准

生物柴油系列的国际标准

生物柴油系列的国际标准
链接:/tech/12807.html
生物柴油系列的国际标准
生物柴油的国际标准是ISO 14214A另一个是ASTM国际标准ASTM D 6751,这一标准是美国所采用的标准,该标准
由美国环保局1996年在“清洁空气法”的211(b)部分加以了法律确认。

另一被广泛认同的是德国的DIN生物柴油系列标准,是迄今为止最为详细系统的生物柴油标准,该标准体系针对不同的制造原料有不同的DIN标准:以油菜籽和纯粹以蔬菜籽为原料的RME(rapeseed methyl ester)、PME(vegetable methyl ester)生物柴油DIN E 51606 标准,以蔬菜油脂和动物脂肪为混合原料FME (fat methyl ester)的生物柴油DIN V 51606标准。

欧盟也在2003年11月颁布了EN14241生物柴油燃料标准。

此外奥地利、澳大利亚、捷克共和国、法国、意大利、瑞典等国家也拟订了生物柴油燃油规范。

原文地址:/tech/12807.html
页面 1 / 1。

生物柴油产业迎接测试标准挑战

生物柴油产业迎接测试标准挑战

生物柴油产业迎接测试标准挑战张荣忠2009年03月02日10:21 中国石化新闻网柴油作为一种重要的石油炼制产品,在各国燃料结构中占有较高的份额,已成为重要的动力燃料。

随着世界范围内车辆柴油化趋势的加快,未来柴油的需求量会愈来愈大,而石油资源的日益枯竭和人们环保意识的提高,大大促进了世界各国加快柴油替代燃料的开发步伐,尤其是20世纪90年代以后,生物柴油或生物燃料油以其优越的环保性能受到了各国的重视。

生物柴油和乙醇是当前生物燃料的两大类。

众所周知,柴油分子是由15个左右的碳链组成的,研究发现生物柴油的植物油分子则一般又14~18个碳链组成,与柴油分子中碳数相近。

因此生物柴油就是一种用油彩籽等可再生植物油加工制取的新型燃料。

按化学成分分析,生物柴油燃料是一种高脂酸甲烷,它是通过以不饱和油酸C18为主要成分的甘油酯分解而获得的。

与常规柴油相比,生物柴油下述具有无法比拟的性能:(1)具有优良的环保特性。

主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。

检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。

(2)具有较好的低温发动机启动性能。

无添加剂冷滤点达-20℃。

(3)具有较好的润滑性能。

使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。

(4)具有较好的安全性能。

由于闪点高,生物柴油不属于危险品。

因此,在运输、储存、使用方面的有是显而易见的。

(5)具有良好的燃料性能。

十六烷值高,使其燃烧性好于柴油,燃烧残留物呈微酸性使催化剂和发动机机油的使用寿命加长。

(6)具有可再声性能。

作为可再生能源,与石油储量不同其通过农业和生物科学家的努力,可供应量不会枯竭。

生物柴油各国产业标准规范现状

生物柴油各国产业标准规范现状

生物柴油各国产业标准规范现状一、生物柴油所谓生物质产业,是指利用可再生或可循环的有机物质,以包括农作物、树木和其他植物及其残体、畜禽粪便、有机废弃物等为原料,通过工业性加工转化生产生物基产品、生物燃料和生物能源的一种新兴产业。

在生物质产业中,生物柴油(Biodiesel)应该算是一个已经比较成熟的产品。

生物柴油由德国聂尔公司于1988年发明。

生物柴油是清洁的可再生能源,可以选择的原料包括:亚麻、大豆、菜籽、橡胶籽、膏桐籽、蓖麻、花生、棕榈、棉花籽等油料水生植物,以及动物油脂、废餐饮油、地沟油等;还可以工程微藻等为媒介进行生产。

生物柴油是优质的石油柴油代用品。

与普通柴油相比,生物柴油以下优异性能:1、优良的环保特性:硫含量低,二氧化硫和硫化物的排放低、生物柴油的生物降解性高达98%,降解速率是普通柴油的2倍,可大大减轻意外泄漏时对环境的污染;2、较好的低温发动机启动性能;3、较好的润滑性能;4、较好的安全性能:闪点高,运输、储存、使用方面安全;5、良好的燃料性能:燃烧性能好于柴油;6、可再生性;7、无须改动柴油机,可直接添加使用;8、生物柴油以一定比例与石化柴油调和使用,可以降低油耗、提高动力性,并降低尾气污染。

此外,生产生物柴油的能耗仅为石油柴油的1/4,可显著减少燃烧污染排放。

;生物柴油生产使用的植物还可将二氧化碳转化为有机物固化在土壤中,可减少温室气体排放;利用废食用油生产生物柴油,可以减少含有毒物质的废油排入环境或重新进入食用油系统;在适宜的地区种植油料作物,可保护生态,减少水土流失。

按照京都议定书,欧盟2008~2012年间要减少排放8%。

而生物柴油与普通柴油相比,使柴油车尾气中有毒有机物排放量仅为1/10,颗粒物为20%,C02和CO排放量仅为10%。

就燃料对整个大气C02影响的生命循环分析看,生物柴油排放的C02比矿物柴油要少约50%。

生物柴油可以在一定程度上完成欧盟的减排目标。

二、生物柴油已有的欧洲、美国产品标准国际上技术先进国家在发展一个新兴产品、推进一个新兴产业的时候,往往首先制定相关的政策、产品标准、技术规范以及推进的相关配套政策等。

生物柴油是以动物油脂与植物油脂为原料

生物柴油是以动物油脂与植物油脂为原料

生物柴油是以动物油脂和植物油脂为原料,通过与甲醇乙醇等低碳醇进行酯交换反应得到的长链脂肪酸单烷基酯目前生物柴油大多采用均相酯交换反应制备,用于酯交换生产生物柴油的催化剂主要是酸和碱。

随着经济的不断发展,人类对于能源的需求逐渐增加,能源危机问题日益加剧。

生物柴油作为新型的环境友好燃料受到了广泛的关注。

生物柴油是以餐厨废油,动、植物油脂等经过酯交换反应得到的可代替石化柴油的再生燃料。

与传统燃料相比,生物柴油燃烧后产生的废物更少,对环境的污染更小。

目前,工业制备生物柴油多采用均相催化法。

Rafael Guzatto[14]以大豆油、餐饮废油为原料,采用TDSP—两步催化的方法制备生物柴油。

此法大大减少了催化剂的用量,也降低了因催化剂引起的环境污染。

Manop[15]以餐饮废油为原料,使用两步催化的方法(第一步,以硫酸为催化剂;第二步,以KOH为催化剂),研究表明,第一步催化时,醇油比6:1,硫酸用量0.68%,反应温度51℃,反应时间60min;第二步催化时,甲醇与第一步反应所得产物的摩尔比9.1:1,KOH用量1%,反应温度55℃,反应时间60min,则此时,生物柴油的转化率可达90.56%左右。

虽然,均相催化法使用的催化剂价格低廉,且两步催化时可降低催化剂的使用量,但此法对原料的要求很高,反应后产物不易分离,后续操作污染较大[16]。

生物柴油的制备方法包括均相催化、非均相催化以及不使用催化剂的超临界流体法〔一〕。

均相催化法包括均相酸、碱催化,该方法工艺成熟,转化率高,但是后期催化剂分离困难,产生大量废水,且对原料要求高。

非均相催化法包括固定脂肪酶催化、固体酸以及固体碱催化,该方法后期分离简单,但是由于酶的使用条件苛刻以及价格昂贵,工业上很少使用,固体酸、固体碱催化两相接触不如均相充分,转化率低。

超临界流体法则很好地解决了上述问题。

超临界流体法制备生物柴油的优势、存在的问题及其应用展望综上所述可以看出,超临界流体酷交换反应制备生物柴油相对于均相酸、碱催化法的优势主要有以下几个方面表列举了超临界流体法与均相碱催化法的比较。

生物质柴油指标及检测方法

生物质柴油指标及检测方法

15 游离甘油和总甘油 生物柴油中甘油含量的高低取决于酯交换的工艺过程。 甘油酯的高黏度是生物柴油在启动和持久性上产生问题的 主要原因,甘油酯特别是甘油三酯会在喷嘴、活塞和阀门 上产生沉积。许多国家的生物柴油标准均要求游离甘油小 于0.02%,总甘油小于0.25%。 游离甘油和总甘油的测定通常采用过碘酸钠法或气相色 谱法。采用过碘酸钠法测定方法:在强酸溶液中,甘油被 过碘酸氧化,然后加入碘化钾,以淀粉为指示剂,使用硫 代硫酸钠滴定析出的碘,从而测定甘油含量。
4 密度 油品密度的大小对燃料从喷嘴喷出的射程和油品的雾化 质量影响很大。燃油密度和粘度的变化会导致发动机功率 的变化.最终导致燃油消耗和发动机排放物也发生变化。 降低油品的密度可降低HC、N0、和颗粒物的排放。0号柴 油的密度约为0.83g/cm,2号柴油约为0.85g/cm,生物柴 油的密度比柴油略高2%-7%,一般在0.86—0.90s/cm之间。 密度的测定一般采用GB5526-85规定的方法。其实就是液 体比重天平法。
12 残炭 油脂在隔绝空气的情况下加热时会蒸发、裂解和缩合, 生成一种具有光泽鳞片的焦炭状残留物即为残炭,主要由 油品中的胶质、沥青质、多环芳烃及灰分形成。残炭量的 高低直接影响油品的稳定性、柴油机焦炭量、积炭等。 残炭的测定可按GB/268—87(康氏法)规定的方法进 行。方法概要:把已称重的试样置于柑祸内进行分解蒸馏。 残余物经强烈加热一定时间即进竹裂化和焦化反应。在规 定的加热时间结束后,将盛有碳质残余物的坩埚置于干燥 器内冷却并称重,计算残炭值(以原试样的质量百分数表 示)。
11 水分和灰分
水分的存在对生物柴油的燃烧性能有很大影响,还会对柴油机产生 腐蚀作用。水分还会提高生物柴油的化学活性,使其容易变质,降低 存储稳定性。生物柴油中的灰分主要为残留的催化剂(碱催化)和其他 原料中的金属元素及其盐类,限制灰分可以限制生物柴油中无机物如 残留催化剂的含量等。 水分和灰分的测定可分别按GB6283—86(卡尔一费休氏法)和GB508— 65进行。费休氏水分测定法所用的标准滴定液称卡尔· 费休试液,是由 碘、二氧化硫、吡啶(无吡啶的费休液是用特殊的有机碱代替吡啶)和 甲醇按一定比例组成的溶液。其滴定的基本原理是利用碘氧化二氧化 硫时,需要有一定量的水参加反应。从消耗碘的量即可测得水的含量。

生物柴油的广泛应用

生物柴油的广泛应用

生物柴油的应用生物柴油主要指脂肪酸甲酯,它即可以用作燃料,也可以用作化工产品的原料或中间体,比如用作工业溶剂,或用来制备表面活性剂等。

燃料生物柴油的主要用途是作为清洁石油柴油的调和组分和生产满足欧Ⅲ标准的清洁柴油。

与石油柴油比较,生物柴油具有十六烷值高、硫含量低、不含芳烃、闪点高、润滑性能好、生物降解快等优点。

在国外,生物柴油作为燃料的主要品种及用途包括:(1)100%生物柴油。

这对原料与产品均有严格要求,如德国采用低芥酸、低硫甙的菜籽油生产,产品可满足欧Ⅲ排放要求。

欧洲多个国家和美国都有100%生物柴油的标准,表1.1中给出了美国生物柴油的标准(ASTM D6751-03)。

(2)生物柴油与石油柴油调配使用。

国外常用的生物柴油调配量是2%、5%、10%、20%、30%等,分别称为B2、B5、B10、B20和B30柴油。

在B2柴油中生物柴油的作用是提高柴油的润滑性。

较高含量的生物柴油有利于降低有害气体的排放,保护环境。

目前,国外没有为这种调配的柴油单独制定标准,只要100%生物柴油符合相应的标准即可,比如美国就规定生物柴油必须达到ASTM D6751的标准才能作为柴油调和组分使用。

(3)家庭加热炉燃料。

在国内,生物柴油很少用做燃料,其中的一个主要原因是国家还没有颁布相关标准,目前石油化工科学研究院正在制定中。

另外,各个生物柴油生产厂家一般都有自己的企业标准,如福建卓越新能源发展公司制定的标准Q/LYZY01-2002。

化工产品或化工中间体(1)低硫低芳柴油润滑添加剂由于深度加氢精制而导致柴油的润滑性下降,使用润滑性差的柴油会增加泵的磨损,容易发生事故。

为了改善柴油的润滑性,需要加入柴油润滑添加剂,现在工业上常用的润滑添加剂主要以一些胺类、酯类、酸类或其混合组份为主。

生物柴油具有比较好的润滑性,美国已有用生物柴油作为柴油润滑添加剂的专利(US 5730029和US 5891203),同时国外在生物柴油的润滑促进性方面也进行了大量的工作。

浅谈生物柴油燃料(Biodiesel Fuel)

浅谈生物柴油燃料(Biodiesel Fuel)

浅谈生物柴油燃料(Biodiesel Fuel)1、生物柴油与石油柴油特性比较优质生物柴油是由菜油制造而成的一种燃料。

其生产过程简单,即利用熟知的所谓脂基转移过程。

在美国,当前用作生物柴油原料直馏菜油的主要资源是豆油。

生物柴油及生物柴油混合物可用于所有以柴油为原料的压缩-点火引擎,如以柴油为动力的轿车、载重汽车、拖拉机、船只、运载设备、灌溉系统、矿山设备和发电机等。

生物柴油与石油柴油特性比较燃料特性柴油生物柴油(B100)燃料标准 ASTM D975 ASTM D6751-02最低热值 Btu/gal 131 295 117.09340 °C动粘性 1.3 - 4.1 1.9-6.0碳 , 重量% 87 77氧, 不同重量% 0 11硫, 重量% 0.05 最多 0.0 -0.0024 爆发点温度,°C 60-80 100-170云雾点温度,°C -15 to 5 -3 to 12流动点温度,°C -35 to -15 -15 to 10十六烷值 40-55 48-65生物柴油混合物属于由部分纯生物柴油和部分石油柴油混合而成的燃料。

例如B100是纯生物柴油,而B20是由20%生物柴油和80%普通柴油混合而成的。

兰太阳公司建议在温暖气候条件下使用混合生物柴油B20(20%生物柴油,80% #2柴油),在寒冷气候条件下, 普通柴油部分使用#1柴油燃料和柴油添加剂强化因子。

B20混合柴油提供的是一种超级燃料,因为它具有更高的十六烷值,超级润滑性能,大大减少煤烟排放,实际上消除了可见烟气的排放,更少的有毒物质排放,最少的Nox排放,具有相同的燃料消耗量和马力,扭矩,而且燃料气味较干净。

目前,生物柴油ASTM D6751标准已经开发出来,并制定了高质量生物柴油特性参数。

生物柴油工业持股者现在可以相信满足ASTM D6751特性参数的高质量生物柴油燃料。

由于原料作物采集太阳能并将之转换为生物柴油原料油,所以生物柴油可产生出要之产生能量220%的能量,包括所有用于农业、运输等的全部能量。

生物柴油的标准

生物柴油的标准

生物柴油标准中的各项指标分析2007-04-20 22:16来源: 生物柴油化工论坛网友评论0 条浏览次数857生物柴油标准中要考虑很多指标,有些指标是与石油柴油共有的,包括密度、运动粘度、闪点、硫含量、10%蒸余物残碳、十六烷值、灰分、水含量、机械杂质、铜片腐蚀、燃料安定性、低温性等;还有一些指标是生物柴油所特有的,包括总酯含量、游离甘油含量、甘油单酯、二酯及三酯含量、甲醇含量、碘价及多元不饱和脂肪酸甲酯的含量、酸值、磷含量、碱及碱土金属含量等;另外,还有一些额外的指标包括馏程、燃烧热值、润滑性、不皂化物含量等,是可以选择的。

闪点:为了储存和运输的安全,燃料都要最低闪点的要求。

生物柴油的闪点一般高于110℃,远超过石油柴油的70℃,所以生物柴油储运比石油柴油安全。

甲醇的含量是影响生物柴油闪点高低的重要因素。

即使在生物柴油中含有少量的甲醇,其闪点也会降低。

除此之外,较多的甲醇也会对燃料泵、橡塑配件等有影响,并且会降低生物柴油的燃烧性能。

美国生物柴油标准要求闭口闪点不低于130℃,欧洲标准要求不低于120℃。

水分:游离水会导致生物柴油氧化并与游离脂肪酸生成酸性水溶液,水本身对金属就有腐蚀。

美国生物柴油标准要求生物柴油水分和沉渣不超过0.05%,欧洲标准要求水含量不超过500 mg/kg。

机械杂质:指存在于油品中所有不溶于规定溶剂的杂质。

机械杂质对发动机零部件的磨损以及运转是否正常都有严重影响。

生物柴油中不允许有机械杂质。

欧洲生物柴油标准要求总杂质含量不超过24 mg/kg。

运动粘度:运动粘度表示生物柴油在重力作用下流动时内摩擦力的量度,其值为相同温度下生物柴油的动力粘度与密度之比。

对于一些发动机而言,为了防止喷射泵和喷射器泄漏而造成功率损失,可设定一个粘度最小值;另一方面,通过对发动机的设计尺寸、喷油系统特性的考虑,限定了允许粘度的最大值。

生物柴油的粘度高于石油柴油,调入2~20%的生物柴油到石油柴油中后,柴油的粘度会增加,但也能满足标准对柴油运动粘度的要求。

生物柴油标准

生物柴油标准

资料来源:转自韩德奇等《生物柴油的现状与发展前景》我国生物柴油国家标准柴油机燃料调和用生物柴油(BD100)GB/T20828-2007 2007-5-1《生物柴油中游离甘油和总甘油的测定》和《生物柴油氧化安定性的测定》已完成并进入报批程序;两个分析方法标准《柴油机燃料中生物柴油含量的测定》和《生物柴油中酯含量的测定》也正在制定中。

首项生物柴油国家标准目前进入报批程序(2006.7.26)由中国石油化工股份有限公司提出、石油化工科学研究院起草的我国第一项生物柴油国家标准《柴油机燃料调和用生物柴油》已进入报批程序。

据标准起草人、石油化工科学研究院张永光教授介绍,与矿物柴油相比,生物柴油具有以下5个方面的优势:一是生物柴油的硫含量低,可减少约30%(有催化剂时为70%)的二氧化硫和硫化物的排放,10%(有催化剂时为95%)的一氧化碳排放以及50%的二氧化碳排放,且不含有对环境造成污染的芳烃,生物柴油可降低90%的空气毒性,采用生物柴油的发动机废气排放可以满足欧洲Ⅲ号排放标准。

二是生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,这些部件的使用寿命可比普通柴油长。

三是生物柴油的闪点高于普通柴油,不属于危险品,在运输、储存、使用等方面的安全性均好于普通柴油。

四是生物柴油的十六烷值高。

十六烷值是衡量柴油点火性能的重要指标,十六烷值高,说明生物柴油具有良好的燃料性能。

五是生物柴油的原料不同于普通柴油的原料矿物质石油。

生物柴油是一种可再生能源,也是一种降解性较高的能源。

据介绍,生物柴油是由动、植物油脂与醇(例如甲醇或乙醇)经酯交换反应制得的脂肪酸单烷基酯,最典型的生物柴油是脂肪酸甲酯。

原料来源主要有油料作物、油料林木果实、油料水生植物以及动物油脂、废餐饮油等。

生物柴油于1988年诞生于德国,我国从2001年开始生产生物柴油。

目前全国生产生物柴油的企业有数十家,年产量超过10万吨。

据国家发改委能源研究所可再生能源发展中心副主任任东明博士预测,2010年,我国生物柴油生产能力可达20万吨;到2020年,我国生物柴油生产能力要达到200万吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Biodiesel Production and QualityLast updated April 26, 2007The production processes for biodiesel are well known. There are three basic routes to biodiesel production from oils and fats:* Base catalyzed transesterification of the oil.* Direct acid catalyzed transesterification of the oil.* Conversion of the oil to its fatty acids and then to biodiesel.Most of the biodiesel produced today is done with the base catalyzed reaction for several reasons: * It is low temperature and pressure.* It yields high conversion (98%) with minimal side reactions and reaction time.* It is a direct conversion to biodiesel with no intermediate compounds.* No exotic materials of construction are needed.The chemical reaction for base catalyzed biodiesel production is depicted below. One hundred pounds of fat or oil (such as soybean oil) are reacted with 10 pounds of a short chain alcohol in the presence of a catalyst to produce 10 pounds of glycerin and 100 pounds of biodiesel. The short chain alcohol, signified by ROH (usually methanol, but sometimes ethanol) is charged in excess to assist in quick conversion. The catalyst is usually sodium or potassium hydroxide that has already been mixed with the methanol. R', R'', and R''' indicate the fatty acid chains associated with the oil or fat which are largely palmitic, stearic, oleic, and linoleic acids for naturally occurring oils and fats.The Biodiesel ReactionCH2OCOR''' CH2OH R'''COOR||CatalystCH2OCOR'' + 3 ROH ------> CH2OH + R''COOR||CH2OCOR' CH2OH R'COOR100 pounds 10 pounds 10 pounds 100 poundsOil or Fat Alcohol (3) Glycerin Biodiesel (3)The National Biodiesel Board does not get involved with commercial biodiesel production or the design and construction of biodiesel facilities, but we have provided an example of a simple production flow chart along with a short explanation of the steps involved to acquaint the reader with the general production process.The base catalyzed production of biodiesel generally occurs using the following steps:Mixing of alcohol and catalyst. The catalyst is typically sodium hydroxide (caustic soda) or potassium hydroxide (potash). It is dissolved in the alcohol using a standard agitator or mixer.Reaction. The alcohol/catalyst mix is then charged into a closed reaction vessel and the oil or fat is added. The system from here on is totally closed to the atmosphere to prevent the loss of alcohol. The reaction mix is kept just above the boiling point of the alcohol (around 160 °F) to speed up the reaction and the reaction takes place. Recommended reaction time varies from 1 to 8 hours, and some systems recommend the reaction take place at room temperature. Excess alcohol is normally used to ensure total conversion of the fat or oil to its esters.Care must be taken to monitor the amount of water and free fatty acids in the incoming oil or fat. If the free fatty acid level or water level is too high it may cause problems with soap formation and the separation of the glycerin by-product downstream.Separation. Once the reaction is complete, two major products exist: glycerin and biodiesel. Each has a substantial amount of the excess methanol that was used in the reaction. The reacted mixture is sometimes neutralized at this step if needed. The glycerin phase is much more dense than biodiesel phase and the two can be gravity separated with glycerin simply drawn off the bottom of the settling vessel. In some cases, a centrifuge is used to separate the two materials faster.Alcohol Removal. Once the glycerin and biodiesel phases have been separated, the excess alcohol in each phase is removed with a flash evaporation process or by distillation. In others systems, the alcohol is removed and the mixture neutralized before the glycerin and esters have been separated. In either case, the alcohol is recovered using distillation equipment and is re-used. Care must be taken to ensure no water accumulates in the recovered alcohol stream.Glycerin Neutralization. The glycerin by-product contains unused catalyst and soaps that are neutralized with an acid and sent to storage as crude glycerin. In some cases the salt formed during this phase is recovered for use as fertilizer. In most cases the salt is left in the glycerin. Water and alcohol are removed to produce 80-88% pure glycerin that is ready to be sold as crude glycerin. In more sophisticated operations, the glycerin is distilled to 99% or higher purity and sold into the cosmetic and pharmaceutical markets.Methyl Ester Wash. Once separated from the glycerin, the biodiesel is sometimes purified by washing gently with warm water to remove residual catalyst or soaps, dried, and sent to storage. In some processes this step is unnecessary. This is normally the end of the production process resulting in a clear amber-yellow liquid with a viscosity similar to petrodiesel. In some systems the biodiesel is distilled in an additional step to remove small amounts of color bodies to produce a colorless biodiesel.Product Quality and Registration. Prior to use as a commercial fuel, the finished biodiesel must be analyzed using sophisticated analytical equipment to ensure it meets ASTM specifications. Additionally, all biodiesel produced must be registered with the Unites States Environmental Protection Agency under 40 CFR Part 79.The most important aspects of biodiesel production to ensure trouble free operation in diesel engines are:* Complete Reaction* Removal of Glycerin* Removal of Catalyst* Removal of Alcohol* Absence of Free Fatty AcidsThese parameters are all specified through the biodiesel standard, ASTM D 6751. For a complete copy of ASTM D 6751 contact ASTM at . This standard identifies the parameters the pure biodiesel (B100) must meet before being used as a pure fuel or being blended with petrodiesel. The National Biodiesel Board has adopted ASTM biodiesel specifications. The specification is listed on the following page.The NBB has also formed the National Biodiesel Accreditation Commission that has put into place an accreditation program for companies selling biodiesel and biodiesel blends. It is a Good Housekeeping™type seal of approval for biodiesel marketers, and provides the consuming public with additional assurances and confidence that biodiesel purchased form a Certified Biodiesel Marketer will meet ASTM specifications. Certifications are pending, and will be posted on the NBB web site at . Once the program has been fully implemented, NBB recommends that all biodiesel marketers become certified, and that all biodiesel consumers specify the purchase of biodiesel from NBAC Certified Marketers.SPECIFICATION FORBIODIESEL (B100) – ASTM D6751-07aMarch 2007Biodiesel is defined as the mono alkyl esters of long chain fatty acids derived from vegetable oils or animal fats, for use in compression-ignition (diesel) engines. This specification is for pure (100%) biodiesel prior to use or blending with diesel fuel. #Property ASTM Method Limits Units Calcium & Magnesium, combined EN 14538 5 max ppm (ug/g) Flash Point (closed cup) D 93 93 min. Degrees C Alcohol Control (One of the following must be met)1. Methanol Content EN14110 0.2 Max % volume2. Flash Point D93 130 Min Degrees C Water & Sediment D 2709 0.05 max. % vol. Kinematic Viscosity, 40 C D 445 1.9 - 6.0 mm2/sec. Sulfated Ash D 874 0.02 max. % mass SulfurS 15 Grade S 500 Grade D 5453D 54530.0015 max. (15)0.05 max. (500)% mass (ppm)% mass (ppm)Copper Strip Corrosion D 130 No. 3 max.Cetane D 613 47 min.Cloud Point D 2500 Report Degrees C Carbon Residue 100% sample D 4530* 0.05 max. % mass Acid Number D 664 0.50 max. mg KOH/g Free Glycerin D 6584 0.020 max. % mass Total Glycerin D 6584 0.240 max. % mass Phosphorus Content D 4951 0.001 max. % mass Distillation, T90 AET D 1160 360 max. Degrees C Sodium/Potassium, combined EN 14538 5 max ppm Oxidation Stability EN 14112 3 min hours Workmanship Free of undissolved water, sediment, & suspended matter BOLD = BQ-9000 Critical Specification Testing Once Production Process Under Control* The carbon residue shall be run on the 100% sample.# A considerable amount of experience exists in the US with a 20% blend of biodiesel with 80% diesel fuel (B20).Although biodiesel (B100) can be used, blends of over 20% biodiesel with diesel fuel should be evaluated on a case-by-case basis until further experience is available.。

相关文档
最新文档